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Abstract: In quantum computing and quantum control, the investigation of the C-numerical
range is of great importance. One relevant optimization problem can be represented as
maximizing the trace function ℜ

(

tr
(

UA†U †C
))

subject to the unitary matrix conditions

U †U = In, UU † = In.
To solve this NP-hard problem, the Positivstellensatz from the real algebraic geometry is used
to construct a dual relaxation problem, which is represented with a linear objective function
subject to some matrix inequalities constraints. In general this results in some bilinear terms
with respect to the decision variables in the matrix constraints. Instead of further relaxation to
those bilinear terms, so that a pure linear matrix inequalities (LMIs) optimization problem is
derived, we reformulate this dual structure as a generalized eigenvalue problem (GEVP) with
some LMIs constraints and some linear-fractional LMIs conditions. The GEVP dual relaxation
provides a tractable approach for finding high quality bounds to the hard primal problem under
acceptable computational effort.
Numerical results of a benchmark example from quantum computing are presented and
demonstrate that the improved approach yields much more competitive bound of the C-
numerical range in comparison with other methods.

1. INTRODUCTION

In optimal controlling of quantum systems, to investigate
the coherency transfer from a given initial state to a
desired final state plays an important role. Consider the
signal-relevant components of the initial state and those
of the final state to be collected into two matrices A
and C, respectively, which are arbitrary finite square
matrices with complex or real entries. Then the inner
product 〈C|A〉 := tr(C†A) induces a metric and a Hilbert
space structure,where ·† denotes the complex conjugate
transpose of a matrix.

The overlap of points on the unitary orbit of the initial
state A with the final state C, defined as

f(U) :=
〈

UAU †|C
〉

= tr(UA†U †C)

is actually well-known in the mathematics as the C-
numerical range of A defined by

WC(A) :=
{

tr(UA†U †C) : U ∈ U(n, C)
}

,

where U(n, C) :=
{

U : U ∈ Cn×n, U †U = UU † = In

}

, See
Li [1994]. Cheung et al. [1996] has proved that WC(A) is
compact, connected and star-shaped with respect to the

point tr(A†) tr(C)
n

.

However, the geometry of the C-numerical range can be
quite complicated and is only partially understood at
present. A natural measure of the size of WC(A) is the
so-called C-numerical radius of A,

rC(A) := max
U∈U(n,C)

∣

∣tr(UA†U †C)
∣

∣ . (1)

The rC(A) is the radius of the smallest disk centered at
the origin containing WC(A). See Goldberg et al. [1977]
and Horn et al. [1990], the following inequalities for rC(A)

ρC(A) ≤ rC(A) ≤‖ A ‖C , (2)

have been derived, where ρC(A) stands for the C-spectral
radius of A defined by

ρC(A) := max
π(j)

∣

∣

∣

∣

∣

∣

n
∑

j=1

λj(A)λπ(j)(C)

∣

∣

∣

∣

∣

∣

,

π(j) ∈ perm{1, 2, · · ·n}

(3)

with λj(A), λj(C) denoting the eigenvalues of the matrices
A and C, respectively; and ‖ A ‖C is the C-spectral norm
of A defined by

‖ A ‖C := max
V,W∈U(n,C)

| tr(V AWC)|. (4)

The equality (2) is reached in case of Hermitian matrices
A and C. In the general case of non-Hermitian matrices A
and C, rC(A) is poorly limited with those lower and upper
bounds, see Glaser et al. [1998].

On the other hand, in the setting of C-numerical ranges,
there are some geometric optimization tasks of particular
practical relevance as they determine maximal signal in-
tensity in coherent spectroscopy, see Glaser et al. [1998],
and Schulte-Herbrggen et al. [2002]. For instance, the task
of minimizing the Euclidean distance between C and the
unitary orbit of A. Obviously, the distance

‖UAU † − C‖2
2 = ‖A‖2

2 + ‖C‖2
2 − 2ℜ{tr

(

UA†U †C
)

}
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reaches minimum if the overlap ℜ
{

tr
(

UA†U †C
)}

is max-
imum. Moreover, in the experiments like Nuclear Mag-
netic Resonance (NMR), some exposed points of the C-
numerical range of A can be obtained. Such exposed points
could be the ones which have the largest real parts. In this
sense we can solve an optimization problem defined by

max
U∈U(n,C)

ℜ
{

tr
(

UA†U †C
)}

(5)

for bounding the geometry of the C-numerical range.

Extending concepts of Brockett (see Brockett [1988, 1993])
from the orthogonal to the unitary group (see Glaser et al.
[1998], Helmke et al. [2002], Schulte-Herbrggen [1998]), the
optimization problem (5) can be treated by the gradient-
flows method proposed by Helmke et al. [1994]. However,
there is no guarantee that the gradient flows always reach
the global extrema.

(5) is in fact a so-called quadratically constrained quadratic
problem (QCQP). See Tibken et al. [2006a,b], it has
been presented that, some convex SDP dual relaxations
can be constructed to the primal QCQP (5). These dual
structures are actually linear matrix inequalities (LMI)
optimization problems with respect to some decision vari-
ables. By solving those LMIs, global upper bounds to the
optimal value of the objective of the primal one (5) were
calculated numerically. However, observing the procedure
of constructing those LMIs closely, we find out, those non-
convex bilinear matrix inequality constraints ever aris-
ing became just convex LMIs when one of the decision
variables in the bilinear terms was held as a reasonable
constant. Consequently, much ”looser” dual relaxations to
the primal one (5) were obtained indeed.

Hence, inspired by the idea of keeping those bilinear terms,
the aim in this contribution is to construct a much tighter
dual relaxation structure. We expect the duality gap can
be therefor narrowed significantly and a much sharper
estimation to the geometry of the C-numerical range can
be obtained in general.

2. QCQPS AND THE DUAL RELAXATIONS

As explained in section 1, the geometric optimization
tasks concerning WC(A) can sometimes be simplified to
maximizing the trace function ℜ

{

tr(UA†U †C)
}

over the
decision variable U and U ∈ U(n, C). After we represent
the conditions with the unitary matrix equalities U †U =
In, UU † = In and U ∈ Cn×n concretely, we have

γ∗
O := max

U
ℜ

{

tr(UA†U †C)
}

s.t. U †U = I, UU † = I, U ∈ C
n×n

(6)

where A, C ∈ Cn×n are given matrices. Notice that, in the
case that the boundary of

{

tr
(

UA†U †C
)

: U ∈ U(n, C)
}

is to estimate, the constraint ℑ
{

tr(UA†U †C)
}

= 0 should
also be added to (6).

2.1 QCQPs in the complex and real domain

Obviously, (6) is a QCQP in terms of U in the complex
domain. Since

tr
(

UA†U †C
)

= vec(UT )T
(

CT ⊗ A†
)

vec(U †) (7)

where vec(·) means to formulate a vector from a matrix
columnwise, the objective function in (6) is subsequently
reformulated as follows
ℜ

{

tr
(

UA†U †C
)}

=
1

2

(

tr(UA†U †C) +
(

tr(UA†U †C)
)†

)

= vec(UT )T

(

CT ⊗ A† + (CT ⊗ A†)†

2

)

vec(U †).

(8)

Define that

x̂ := vec(U †) ∈ C
n2

, (9)

P̂0 :=
CT ⊗ A† + (CT ⊗ A†)†

2
∈ C

n2×n2

. (10)

Hence we have

ℜ
{

tr
(

UA†U †C
)}

= x̂†P̂0x̂. (11)

The advantage of describing the objective function with x̂

and P̂0 is that all the information about the matrices A, C

is therefore contained in the unique matrix P̂0 compactly.

On the other hand, the matrix conditions U †U = In,
UU † = In imply 2n2 polynomial equalities in the real do-
main. From a computational view point, in order to absorb
the relevant information about those 2n2 polynomials and
save the information for further numerical calculation, we
define two sets of Hermitian matrices Fr = F †

r ∈ Cn×n and
Gr = G†

r ∈ C
n×n, respectively, where r = 1, 2, · · · , n2.

Table 1 and Table 2 show the exact definitions to Fr and
Gr depending on the different indices (kl) of the elements
(U †U)kl and (UU †)kl, respectively, where k = 1, 2, · · · , n,
l = k, k + 1, · · · , n.

Table 1. Definitions to Fr concerning the ele-
ments (U †U)kl.

(U†U)kk ℜ
{

(U†U)kl

}

, k 6= l ℑ
{

(U†U)kl

}

, k 6= l

Fr := ekeT

k
Fr := ekeT

l
+ ele

T

k
Fr := iekel − iele

T

k

tr(Fr) = 1 tr(Fr) = 0 tr(Fr) = 0

Table 2. Definitions to Gr concerning the ele-
ments (UU †)kl.

(UU†)kk ℜ
{

(UU†)kl

}

, k 6= l ℑ
{

(UU†)kl

}

, k 6= l

Gr := ekeT

k
Gr := ekeT

l
+ ele

T

k
Gr := iekel − iele

T

k

tr(Gr) = 1 tr(Gr) = 0 tr(Gr) = 0

Notice that, we use i =
√
−1 to denote the imaginary unit.

ek, el ∈ R
n denote the k-th and l-th unit column vectors

with an 1 in the k-th and l-th positions, respectively.

Then due to U †U = In and UU † = In, we have

tr
(

Fr

(

U †U − In

))

= 0, r = 1, 2, · · · , n2, (12)

tr
(

Gr

(

UU † − In

))

= 0, r = 1, 2, · · · , n2, (13)

which are equivalent to

tr
(

FrU
†U

)

= tr (Fr) , r = 1, 2, · · · , n2, (14)

tr
(

GrUU †
)

= tr (Gr) , r = 1, 2, · · · , n2. (15)
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It can been proved briefly, that these 2n2 equalities (14)
(15) depending on Fr, Gr defined in Table (1) and (2)
are equivalent with those 2n2 real polynomial equalities
implied by U †U = In and UU † = In. In other words, all
the information necessary for presenting computationally
those 2n2 real polynomial equalities are saved in those
matrices Fr, Gr, r = 1, 2, · · · , n2, which are all sparse
matrices.

Since

tr
(

FrU
†U

)

= vec(UT )T (In ⊗ Fr) vec(U †), (16)

tr
(

GrUU †
)

= vec(UT )T
(

GT
r ⊗ In

)

vec(U †), (17)

we define

P̂j = In ⊗ Fr, j = 1, 2, · · · , n2, (18)

P̂j = GT
r ⊗ In, j = n2 + 1, · · · , 2n2, (19)

with r = 1, 2, · · · , n2 in (18) and (19), respectively. By

using the definition of x̂ in (9) and the definitions of P̂j

above, the QCQP (6) in terms of U ∈ Cn×n is hence
formulated as

γ∗
O := max

x̂
x̂†P̂0x̂

s.t. x̂†P̂j x̂ = bj

(20)

where P̂0, P̂j ∈ Cn2×n2

are Hermitian matrices, bj ∈ {0, 1},
j = 1, 2, · · · , 2n2. x̂ ∈ Cn2

is the decision variable of the
optimization problem. Define that

x =

[ℜ(x̂)

ℑ(x̂)

]

, Pj =

[

ℜ(P̂j) −ℑ(P̂j)

ℑ(P̂j) ℜ(P̂j)

]

, (21)

with j = 0, 1, · · · , 2n2. Since x̂†P̂j x̂ = xT Pjx with j =
0, 1, · · · , 2n2, we obtain the standard QCQP representa-
tion for (6) in the real domain:

γ∗
O := max

x
xT P0x

s.t. xT Pj x = bj

(22)

where P0, Pj ∈ R2n2×2n2

are symmetric matrices, bj ∈
{0, 1}, j = 1, 2, · · · , 2n2. x ∈ R2n2

is the corresponding
decision variable in the real domain. Since P0 is not
necessarily positive semidefinite, this is the maximization
of a nonconvex function over an nonconvex set.

Notice that, despite the different representations of QC-
QPs from (6) to (20) and (22), they are all NP-hard
and numerically intractable generally; an alternative and
efficient approach for solving such problems is to construct
and solve their dual problems. In the following sections, it
will be showed, QCQP in the standard representation (22)
is however more desirable and convenient for constructing
a convex dual relaxation structure to the primal one, es-
pecially when man uses theories concerning about positive
polynomials and polynomials in sums of squares (SOS)
decompositions.

2.2 Dual Relaxations to QCQPs

Referring to (22) we introduce a real number t and define
a real semialgebraic set reading SP

SP :=

{

x ∈ R
N

∣

∣

∣

∣

∣

xT P0x − t ≥ 0

xT Pjx − bj = 0, j = 1, 2, · · · , m

}

,

(23)

where N = 2n2 and m = 2n2 in the case of (6) and
(22). The feasibility of SP can be checked up for a fixed
t. Obviously, when t is bigger than the optimal value γ∗

O

in (22), i.e., t > γ∗
O, the set SP is definitely infeasible,

otherwise when t ≤ γ∗
O, the set SP might have some

feasible solutions in terms of x. In this sense, (22) is
formulated as follows

γ∗
O := max

t
t

s.t. SP : feasible
(24)

However, to test feasibility of a real semialgebraic set is
in general intractable, especially when the set cannot be
proved to be convex. But due to Stengle [1973] and Par-
rilo [2000], the Positivstellensatz from the real algebraic
geometry can be used to construct dual structures to (24)
and check infeasibility of the real semialgebraic set SP . i.e.,
when the dual structures are in the form of semidefinite
programs, by solving the semidefinite programs, one may
obtain some certificates of infeasibility for the infeasible
semialgebraic set.

The following is a dual problem to (22) or (24) with
γ∗

D ≥ γ∗
O.

γ∗
D := min

t
t

s.t. SP : infeasible
(25)

Based upon the Positivstellensatz we know, if there exist
sum-of-squares (SOS) polynomials s0(x), s1(x) such that

s0(x) + s1(x)
(

xT P0x − t
)

+
m

∑

j=1

tj(x)
(

xT Pjx − bj

)

+ 1 = 0,
(26)

then the set SP is infeasible. In (26) tj(x) are arbitrary
quadratic polynomials with bounded degree. This suffi-
cient condition for infeasibility of the set SP may be tested
using semidefinite programming (SDP). In other words,
one picks a fixed degree d over which to search for SOS
polynomials s0(x), s1(x) satisfying this equality condition
(26). The decision variables in those semidefinite program-
ming are the coefficients of the polynomials s0(x), s1(x),
tj(x) and the parameters contained in the constraints that
s0(x), s1(x) be SOS are imposed as positive semidefinite-
ness constraints. Therefore,

γ∗
D := min

t
t

s.t. (26)
s0(x), s1(x) : SOS, ∀x ∈ R

N

(27)

On the one hand, we assume s1(x) and tj(x) are all
quadratic polynomial of degree d = 2 and define

s1(x) = xT S1x + µ (28)

tj(x) = xT Tjx + λj , j = 1, · · · , m (29)

where S1 = ST
1 ∈ RN×N , Tj = T T

j ∈ RN×N and µ, λj ∈ R

with j = 1, 2, · · · , m are the decision variables to s1(x)
and tj(x), respectively. Concerning s1(x), it can be proved
that
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s1(x) is SOS ⇔ S1 = ST
1 � 0 and µ ≥ 0 (30)

which means the constraint of s1(x) being SOS can be
equivalently represented with those two positive semidefi-
nite matrix constraints.

On the other hand, referring to s0(x), combining the
definitions (28), (29) with (26) we obtain

s0(x) = s00(x) + s02(x) + s04(x) (31)

with

s00(x) = µt +

m
∑

j=1

λjbj − 1 (32)

s02(x) = xT



tS1 − µP0 +

m
∑

j=1

(bjTj − λjPj)



 x (33)

s04(x) = vec(xxT )T



−S1 ⊗ P0 −
m

∑

j=1

Tj ⊗ Pj



 vec(xxT )

(34)

Obviously, with respect to x, s0(x) contains three homo-
geneous polynomials s00(x), s02(x), s04(x) of degree 0, 2, 4,
respectively. Meanwhile we define

s0(x) = S00 + xT S02x + ωT S04ω, (35)

where ω is a vector composed of all monomials of degree
2 in the variables x and its length, denoted as dω, is

dω = N(N+1)
2 ; S00 ∈ R, S02 ∈ RN×N and S04 ∈

Rdω×dω . Then the sufficient conditions that s0(x) has SOS
decompositions for all x ∈ RN can be represented with
three positive semidefinite matrix constraints:

S00 ≥ 0, S02 = ST
02 � 0, S04 = ST

04 � 0 (36)

By matching coefficients of monomials in (31) and (35),
we have following conclusions:

S00 = µt +

m
∑

j=1

λjbj − 1

S02 = tS1 − µP0 +
m

∑

j=1

(bjTj − λjPj)

S04 = S04(S1, Tj, σ)

where S04 denotes the linear combination of matrices
depending on the decision variables S1, Tj and some σ. Due
to Lasserre [2001], Parrilo et al. [2003a,b], Tibken et al.
[2006b], for a homogeneous and possibly dense polynomial
s04(x) of degree 4 in x ∈ RN , the set of Gram matrices
S04 with which s04(x) = ωT S04ω for all x is an affine set.

In this case, Nσ = N2(N+1)(N−1)
12 additional parameters

σj , j = 1, · · · , Nσ are required, which help to interpret
such affine feature and build the linear combination of the
matrix S04(S1, Tj, σ).

Consequently we obtain the dual relaxation to (6).

γ∗
D := min

t,µ,λ,σ,S1,Tj

t

s.t. µt +

m
∑

j=1

λjbj − 1 ≥ 0

tS1 − µP0 +

m
∑

j=1

(bjTj − λjPj) � 0

S04(S1, Tj, σ) � 0

µ ≥ 0

S1 � 0

(37)

It is actually to minimize t subject to some positive
semidefinite matrix constraints with respect to the decision
variables t, µ, λ, σ, S1, Tj, j = 1, 2, · · · , m. Since there
exist some bilinear terms µt, tS1 in the first two matrix
constraints, (37) is actually a low non-convex rank Bilinear
Matrix Inequalities (BMI) optimization problem.

Referring to the obtained BMI optimization problem (37)
further relaxations to those bilinear terms could be carried
out, so that those low non-convex rank bilinear matrix
inequality constraints can be replaced with some pure
LMIs. i.e., man can define µ, S1 or Tj as some constant
numbers or matrices, e.g. a) µ = 1, S1 = 0 and Tj = 0, j =
1, 2, · · · , m; b) µ = 1, S1 = 0, so that Lagrange dual relax-
ations and SDP relaxations of second order in the form of
pure LMI problems are obtained, respectively, see Tibken
et al. [2006a,b]. However, due to the forced relaxations to
those bilinear terms, those dual structures are much looser
relaxations to the primal problem generally.

3. GENERALIZED EIGENVALUE MINIMIZATION
PROBLEM

Actually, we can reformulate (37) as

γ∗
D := min

t,µ,λ,σ,S1,Tj

t

s.t. S04(S1, Tj, σ) � 0
[

µ 0
0 S1

]

� 0

t

[

µ 0
0 S1

]

�























1 −
m

∑

j=1

λjbj 0

0

µP0 +

m
∑

j=1

λjPj

−
m

∑

j=1

bjTj























(38)

where zero entries stand for zero matrices of appropriate
dimension. Define

A :=

[

µ 0
0 S1

]

(39)

B :=













1 −
m

∑

j=1

λjbj 0

0 µP0 +

m
∑

j=1

λjPj −
m

∑

j=1

bjTj













(40)

which are linear combination of matrices depending on
µ, λ, S1 and Tj , j = 1, 2, · · · , m. Therefore we have
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γ∗
D := min

µ,λ,σ,S1,Tj

t

s.t. S04(S1, Tj , σ) � 0

A(µ, S1) � 0

tA(µ, S1) � B(µ, λ, Tj)

(41)

which is in fact a generalized eigenvalue minimization
problem (GEVP).

It is noteworthy that, in order to get the corresponding
GEVP structure based upon (37), the reformulation de-
scribed above is not performed trivially. The GEVP dual
relaxation (41) is characterized as to minimize the gener-
alized eigenvalue t over the decision variables µ, λ, σ, S1, Tj

subject to the standard LMI constraint S04(S1, Tj , σ) � 0
and the linear-fractional LMI tA(µ, S1) � B(µ, λ, Tj). The
constraint A(µ, S1) � 0 is required for well-posedness of
the problem in the case of solving GEVP problem. The
gevp-solver provided by the LMI-Toolbox in MATLAB is
the one we used at present which can solve such GEVP
numerically well.

While the GEVP dual relaxation keeps the bilinear terms,
no relevant information get lost. The GEVP dual relax-
ation can therefore lead to much narrower duality gap
between the primal and the dual problem generally. Nev-
ertheless, due to the representation of multivariate polyno-
mials as sums of squares with Gram matrices and the com-
plexity in the GEVP dual relaxation, large scale problems
arise with a huge number of decision variables and hence
we must face the computational problems of capacity and
time.

4. NUMERICAL EXAMPLE

In this example, M is a given 3 × 3 diagonal matrix
with M(1, 1) = 1, M(2, 2) = e

2π
3

i and M(3, 3) = e−
2π
3

i.

The matrices Â and Ĉ are the normalized versions of
(

e
π
5

iM + I3

)

and

(

M +
3

10
I3

)

, respectively, where I3 is

the 3 × 3 identity matrix. We define A := Â − tr(Â)
3 I3

and C := Ĉ. Then referring to the given 3 × 3 matrices
A and C, the boundary of the image of the C-numerical
range WC(A) is generated by solving a series of the primal
optimization problem as follows:

γ∗
O := max

U∈C3×3

ℜ{tr(UA†U †C)}
s.t. U †U = UU † = I3,

ℑ{tr(UA†U †C)} = 0.

(42)

Based on the method introduced in section 3 and the
ones from Tibken et al. [2006a,b], we construct the corre-
sponding different dual relaxations with the optimal values
γ∗

D of the objectives, i.e., the GEVP dual relaxation, the
Lagrangian dual relaxation and the SDP second order dual
relaxation. The optimal values γ∗

O of the objectives of the
primal ones can be bounded through those upper bounds
γ∗

O ≤ γ∗
D.

Since A and C are 3×3 matrices, the corresponding space
of a unitary matrix U is 18-dimensional in the real domain.
It was calculated that the Lagrangian dual relaxation is an
LMI with 20 decision variables, meanwhile the SDP second

order dual relaxation is also in the form of an LMI but
with 11990 decision variables; the GEVP dual relaxation
however contains 12162 decision variables.

The numerical results calculated by using different algo-
rithms are illustrated in Fig. 1, Fig. 2 and Fig. 3. Note
that in the figures ·H denotes the Hermitian conjugates of
a matrix.

Firstly, the C-spectral norm of A denoted with ‖ A ‖C

marked with the blue dashed circle in Fig. 1 indicates
actually a much rougher upper limit to the boundary of
WC(A) in this case.

Secondly, in comparison with the Lagrangian dual relax-
ation and the higher-order SDP dual relaxation, the GEVP
dual relaxation yields much sharper upper bounds γ∗

D to
the optimal values γ∗

O of the primal problems generally.
The obtained GEVP structure by keeping those bilinear
information performs as a tighter dual structure indeed.
Especially, Fig. 2 and Fig. 3 show clearly that the optimal
values of the objectives of the GEVP dual relaxation
(marked with red solid curve) almost coincide with those
(marked with blue dots)calculated by using the Gradient-
flows-method in Glaser et al. [1998]. This fact confirms
that the local extrema calculated through the local opti-
mization algorithm, Gradient-flows-method, could also be
the global extrema in this case.

Thirdly, since tr(A†) tr(C)
3 = 0, the geometry of WC(A)

showed in Fig. 1 is indeed star-shaped and centered at the
origin of the complex plane. Referring to the three points
D1, D2, D3 in Fig. 1, we calculated the C-spectral radius
of A (3) denoted with ρC(A) analytically, which in this
case is exactly

ρC(A) =
3√

6
√

3.27
≈ 0.67728546147860. (43)

Meanwhile the optimal values of the objectives of the
GEVP dual relaxations about those three points are:

γ∗
D(D1) = 0.67728929487533,

γ∗
D(D2) = 0.67728881393757,

γ∗
D(D3) = 0.67729555427641,

(44)

Fig. 1. Comparing results among different algorithms (I).
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Fig. 3. Comparing results among different algorithms (III).

with the required accuracy 1e − 5. The numerical results
indicate that the optimal values γ∗

O(D1), γ∗
O(D2), γ∗

O(D3)
of the objectives of the primal optimization problems (42)
are bounded very well through the lower limit ρC(A) (43)
and the global upper bounds γ∗

D(D1), γ∗
D(D2), γ∗

D(D3)
(44), respectively.
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