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Abstract:
More and more often the multiagent formations found in high-risk military and civilian missions
are designed to sustain the loss of some agents or control/communication links. In a military
context, the agent loss could be a result of enemy attack and/or mechanical breakdown, while
the link loss is usually due to enemy jamming, reduced transmission power, obstacles and/or
hardware failure. If the agents are tasked to tightly maintain their inter-agent distances in
order to maintain a desirable shape of the formation, loss of certain agents or links could lead to
catastrophic consequences. This preliminary work proposes to address this potential problem by
enforcing redundancy in the formation design, by addition of extra agents and/or links beyond
the minimum necessary. Following an existing graphical model of the formations, we extend the
notions and definitions for simple rigidity to ones including the redundancy concept. We remark
that this engineered redundancy naturally reflects a level of operational robustness/health of
the formation. We differentiate the measure into a deterministic metric and a statistical metric,
and provide some general results on redundant rigidity.

1. INTRODUCTION

It has not been long ago that UAVs became recognized
as one of the enabling technologies for operational success
in modern military operations (see for example an AFSAB
(1996) report). And more often than ever, it is desirable for
them to fly in formations (see for example a NASA (2004)
report). More recently, UAV formations are also found in
civil applications such as environmental monitoring, and
bush fire surveillance.

We are investigating multiagent UAV formations operat-
ing in a hazard operational environment, including for use
in electronic warfare, where robustness and health of the
formation is of prime concern. By formation health we are
concerned with the degree of functionality of the forma-
tion in different configurations, measured against different
levels of operational requirement. The word robustness
is intended to suggest a focus on ensuring satisfactory
performance under different operational scenarios, when
both agent and communication/control links could be lost
due to equipment malfunction, or enemy attack.

⋆ This work is supported by National ICT Australia, which is a
national research institute with a charter to build Australia’s pre-
eminent Centre of Excellence for information and communications
technology (ICT). NICTA is building capabilities in ICT research,
research training and commercialisation in the ICT sector for the
generation of national benefit. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Com-
munications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

Vulnerability of UAVs in combat operations has been
studied, see for example Haulman (2003), who concluded
from a study of thirteen years’ crash records, that:

• UAV flights should be carefully synchronized with
each other and with the flights of other systems.

• UAVs should be specialized and used for a greater
variety of missions.

• The Air Force should develop countermeasures to
enemy UAVs.

• UAVs should be improved to reduce their vulnerabil-
ity to weather, enemy air defenses, and mechanical
and communication failures.

While it is not the focus of this paper for us to investigate
how these vulnerabilities could be avoided, we still wish
to elaborate the last bullet point, where the potential
vulnerabilities include:

• communication link loss, perhaps as a result of enemy
jamming or occlusion.

• Selective or random attack of one or more agents in
a formation.

• Loss of an agent as a result of mechanical and/or
communication failure, even without enemy attack,
but perhaps due to environmental changes (such as
smoke, heat, ice, etc).

While there are many other examples, we collect these
scenarios, and using an abstracted graphical model of a
formation, categorize them into two large types, link loss
and agent loss. In the literature, for example in Gross
and Yellen (2006), these have been considered in the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6584 10.3182/20080706-5-KR-1001.0554



network survivability problem, where the desired property
to preserve is connectivity.

The focus of this paper is then to address this practical
problem of mitigating the effect of losses of links or agents
in a UAV formation, by ways of using redundant agents
and/or links in the formation. We measure the robustness
of the formation, determined by how many agents or links
it can afford to lose while still preserving the cohesiveness
of the formation. We characterize the redundancy in such
robust formations, and illustrate the concept by studying
a number of special classes of formations.

In Section 2, we provide some background on the two key
tools for this study, graph rigidity theory and multiagent
formations. In Section 3, we define the appropriate mea-
sure for redundancy in graph theoretical terms, discuss in
detail some general results. In Section 4, we investigate
the redundancy of a number of special classes of rigid for-
mations, and distinguish the deterministic and statistical
ways of measuring redundant rigidity. Finally, we provide
some concluding remarks.

2. BACKGROUND

Rigid graph theory (Tay and Whiteley (1985); Jackson and
Jordan (2005)) is a tool that has been used to analyse the
property of formation rigidity, see for example Olfati-Saber
and Murray (2002); Yu et al. (2007). Agents are modeled
as points. Agent pairs with the inter-agent distance being
actively constrained to be constant can be thought of
as being joined by bars with lengths enforcing the inter-
agent distance constraints. The system can be therefore
modeled by a graph where vertices represent point-like
agents and inter-agent distance constraints are abstracted
as edges. Naturally, we can contemplate other constraints
than distance, for example, those involving angle, or angle
and distance. However, the theory begins with distance
constraints, and we restrict discussion to this case. Rigid
graph theory is concerned with stating properties of graphs
that ensure that the formation being modeled by the graph
is rigid. By keeping the formation rigid, one ensures that a
higher level command can be given to the entire formation
without having to explicitly consider many low-level issues,
such as inter-agent collision, relative position, maintaining
the range of communication etc. Moreover, certain opera-
tions, such as cooperative emitter localization, do require
specific formation geometry to maximize the accuracy.

Figure 1 shows several examples of two-dimensional
graphs, two of which are rigid and one of which is not rigid.
In a nonrigid graph, part of the graph can flex or move,
while the rest of the graph stays still. The notion of rigidity
conforms to our normal intuition and corresponds to the
rigidity of frameworks in civil/mechanical engineering.

A rigid graph is one for which for almost all choices of edge
lengths and vertex positions for which a corresponding
formation exists, the corresponding formation is rigid,
Tay and Whiteley (1985). Intuitively, if enough of the
distances between certain pairs of agents are maintained,
such that all the inter-agent distances are preserved as a
consequence, then the formation is said to be rigid.

It proves possible in two dimensions to characterize rigid-
ity in purely combinatorial terms, i.e. counting-type con-
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Fig. 1. Illustration of (a) non-rigid formation, (b) min-
imally rigid formation, and (c) non-minimally rigid
formation, moreover any edge may be removed with-
out losing rigidity.

ditions related to the graph (discarding therefore the
agent coordinates) can be used to conclude the rigidity
or otherwise of a generic formation corresponding to the
graph. This is the celebrated Laman’s Theorem, see Laman
(1970), for which no three-dimensional equivalent exists. In
three dimensions, differing necessity and sufficiency condi-
tions are known for a graph to correspond to a formation
which will be rigid for generic values of the constrained
inter-agent distances, see Tay and Whiteley (1985).

Commonly in the literature, an information structure with
a minimum number of communication links (or distance
constraints) is to be exploited while preserving the rigidity
of the formation. This leads to a widely used notion of
minimal rigidity.

A graph is called minimally rigid if it is rigid and if there
exists no rigid graph with the same number of vertices and
a smaller number of edges, i.e., a graph is minimally rigid
if it is rigid and if no single edge can be removed without
losing rigidity.

It is interesting to note that minimal rigidity is not
desirable in the context of this paper, since it, by our
later definition, has no redundancy (robustness) at all.
We re-state the following theorem (in, for example, Yu
et al. (2007)) which provides the minimum number of
links required to ensure rigidity for a formation with given
number of agents.

Theorem 1. If a graph G = (V,E) in ℜd (d ∈ {2, 3}) with
at least d vertices is rigid, then there exists a subset E′ of
edges such that G′ = (V,E′) is minimally rigid. This also
implies the following:

• |E′| = d|V | − d(d + 1)/2.
• Any subgraph G′′ = (V ′′, E′′) of G′ with at least d

vertices satisfies |E′′| ≤ d|V ′′| − d(d + 1)/2.

Though rigidity in three (and higher) dimensions can be
defined, in this paper, we limit ourselves to two dimen-
sions. Unless otherwise mentioned, we assume all the for-
mations can be modeled using simple graphs, i.e. there is
only a single constraint between each pair of agents.

3. REDUNDANCY IN UNDIRECTED FORMATION
DESIGN

In this section we use a purely topological design perspec-
tive, i.e. we deal with the graph model only; however,
there is sometimes a need to evaluate the robustness of
a realization of a graph (when each agent is assigned
coordinates), which we will not discuss in this paper.
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The graph model itself is a combination of sensing, com-
munication and control graphs, that is, the presence of an
edge representing a distance constraint also implies that
sensing is required and a communication link is to be main-
tained. For example, loss of a communication link due to
mechanical failure will probably result in a formation being
unable to maintain the corresponding distance constraint
since the associated agents cannot communicate with each
other; or occlusion of the sensor means one agent will not
be able to sense the other agent’s position and thus be
unable to maintain the distance to that agent.

In the following, we will use the terms “node/vertex of
a graph” and “agent of a formation” interchangeably,
likewise for “link” and “edge/arc of a graph”. Following
convention and for clarity, most discussion uses only the
terminology of rigid graph theory.

3.1 Redundancy concepts

There have been studies which directly or indirectly embed
the concept of redundancy into the rigid graph theory. We
give a number of examples here.

A circuit in rigid graph theory is a rigid graph that, after
deletion of any single edge, becomes a minimally rigid
graph. See Graver et al. (1993)

A graph is redundantly rigid if, after deletion of any single
edge, it becomes a rigid graph. Thus it is trivial to see that
a circuit is necessarily redundantly rigid. See Graver et al.
(1993).

In Jackson and Jordan (2005), a graph is termed 2-rigid
if it remains rigid after deletion of any one edge; note this
is the same as the definition of a redundantly rigid graph.

In Graver et al. (1993), the notion of birigid is used inter-
changeably with vertex birigid. A birigid graph remains
rigid after deletion of any single vertex and the edges
incident to this vertex.

Another type or redundancy becomes evident in consid-
ering a class of graphs termed globally rigid. These are
graphs with the property that in an associated forma-
tion, specification of the lengths corresponding to edges
determines the formation uniquely up to congruence. An
important and recent result is that a graph is globally rigid
in ℜ2 if and only if it is 3-connected and redundantly rigid,
Jackson and Jordan (2005). In sensor network localization
problems, a network is localizable if and only if it is
globally rigid and there are three or more noncollinear
anchor nodes, see Aspnes et al. (2006).

In fact, 3-connectedness itself is a characterization of a
type of redundancy in graphs, which says that the graph
can lose any two vertices but remain connected. (Connec-
tivity is of course a critical property for many multiagent
systems, for example, achieving consensus requires the
network to be connected.)

More formally, a graph G is said to be k-connected
(sometimes termed k vertex-connected) if there does not
exist a set of k− 1 vertices whose removal disconnects the
graph. The vertex connectivity Kv(G) is defined as the
minimum number of nodes whose removal will disconnect

the graph. Hence if G is k-connected, Kv(G) ≥ k. Refer
to for example Gross and Yellen (2006).

A similar characterization exists for connectedness redun-
dancy involving edges. A graph G is k-edge-connected if
there does not exist a set of k − 1 edges whose removal
disconnects the graph. The edge connectivity Ke(G) is
defined as the minimum number of edges whose removal
will disconnect the graph. Hence if G is k-edge-connected,
Ke(G) ≥ k (Gross and Yellen (2006)).

A nontrivial result is that a k-(vertex)-connected graph
is necessarily k-edge-connected, but not vice versa. More
generally, the vertex connectivity of a graph is always
smaller than or equal to the edge connectivity of the
same graph, in fact for any connected graph G, Kv(G) ≤
Ke(G) ≤ δ(G), where δ(G) denotes minimum vertex
degree (Gross and Yellen (2006)).

3.2 Characterization of redundancy in rigid graphs

We proceed by analogy with the extended connectivity
definition of a graph. To avoid trivialities, we will require
that all graphs have at least 3 vertices to be considered
rigid. Some literature uses the term “trivially rigid” in re-
lation to graphs with 2 vertices and 1 edge, or even a single
vertex graph. With mild departure from conventions, we
for convenience are labelling such graphs here as non-rigid.

A graph G is n-edge-rigid if it remains rigid after deletion
of any (n − 1) edge(s). The unique value of edge-rigidity
Re(G) of a graph G is then defined as the minimum
number of edges whose removal will result in a non-rigid
graph. Note that Re(G) = 0 if G is not rigid, including
when G has fewer than 3 vertices.

Remark 2. Some other terms have been used (for example,
2-rigid by Jackson and Jordan (2005), redundantly rigid
by Aspnes et al. (2006), and edge birigid as in Graver et al.
(1993)) for the definition of 2-edge-rigidity.

Similarly, a graph G is n-vertex-rigid if it remains rigid
after deletion of any set of (n − 1) vertices, and at least
3 vertices remain. Therefore the unique value of vertex-
rigidity Rv(G) of a graph G is defined as the minimum
number of vertices whose removal will result in a graph
with at least 3 vertices that is not rigid. If G has |V |
vertices and the removal of any set of |V |−3 vertices result
in a rigid graph, the vertex rigidity is defined as |V | − 2.
Note that Rv(G) = 0 if G is not rigid, including when G
has fewer than 3 vertices.

Trivially, for a minimally rigid graph Gm = (Vm, Em)
where |Vm| ≥ 3, Rv(Gm) = Re(Gm) = 1. In the sequel we
will present three basic yet powerful lemmas, and use them
to prove a main theorem of this section, which shows that
vertex-rigidity is a more demanding concept than edge-
rigidity. First let us briefly explore the connection of these
two new definitions to the minimum vertex degree δ(G) of
a (non-minimally) rigid graph G.

Lemma 3. For any graph G, there holds Re(G) ≤ δ(G)−1
and Rv(G) ≤ δ(G) − 1.

Proof : Consider, to obtain a contradiction, a graph G =
(V,E), with Re(G) = k > δ(G) − 1; then the graph
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obtained after removal of any set of k − 1 edges will be
rigid. Now consider the vertex v with degree equal to
δ(G); removal of min (k − 1, δ(G)) of the edges incident
to v will leave v connected to at most one other agent,
and therefore the resulting graph is not rigid. We obtained
a contradiction. We can use a similar argument for the
second part of the Lemma.

Next, let us consider the following Lemma useful in con-
struction of a (redundant) rigid graph.

Lemma 4. Consider a graph G′ obtained by adding a
vertex v and at least two edges incident on v to G = (V,E);
then G′ is rigid if G is rigid.

Proof : When the number of new edges is exactly 2, this
operation is referred to as 0-extension of a Henneberg
Sequence (see for example Tay and Whiteley (1985)), and
the Lemma holds. Obviously, when the number of new
edges exceeds 2, the addition of extra edges (beyond 2)
does not destroy the rigidity.

Using Lemma 3 and 4 above, we can obtain the following
result, stated as:

Lemma 5. For a graph G = (V,E) with |V | ≥ 4, Rv(G) =
2 implies Re(G) ≥ 2.

Proof : To obtain a contradiction, let us suppose G =
(V,E) is 2-vertex-rigid but not 2-edge-rigid. Assume G′ =
(V,E\{e}) is not rigid, and e is incident to vertices w
and v. First, both w and v have to have degree at least
equal to 3 by Lemma 3. Next, let us consider the graph
G′′ obtained from G by removing v and the set of edges
incident to v, denoted as cover(v). Note that e ∈ cover(v),
and by assumption G′′ is rigid. Now, observe that by
adding v and the edge set cover(v)\{e} to G′′, by Lemma
4, the obtained graph (in this case G′) is rigid. This
contradicts our assumption that G′ = (V,E\{e}) is not
rigid. Therefore, G has to be at least 2-edge-rigid.

In fact Lemma 5 can be generalized, and serves as the basis
step of an inductive proof of the generalization. The main
result of this paper, as stated below can be proved in a
similar spirit.

Theorem 6. For any graph G = (V,E), Rv(G) ≤ Re(G).

Proof : If G is not a rigid graph, including when G has fewer
than 3 vertices, then by definition we have Rv(G) = 0 and
Re(G) = 0, and therefore the theorem is trivially true.

Now consider the cases only when G is rigid and has
at least 3 vertices, so that both Re(G) and Rv(G) are
necessarily at least 1. If Rv(G) = 1, which implies G is
rigid, then Re(G) ≥ 1; therefore the theorem holds. It is
also true for Rv(G) = 2 by Lemma 5.

Now let us consider the general case using Lemma 5 as the
basis of an inductive proof. To form an induction, suppose
the claim is true for Rv(G) = k − 1, where k ≥ 3. To
obtain a contradiction, let us first suppose for a graph G,
Rv(G) = k and Re(G) = k−1. We will comment below on
the sub-cases of Rv(G) = k and Re(G) ∈ {1, 2, . . . , k − 2}.

Consider the graph G′ obtained by deletion of any edge
e from G, and let W = {w1, w2, . . . , wk−2} be any set of
k − 2 vertices in G′. We consider two possibilities.

• e is incident to at least one vertex in W . This means
that e ∈ cover(wi) where i ∈ {1, 2, . . . , k − 2}. The
graph G∗ obtained by deleting W from G′ is the same
as the one obtained by deleting W from G; therefore
G∗ is rigid.

• e is not incident to any vertex in W . Consider the
graph G∗ obtained by deletion of W from G, and by
assumption, Rv(G∗) = 2 since Rv(G) = k. This, by
Lemma 5, implies that the graph G′′ = G∗\e is rigid.
Observing that if we exchange the two steps, that is,
we first delete e from G then remove W , the same G′′

is obtained and is rigid.

The fact that in both cases, the obtained graph (G∗ or
G′′) is rigid, implies that Rv(G

′) ≥ k−1; by the induction
step Re(G

′) ≥ Rv(G′), so we have Re(G
′) ≥ k − 1 which

implies Re(G) ≥ k since e is arbitrarily selected. We obtain
a contradiction to Re(G) = k−1. This completes our proof
for this sub-case. It is not hard to follow similar arguments
for all the other sub-cases linked with Rv(G) = k. This
completes the proof.

Next, we could also contemplate the mixture of indepen-
dent agent and link losses; the word independent indicates
that some links are not incident to the lost agents.

Lemma 7. For any graph G = (V,E) with Rv(G) = k,
there holds Rv(G\M) ≥ k − m, where M is any set of m
(m < k) edges in G.

Proof : Let us first prove the case for m = 1. Suppose
M = {e} and let G′ be the graph obtained by deleting an
edge e from G. Let W be any set of k − 2 vertices in G′.
We consider two possibilities:

• e is incident to at least one vertex in W . This means
that e ∈ cover(wi) where i ∈ {1, 2, . . . , k − 2} and
cover(wi) denotes the set of edges incident to wi. The
graph G∗ obtained by deleting W from G′ is the same
as the one obtained by deleting W from G; therefore
G∗ is rigid.

• e is not incident to any vertex in W . Consider the
graph G∗ obtained by deletion of W from G, and by
assumption, Rv(G∗) = 2 since Rv(G) = k. This, by
Lemma 5, implies that the graph G′′ = G∗\e is rigid.
Observing that if we exchange the two steps, that is,
we first delete e from G then remove W , the same G′′

is obtained and is rigid.

The fact that in both subcases, the obtained graph (G∗

or G′′) is rigid, implies that Rv(G
′) ≥ k − 1 and therefore

we prove the result when m = 1. By iteratively applying
these arguments m times, we obtain a complete proof to
this Lemma.

In fact, Lemma 7 immediately leads to an alternative proof
to Theorem 6, as shown below:

Alternative Proof to Theorem 6: Consider a graph G =
(V,E) with |V | ≥ 4 and Rv(G) = k; and let M ⊂ E be any
set of k − 1 edges, by Lemma 7 there holds Rv(G\M) ≥ 1
which means that G\M is rigid. By definition of edge-
rigidity, there holds Re(G) ≥ k. Therefore we proved that
Re(G) ≥ Rv(G).
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In the previous proofs, we often relied on arguments that
remove edges first, or a vertex first. In fact, Lemma 7
and Theorem 6 lead to a corollary that says that for a
vertex rigid graph, one could perform a combination of
independent agent and link losses in any order, as stated
below:

Corollary 8. For any graph G = (V,E) with |V | ≥ 4 and
Rv(G) ≥ k; let N ⊂ V be any set of n vertices and
the union of their covers be U =

⋃
vi∈N

cover(vi); denote

M ⊂ E\U as any set of m edges. Consider the graph
G′ = (V \N,E\M\U) obtained after the losses; then G′ is
rigid if n + m < k.

4. REDUNDANCY OF SPECIFIC FORMATIONS

In this section, we comment on the redundancy properties
of formations with special types of graphs. We also discuss
how one might define, in contrast to a “restrictive” de-
terministic definition, a statistical measure of redundancy
that is tailored to some application scenarios. Proofs are
omitted due to space limitations but are made available in
an extended paper (Yu and Anderson (2008)).

4.1 Case study: n = 2

We focus on the case of n = 2 in the sequel; this is
equivalent to restricting to a graph G with Re(G) = 2 or
Rv(G) = 2. Since the redundant rigidity concept is defined
by analogy to connectivity of a graph, let us try to relate
the two. A more complete work of Summers et al. (2008)
on 2-vertex-rigidity has recently become available.

Lemma 9. For any rigid graph G, there holds Re(G) = 2
only if Ke(G) ≥ 3.

Lemma 10. For any rigid graph G, there holds Rv(G) = 2
only if Kv(G) ≥ 3.

Actually, the preceding Lemmas can be generalized as
follows:

Corollary 11. For any rigid graph G, there holds Rv(G) <
Kv(G), and Re(G) < Ke(G).

Remark 12. Corollary 11 could actually trivially lead to
the Lemma 3, given the graph connectivity result that
Kv(G) ≤ Ke(G) ≤ δ(G) stated in the end of subsection
3.1.

Remark 13. Comparing Corollary 11 and Theorem 6, and
considering that Kv(G) ≤ Ke(G), we note an open
question (to which we have no complete answer yet): is
there a relationship between Re(G) and Kv(G), and if so,
what is the relationship?

Let us also compare our formal definition of redundancy
with those reviewed in Subsection 3.1.

Lemma 14. A 2-vertex-rigid graph is necessarily globally
rigid.

The converse of Lemma 14 does not hold. For example,
the graph on 5 agents of Figure 3(a) is globally rigid
but not 2 vertex-rigid (for removal of the vertex in the
center will destroy rigidity of the remaining graph). Also,
in contrast to the result of Lemma 14, a 2 edge-rigid
graph is not necessarily globally rigid; Figure 2(b) gives a

counterexample (the vertices 1 and 4 form a cut-set Gross
and Yellen (2006), demonstrating that the graph is not
3-connected). Further, we have:

Lemma 15. A circuit is a 2 edge-rigid graph, but not
necessarily 2 vertex-rigid, nor globally rigid.

In the next section, we will elaborate more on these special
classes of formations with respect to the redundancy
measure.
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Fig. 2. Examples of circuits. The formation represented
in (a) is 2-vertex-rigid and globally rigid; (b) is NOT
globally rigid and NOT 2-vertex-rigid.
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Fig. 3. Example of wheel and power of a cycle. The
formation represented in (a) is a wheel formation with
5 vertices; (b) is a power graph of a cycle of length 6.

4.2 Wheel graph

A wheel graph Wn is a graph with n vertices, formed by
connecting a single vertex to all vertices of an (n−1)-cycle.
One might use wheel graphs to model a formation in which
there is a central UAV , the commander, whose sensing
region covers all other agents. Figure 2(a) and Figure 3(a)
are two wheel graphs on 4 and 5 vertices, respectively.

Lemma 16. A wheel graph is 2 edge-rigid.

It is trivial to see a wheel graph with more than 4 vertices
is not 2 vertex-rigid, since removal of the central node will
leave only a cycle, which is not rigid. In contrast, the graph
obtained after removal of any node other than the central
node is always rigid.

It seems that applying the deterministic metric of 2 vertex-
rigidity is too restrictive here, in that only a small fraction
of the vertices (in this case, 1 out of n) is vulnerable.
Further, consider a military scenario where the main
hazard to the formation is enemy attack on a randomly
selected agent (all agents having equal probability of
selection). For a very large formation that can be modeled
as a wheel graph (of course, the enemy would not know
it is a wheel graph, or even should they know, would not
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know which agent is the central agent), we can say that
it is deterministically 2 edge-rigid and statistically n−1

n
2

vertex-rigid, or Rv(Wn) = 2n−1

n
.

Further to this proposition, we have another interesting
observation; for the same wheel graph Wn, there is the
statistical measure for its 3 (vertex)-rigidity. Let us con-
sider the case W5; it is statistically 4

5
2-rigid, 2

5
3-rigid, and

zero 4-rigid. For W6, it is statistically 5

6
2-rigid, 1

3
3-rigid,

and 1

3
4-rigid. We can define a statistical vertex rigidity

factor, svrf(Wn) to be the maximum of the products of
the fraction times the level of redundancy. For example,
svrf(W5) = max{ 8

5
, 6

5
, 0, 0, . . .} = 8

5
, and svrf(W6) = 5

3
.

These observations motivate us to pose the following:

Conjecture 17. For a wheel graph Wn, there holds
svrf(Wn) < 2.

Conjecture 18. For any graph G, if it is m-rigid but not
(m + 1)-rigid, we have svrf(G) ≤ m.

4.3 Powers of a graph

In Anderson et al. (2007), powers of graphs are used in
discussion of the property of global rigidity. Powers of
graphs are also useful for formulating redundant rigidity
concepts of the type appearing in this paper.

The kth power Gk of a graph G is a graph obtained by
adding an edge between all pairs of vertices of G with
hop-distance at most k. Given a formation with graph G,
and with an edge being present only when two agents are
closer than some sensing radius R and no occlusion occurs,
doubling of R will generate G2, tripling will generate G3,
etc. Figure 3(b) gives an example of a second power graph
of a cycle with length 6.

Proposition 19. A second power graph of a cycle C2 is 2-
vertex-rigid when |V | ≥ 4.

Proposition 20. A third power graph of a cycle C3 is 3-
vertex-rigid when |V | ≥ 5.

This leads us to develop a more general result:

Theorem 21. A Kth power graph of a cycle Ck with vertex
set V is K-vertex-rigid when |V | ≥ K + 2 and K ≥ 2

5. CONCLUDING REMARKS

In this paper, we revisited a graph model of multiagent
formations using rigid graphs, and have extended such
models to incorporate redundancy in the design. We give
perhaps the first set of definitions of both edge and
vertex redundant rigidity in the field, with the aim of
enhancing the robustness of a formation graph against
agent and/or link loss(es). We discussed the perhaps
simplest case of redundant rigidity, and stretched the
results to more general cases along a few directions. We
showed that in some sense, k-vertex-rigidity is a more
demanding property than k-edge-rigidity. We evaluated a
number of common topological models (special classes of
rigid graphs) and measured their redundant rigidity both
deterministically and statistically.

Our preliminary works on formally considering and uti-
lizing redundancy concept in rigidity have led us to con-
template many problems with redundancy in mind. One
could for example ask the following: Is there a complete
characterization of n-rigid graphs for small n? What are
the operations that preserve n-rigidity? What is the rela-
tionship between the connectivity and the edge or vertex
redundant rigidity of a graph? Globally rigid formations
are useful for sensor network localization problems; would
it be useful to discuss the redundant globally rigid forma-
tions?

On top of everything that can be done for undirected
formations, we can work with directed formations, such
as occurred in Yu et al. (2007). Many results will have a
different interpretation for directed formations and some-
times they are much more complicated.
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