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Abstract: In the paper linear dynamic systems problem stabilization with account of state variables and 
controls restrictions synthesis methods are suggested. The suggested approach is based on the block 
synthesis method and the use of sigma-functions in the feedback chain, which are approximations of 
discontinuous functions. Besides the procedure decomposition into simple subproblems of lower 
dimension, the fact that state vector coordinates and a selection in the form of sigma functions are used as 
fictitious control (restricted in amplitude) provided an opportunity to solve the stabilization problem with 
account of state variables and controls restrictions. Copyright © 2008 IFAC 

 

1. INTRODUCTION 

In the paper a sufficiently simple solution of the stabilization 
problem of the dynamic systems with account of phase 
variables and controls restrictions with the use of σ -
functions in the feedback chain is suggested.  
As known (Utkin, 1992), under the synthesis of systems with 
discontinuous controls functioning in the sliding mode, the 
limitations on the value of the discontinuous functions 
amplitudes are accounted for at the synthesis stage. Under the 
use of various approximations of the discontinuous controls 
by the continuous functions, including the σ - functions, the 
physical limitations on the controls amplitude at the synthesis 
stage are also accounted for. The use in the paper of the block 
representation (Drakunov et al., 1990) allows to expose the 
system structure with the use of controllability index only. 
With this, the further synthesis of independently solvable 
stabilization subproblems in each of the basic blocks with the 
use of sigmoid feedback (considered as fictitious controls) 
allows the accounting of with account of phase variables and 
true controls restrictions (Utkin, 2002).  
The paper is organized as follows. In section 2, the main idea 
of the block control principle is provided. In section 3, the 
algorithm to solve the stabilization problem with account of 
phase variables and controls restrictions based on linear local 
feedback is developed. In section 4, the block control 
principle is extrapolated onto nonlinear (sigmoid) local 
feedback. In section 5, the one-parameter procedure of tuning 
of the sigmoid function parameters in the solution of the 
stabilization problem with account of state vector variables 
and controls restrictions. In section 6, an illustrative example 
is considered. 

2. BACKGROUND. THE BLOCK CONTROL  

Let us consider the problem of stabilizing a control plant 
whose mathematical model is described by a linear stationary 
differential equations system in the form 
 BuAxx +=& , (1) 

 
where pn RuRx ∈∈ ,  are the state and controls vectors, 
correspondingly, A  and B  are constant matrices of 
coordinated dimensions, the pair ),( BA  is controllable. 
A known block method result of the stabilization problem 
consists of transforming the original controllable system (1) 
into a block control form (Utkin, 2001) 
 
 ,;1,, 0

*
0001

* uBxAxrixBxAx iiiii +==+= − &&  (2) 
 
where )...,,(col*

iri xxx = , iii pBx == rankdim , ≤−1dim ix  

ixdim≤ , np
r

i
i =∑

=0
, ip  are indexes of controllability, r  is a 

indication of controllability. Here and below 1,ri =  stands 
for 1,...,1, −= rri .  
Thus, the initial system is decomposed into 1+r  
consequently coupled subsystems representing basic blocks 
(the dimensions of the state vector and fictitious controls 
coincide), and, accordingly, the control synthesis is selected 
as a sequential solution of the eigenvalue assignment problem 
in each of these blocks. 
The stabilization system (2) problem synthesis procedure 
consists of a feedback matrix choice )0,( riFi =  with 
dimensions ii pp × . 
At the first step of the procedure, the r  block fictitious 
control formation in the form of 

 
 )(1 rrrrrr xFxABx +−= +

−  (3) 
 
leads to the motion equations with given eigenvalue 

rrr xFx =& , rr xx = . The equations, relative to the variables 
 
 )(11 rrrrrrr xFxABxx +−−= +

−− , (4) 
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having the sense of fictitious controls mismatches 1−rx  from 
the desired values (3) take the form 
 

,21
*

1
*

11 −−−−− += rrrrr xBxAx&  
 
where ),,(col 1

*
1 −− = rrr xxx  matrix *

1−rA  depends on r  and 
( 1−r ) blocks and given matrix rF . 

Because, by design, the left pseudoinverse matrices +
iB  for 

matrices )0,(, riBi =  exists, there exists such a sequence of 
transformations similar to (4) 
 
 1,),(, **

11 rixFxABxxxx iiiiiiirr =+−−== +
−− , (5) 

 
where )...,,,(col 1

*
i irr xxxx −=  and, accordingly, controls of 

the form 
 
 )( 00

*
0

*
00 xFxABu +−= +  (6) 

 
such that closed system motion (2) is described by equations 
of the form 
 
 .;1,, 0001 xFxrixBxFx iiiii ==+= −

&&  (7) 
 
The eigenvalues of the system (7) coincide to the eigenvalues 
of the matrices 0,, riFi = , which are chosen arbitrarily. The 
sequential transformations (5) and the choice of controls (6) 
determine the decomposition of the initial n-parameter 
problem into independently solved elementary subproblems, 
in each of which the problem of eigenvalue assignment in the 
blocks of dimension ppi <  is solved. 

3. THE BLOCK CONTROL PRICIPLE WITH ACCOUNT 
OF STATE VECTOR AND CONTROLS RESTRICTIONS 

The fact that the procedure from section 2 decomposes the 
synthesis problem into independently solvable elementary 
subproblems of lower dimension also allows for a step-by-
step solution of the stabilization problem with account of 
state variables and controls restrictions. 
Under the assumption that the state vector components and 
the controls are bounded by known values in the from 

0,,const,const riUuXx ii ==≤=≤ , we will now 
briefly state the procedure of system (2) stabilization problem 
synthesis.  
Step 1. In the procedure’s first step fictitious controls 1−rx  of 
the r -th block (2) must satisfy the condition 

11 )( −
+

− ≤+−= rrrrrrr XxFxABx ,  

 
which can be evaluated by the inequality  
 
 1)( −

+ ≤+ rrrrr XXFAB , (8) 

 

where (.)  are rows matrix norms. Inequality (8) may be 
assured to hold true by a choice of feedback matrix rF  from 
a class of Hurwitz matrices.  
If inequality (8) cannot be assured to hold true under any rF  
then system (2) cannot be stabilized with account of 
restrictions, and the procedure ends. If inequality (8) holds 
true then we transition to the next step.  
Step 2. As the second step, considering the imposed 
limitations 22 −− ≤ rr Xx , let us verify the truthfulness of 
inequality  
 
 2111

*
11 )( −−−−−

+
− ≤+− rrrrrr XxFxAB , 

 
where matrix *

1−rA  depends on the matrices of the r -th and 
( 1−r )-th blocks and matrix rF  given in the first step. 
Let us use the evaluation similar to the one in step one in the 
form 
 
 

211
*

11 )( −−−−
+
− ≤+ rrrrr XXFAB . (9) 

 
To assure inequality (9), there exist two possibilities: 
decreasing norm 1−rF  and norm )(*

1 rr FA −  by correcting 

matrix rF  chosen in step one.  
Final step. Continuing the thought, the final step must assure 
that equation )( 00

*
0

*
00 xFxABu +−= +  holds true. Considering 

const=≤ Uu , we get evaluation UXFAB ≤++
00

*
00 )(  

where matrix *
0A  depends on matrix iA  and chosen matrices 

iF  of all the preceding blocks.  

Thus, the choice of matrices 0,, riFi =  can assure the 
stabilization of system (2) with account of restrictions. 
Note: matrix iF  is assigned at the i -th step. If, with this 
choice, the system converges to zero, then matrices 

1,, += iriFi  remain unchanged. In case convergence is not 
assured at the i-th step, matrix iF  is corrected first, and if this 
does not suffice, matrix 1+iF  is corrected, etc. 
 
 
 
 

4. STABILIZATION PROBLEM SYNTHESIS BASED ON 
SIGMOIDAL FUNCTIONS 

The idea of the present paper consists of replacing the linear 
feedback in procedures presented in sections 2 and 3 with 
sigmoid functions of the form 
 

const.,1
)exp(1

2)( =⎥
⎦

⎤
⎢
⎣

⎡
−

−+
= X

x
Xx

τ
σ  
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The rich content of a sigmoid function consists of the given 
function being approximated by a linear function with 

∞→τ , and being approximated by a signum function 
)(sign)( xXx →σ  with 0→τ . At the same time, this 

function is convenient from the mathematical point of view in 
that it is continuously differentiated with 0≠τ .  
Let us repeat the step-by-step problem solving procedure in 
the preceding section with the use of sigmoid feedback 
without state variables restrictions. 

Procedure 1 

Step 1. In the r -th equation of system (2) 1−+= rrrrr xBxAx&  
let us chose fictitious controls in the form of a σ -function 

 
 )]([1 rrrrr xxABx σ−−= +

− , rr xx = , (10) 
 
wherein and further on i

i

p
ipii Rxxx ∈= ))(...,),((col)( 1 σσσ . 

Then the equations of the first block after feedback closure 
will take the from 
 
 1)( r-rrr xBxx +−= σ& . (11) 
 
Step 2. The transformations of this step consist of assuring 
equation (10). Let us write the differential equation relative to 
variable (10) 21

*
1

*
11 )( −−

+
−−− ++= rrrrrrr xBxBxAx σ&& , where 

),(col 1
*

1 −− = rrr xxx , matrix *
1−rA  satisfies equation 

 
][ 1

**
11

*
11 −

+
−−−

∗
− ++= rrrrrrrrrr xBxAABxAxA . 

 
Let us form a fictitious controls in the from 
 

)]()([ 1
*

11
*

12 −
+

−−
+
−− −−−= rrrrrrr xxBxABx σσ&   

 
and introduce a new variables 
 
 ])()([ 1

*
11

*
122 −

+
−−

+
−−− −−−−= rrrrrrrr xxBxABxx σσ& .(12) 

 
Then, after feedback closure the second block is described by 
a definitely stable system of the form 
 2111 )( r-rrr xBxx −−− +−= σ& , 
which assures the truthfulness of equation (10). 
Step 3. The transformations of this step consist of assuring 
the truthfulness of equation (12). Let us rewrite the equation 
with respect to variable (12) 
 

)],()([ 1132
*

2
*

22 −
++

−−−−−− +++= rrrrrrrrr xxBBxBxAx σσ &&&&  
 
where ),,(col 21

*
2 −−− = rrrr xxxx ,  

 
*

111
*

22
*

22 −−
+
−−−−

∗
− += rrrrrrr xABxAxA & . 

 
Let us chose a fictitious controls in the form 
 

×= +
−− 23 rr Bx

)]())()(([ 211
*

22
*

−−
++

−−− −+−−× rrrrrrr xxxBBxA σσσ &&&  
 
and introduce a new variables 
 

)],())(
)(([

21

1
*

22233

−−

++
−−

∗
−

+
−−−

−+
+−−−=

rr

rrrrrrrr

xx
xBBxABxx

σσ
σ

&

&&
 

 
which assures the stability of the third block 
 3222 )( −−−− +−= rrrr xBxx σ& . 
 
The three presented steps of the procedure make obvious the 
following structure of system (2) state vector transformation: 

 
 rr xx = , ))((11 rrrrrr xxABxx σ++= +

−− ,  

 ))()(( 111122 −
+∗

−
∗
−

+
−−− +++= rrrrrrrr xxBxABxx σσ& ,…, (13) 

 
.)]()](...])]()](

)([[...[[[

0122
)3(

1
)2(

)1(
123211100

uBxxxx

xBBBBBxABxx

r
r

r
r

r
r

rrr

++++++

+++=

−
−

−
−

−++
−

+
−

++∗∗+

σσσσ

σ
&

 

 
As can be seen, the substitution of variables (13) is 
nonsingular due to the lower triangular form of the 
transformation matrix. Let us note that the reversed 
transformation is nonlinear, but it is not necessary to realize it 
in the system (2) stabilization problem because the 
stabilization problem solution in the new coordinates 
automatically solves the stabilization problem in the original 
coordinates. 
The differential equations rewritten with respect to new 
variables have the following structure 

 
×++= ++

−
+

−−
+

−−−−−
∗
−−− rrrrrrrrr BBBBxBxAx [[...[[ 1211 μμμμμμμ

&
 

,1,0),()](

...])]()]()(

111

2
)2(

1
)1()(

−=++

++++×

−−
+

−−−

−
−

−
−

rxBx

xxx

rr

rrr

μσσ

σσσ

μμμ

μμμ

&&&
 (14) 

++= ∗ uBxAx 0000
&

 +++ −
−++

−
+ )]()([[...[ 1

)1()(
11 r

r
r

r
rr xxBBB σσ

 )(...])]( 112
)2( xBxr

r σσ &+
−

− +++ . 
 
System (14) stabilization problem synthesis procedure 
consists of sequential synthesis of fictitious controls 
 

 
)()]()](

...])]()]()(

[[...[[[

11

2
)2(

1
)1()(

1211

μμμ

μμμ

μμμμμμ

σσσ
σσσ

−−−−

−
−

−
−

++
−

+
−−

+
−−

∗
−−

+
−−−

−++
++++×

×−−=

rr

rrr

rrrrrrrr

xxx
xxx

BBBBxABx

&&&

(15) 

 
and of choosing true controls of the form 
 

 
).()](...])]()](

)([...[[[

012
)2(

1
)1(

)(
121

*
000

xxxx

xBBBBxABu

r
r

r
r

r
r

rr

σσσσ

σ

−++++

+−−=

−
−

−
−

++
−

+++

&
 (16) 

 
After ( 1+r ) steps of the above procedure, closed system (2) 
will be presented in the form 
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 1)( −+−= iiii xBxx σ& , 1,ri = ; )( 00 xx σ−=& . (17) 
 
As can be seen, system (17) is stabilized sequentially, bottom 
up. 

5. ONE PARAMETER PROCEDURE OF TUNING WITH 
ACCOUNT OF STATE VECTOR AND CONTROLS 

RESTRICTIONS 

Let us consider the use of control system synthesis procedure 
based on σ -functions to solve the stabilization problem with 
state vector restrictions. 
Let system (2) be bounded by restrictions of the form 

 
const;0,,const =≤==≤ UuriXx ii .  

 
Obviously, under these restrictions the analysis of the closed 
system stability is impossible within the framework of the 
linear theory. Considering that the σ -functions used in the 
preceding section are modulo restricted, let us attempt to use 
the possibility of accounting for the state vector restrictions at 
the synthesis stage. Let us present the step-by-step procedure 
with respect to a common system transformed into a block 
form of controllability of from (2).  
The amplitude of each of the σ -functions chosen below does 
not exceed the set restrictions of the corresponding 
coordinates 1,,1

* riXX ii =≤ − . The problem consists of 
choosing parameter τ  so that the set restrictions on the 
coordinates of the state and control vector are assured to be 
true. Let us complete procedure 1, but with account of phase 
restrictions. 

Procedure 2 

Step 1. According to the first step of procedure 1, r -th 
subsystem appears as 1)( −+−= rrrr xBxx σ& . Under the 
assumption that the following steps assure the truthfulness of 
expression 01 =−rx , stabilization is assured with any 
parameter τ . Let us note that with 0→τ  a sliding mode 
will appear that will assure the convergence of variables to 
zero in a finite time and the invariability with respect to 
nonzero values 11 −− ≤ rr Xx . With this, naturally, the speed 
of feedback function growth tends to infinity. With account 
of restrictions 11 −− ≤ rr Xx , the truthfulness of inequality 

1)]([ −
+ ≤−− rrrrr XxxAB σ  or 

 
)( *

1 rrrrr XXABX +≥ +
−   

 
is necessary from which follows a restriction on the choice of 
the σ -function amplitude:  
 

.1*
rr

r

r
r XA

B
X

X +≤
+
−  

 

If the stated condition is not achievable system stabilization is 
not possible. 
Step 2. At the second step, considering the imposed 
restrictions 22 −− ≤ rr Xx  we verify the truthfulness of 

inequality .)]()([ 21
*

11
*

1 −−
+

−−
+
− ≤−−− rrrrrrr XxxBxAB σσ&  An 

evaluation similar to step one is conducted 
 

≤−
*

1rX  

),(
2 1

*

1
*

1
1

2
−

+
−−+

−

− +++≤ rrrr
r

rrr
r

r XBXAXBXA
B

X
υ

 

 
where ∗

−1rA  is the row norm of matrix *
1−rA  satisfying 

equation  
 

][ 1
**

11
*

11 −
+

−−−
∗
− ++= rrrrrrrrrr xBxAABxAxA , 

 
=−1rX },max{ 1 rr XX − . To stabilize system (2), it is 

necessary for the following equation to hold true: 
 

 1
*

1
1

2*
1 −−+

−

−
− +≤ кr

r

r
r XA

B
X

X . 

 
If this condition does not hold true, then by increasing 
parameter τ  it is possible to assure the truthfulness of the 
indicated equation.  
Continuing this course of action, at the i -th step we verify 
the truthfulness of equation  
 

{ [[ [[
iiir

i
r

i
r

i
rrriiiii

Xxxxx

xBBBBBxAB

≤−++−+

+−−

++−
+

−
+

+++
−

+
−

+
+

+
+++

+
+

|)}()](...])]()](

)(...|

122
)1(

1
)3(

)2(
1232

*
1

*
11

σσσσ

σ
&

 

 
and evaluate the amplitude of the σ -function: we select 
parameter τ , with which the said equation holds true.  
At the following step of the procedure, true controls are 
formed, which solves system (2) stabilization problem with 
account of restrictions on state variables and controls.  
In conclusion of the paper we will present an example of use 
of the suggested approach in the problem of mathematical 
pendulum control. 

6. EXAMPLE 

For illustration the procedure proposed above let us consider 
the mathematic pendulum location stabilization problem 
described by differential equation  
 
 ,,sin, 020112 uxxxxxx =+== &&&  (18) 
 
where 13

021 ,),,(col RuRxxxx ∈∈=  are state vector and 
control, correspondently.  
As stabilizing feedbacks let us choose a σ -vector function of 
the form 
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 .3,1,const,1
)exp(1

2)( ** ==⎥
⎦

⎤
⎢
⎣

⎡
−

−+
= iX

x
Xx i

ii
ii τ

σ   

 
We will further need the estimates of first and second time 
derivatives of the sigma-functions 
 

i) ⎥
⎦

⎤
⎢
⎣

⎡
−

−+
= 1

)exp(1
2)(

τ
σ

x
Xx

X
Xx

+
=−+⇒

σ
τ 2)exp(1( , 

[ ]
.)()(,0)(

2
1

4
)(122

)exp(1
)exp(2)x(

22

2

2

2

xxxX
X

X
X

X
XX

x
xX

x

x

&& σσσ
τ

σ
σττ

τ
τ

σ

′=≥−=

=
+

⎟
⎠
⎞

⎜
⎝
⎛ −

+
=

−
−

=′
 

 
The maximum value of the particular derivative is reached at 
point 0=x  and is equal to τσ 2max Xx =′ .  
Thus, the valid estimate is 
 
 

xX
&&

τ
σ

2
≤ . (19) 

 

ii) =−+−= ])(2[
2

1(x) 22 xXx
X

&&&&&& σσσ
τ

σ
 
x

X
Xx

X
X

&&&
τ
σ

τ
σσ

22
)( 22

2
22

22 −
+

−
−= . 

 
The multiplier before 2x&  reaches a maximum at point 

3x±=σ , and before x&&  at point 0=σ . Thus, the valid 
estimate is 
 

xXx
X

&&&&&
ττ

σ
233

1 2
2

+≤ . (20) 

 
Let us apply the step-by-step procedure 2 to system (18).  
Step 1. Let us designate 22 xx =  and let us choose local 
feedback in the first equation (18) as ).( 21 xx σ−=  To assure 
this equation be true, it is necessary solve the stabilization 
problem with respect to a new variable )( 211 xxx σ+=  
whose behavior is described by a differential equation 
 )(sin 2201 xxxx σ&& ++= . 
Then, the closed first equation (18) will take the form 

122 )( xxx +−= σ& . 
Step 2. Let us choose fictitious controls 0x  in the form 

2210 sin)()( xxxx −−−= σσ &  and introduce a new variable 

22100 sin)()( xxxxx +++= σσ & , described by equation 

 22210 cos)()( xxxxux &&&&& +++= σσ .  

Then the second equation takes form 0111 )( xxx +−= ϕ& .  
Step 3. Let us chose a true control in the form 
 

22210 cos)()()( xxxxxu &&&& −−−−= σσσ .  
 

Then the third equation (18) takes form )( 000 xx ϕ−=& . As a 
result, the closed system id described by the system of 
equations of the following form 
 
 011 )( xxx +−= σ& , 122 )( xxx +−= σ& , )( 00 xx σ−=& . (21) 
 
System (21) is stabilized sequentially, bottom up.  
Now, let us consider the mathematic pendulum stabilization 
problem under the restrictions imposed on the coordinates of 
the state vector and control: 
 
 1,3i const,,const ==≤=≤ UuXx ii . 
 
Let us apply the step-by-step procedure 2 to system (18) with 
aforementioned restrictions. 
Step 1. Let us let 22 xx =  and chose ).( 21 xx σ−=  Due to 
restriction 11 Xx ≤ , follows the choice of a coefficient in 

)( 2xσ -function 1
*
2 XX ≤ . The new variable )( 211 xxx σ+=  

is described by equation 
 
 )(sin 2201 xxxx σ&& ++= , (22) 
 
and the first equation (18) takes form 122 )( xxx +−= σ& . 
 
Step 2. Considering coordinate 0x  in equation (22) as a 
fictitious control, we will let it be equal 
 

2210 sin)()( xxxx −−−= σσ & .  
 
The choice of the amplitude )x( 1σ is determined by relation 

0
*
11 XX ≤< . The first iteration in choosing parameter τ  is 

executed under condition )(sinx 22
*
1 xX σ&+> . Considering 

(19) 
 

 1

*
2

222 2
)0()x( XXxx

τ
σσ <== && , 

 
we get the upper estimate τσ 21)(sinx 1

*
222 XXx +≤+ &  and 

under condition 1*
1 >X  we find the upper estimate of 

parameter 1τ : 
 

 .
)1(22

1 *
1

1
*
2

1
1

1
*
2*

1 −
>⇒+>

X
XXXXX τ

τ
 

 
Let us note that condition 10 >X  is the necessary condition 
for the controllability of system (18).  
Let us introduce a new variable 
 

22100 sin)()( xxxxx +++= σσ &   
 
described by equation  
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)()(cosu 21220 xxxxx σσ &&&&& +++= . (23) 

 
Then the second equation of system (18) takes form 
 
 011 )( xxx +−= σ& . 
 
Step 3. In equation (23) let us choose control in the form 
 
 )()(cos)( 21220 xxxxxu σσσ &&&& −+−−= . 
 
Then the third equation of system (18) takes form: 
 
 )( 000 xx ϕ−=& . 
 
Now follows the second iteration in choosing parameter τ  
accounting for condition 
 
 )()(cos 2122

* xxxxU σσ &&&&& ++> . 
 
Taking estimates (19) and (20) into account, we have 
 

+++<++ 2
22*

2
1

*
1

11222 33
1

2
)()(cos x

X
xXXxxxx &&&&&&

ττ
σσ  

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=+

∗
2
12*

2
2

*
2

0

*
1

12
2

33
1||

2
1

22
X

X
xXXXXxX

ττττ
&&&  

 

( ) +
++

+=++
∗

ττ 2
))(1(1

2

*
2

*
10

10
2 XXXXXX  

 

.
312

433
2*

2

1
*
1

2*
2 U

X
XXX

<
+

+
τ

 

 
Introducing designation  
 

,
312

433,
2

))(1(,
*
2

1
*
1

2*
2

*
2

*
10

1 C
X
XXXBXXXAX =

+
=

++
=  

 
we solve the quadratic equation 022)2(2 <++− CBUA ττ  
and choose 2τ  from two possible values – the positive and 
the minimal one. As result, the value of parameter τ  should 
be chosen equal to maximum from values of each step of the 
procedure 2,1},max{* == iiττ .  
Note that on the last step of the procedure the control action 
may be chosen as a discontinuous function 0signxMu −= , 

UM ≤<0  and, under sufficiently large amplitude in 
system (23), the sliding mode will appear, and the 
stabilization problem will be solved in finite time. 

7. CONCLUSIONS 

In the paper a new approach to the synthesis of control 
systems with account of state vector and controls restrictions 
based on the block control principle and nonlinear local 
feedback described by sigma-functions is suggested. The use 

of a part of the state vector coordinates as fictitious controls 
in each block leads us to an analogy to a neural network 
structure, namely, the quantity of blocks corresponds to the 
quantity of layers, and fictitious controls dimensionality in 
each block is equal to the quantity of neurons in the 
corresponding layer, and, at the same time, the control vector 
dimensionality matches the quantity of the input layer 
neurons, and the dimensionality of the output variables vector 
matches the quantity of the output layer neurons. The above 
considerations may be viewed as an attempt to connect the 
poor formulization problem of choosing a controlling neural 
network structure and a controller’s structure based on the 
mathematic model of dynamic systems. 
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