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Abstract: The paper provides an outline of the expert-statistical approach to developing 
control and identification systems. An expert-statistical method of data processing designed 
for forecasting short time series is discussed in detail. New adaptive algorithms for 
inventory control are described. The usage of these algorithms in applied expert-statistical 
systems to support decision making process is discussed. 

  

1. INTRODUCTION 

In the mid 1990s in the Institute of Control Sciences RAS 
(ICS) a tool for integration of heterogeneous information 
within the same control system referred to as expert-
statistical methods (ESM) for data processing was proposed 
(Mandel’, 1996, 1997). Main applications of the new tool 
have been made to social-economic systems and organization 
control systems. In 2006 the ESM applications also included 
problems of control and identification of technological 
processes and engineering objects (Mandel’, 2006). 

A brief introduction of the expert-statistical approach to data 
processing and expert-statistical control systems is given. The 
ESM of analogs first described in (Belyakov et al, 2002a) 
and its potential applications to the solution of identification 
and control problems are discussed. 

New adaptive inventory control algorithms are suggested as a 
basic model within the applied expert-statistical inventory 
control system. 

2. EXPERT-STATISTICAL APPROACH 
TO DATA PROCESSING 

2.1. Background 

Block-diagram of the expert-statistical system (ESS) is given in Fig. 1 
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Fig. 1. Block-diagram of the ESS. 

The ESS consists of three main units: basic model unit, unit 
of collecting and processing of expert information, and unit 
for integration of expert data into the basic model. For 
various and many examples of application of ESS to the 
solution of problems of organization control, inventory 
control and marketing see (Mandel’, 1996, 1997, 2006). Of a 
particular interest is the unit for integration of expert data into 
the basic model. It is the structure and the algorithmic content 
of this unit that predetermine a possibility of the successful 
solution of the respective control problem. In the subsection 
below we will briefly discuss the structure of this unit.  

2.2. Unit for integration of the expert data into the basic model 

The unit of integration of expert data into the basic model 
contains a set of procedures (techniques of interviewing, 
questionnaire surveys, etc.) for extracting expert knowledge 
and generating thereby a sort of expert system (ES). In most 
cases, however, in contrast to the conventional systems using 
knowledge, the ES in the ESS are as a rule much more 
straightforward.  The point is that ESS are developed for the 
control objects with regard to which one can be quite certain 
that a priori and a posteriori information available to the 
designers and users on the ways of their functioning and 
characteristics is sufficient for developing a “nearly” 
complete model of the system described. The criterion of 
objective data being “almost sufficient” (it can well be 
illusory) is the smallness of the residual dispersion for a 
preliminary “sketchy” model of the system which is formed 
at the stage of the preliminary survey using a priori data.  

Regrettably, numerous attempts failed to obtain accurate 
estimates of the residual dispersion or similar characteristics 
which would strictly verify us being in the domain where 
expert-statistical approach is applicable. Obviously with 
small values of the residual dispersion one can most likely 
choose between conventional methods of statistical 
identification and ESM. Moreover, with the growing residual 
dispersion one has to decide on the borderline between the 
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expert-statistical approach and the purely expert methods 
which would eventually end up in ES.  

The conditionality of any “strict” conclusions stems from the 
fact that even with small values of residual dispersion (obtained 
in the learning sample!) there are no guarantees that a decision 
maker (DM) would carry out the recommendations based on the 
identified model. This failure to obey may mask both a mistake 
of DM, or lack of confidence, or his belief in the sample being 
not statistically representative (does not contain information on 
all “modes” of functioning of the object described). 

A bright illustration of the above is the situation with 
computerization of complex processes in such fields as 
chemistry, petrochemistry, petroleum processing and many 
others (see, for instance, (Dozortcev et al, 2003; Kasavin, 
1972). In this case classical successful attempts of automation 
and the preceding identification stages boil down to 
application of two basic approaches.  

The former relies on obtaining a set of complex nonlinear static 
models using the piecewise approximation technique (Kasavin, 
1972). This approach can be used for an easy modeling of the 
multimode objects not at all reflecting their dynamics.  

The latter approach (which, among other things, is also used 
for developing simulators (Dozortcev et al, 2003)) uses the 
description of the process via a set of local physical-chemical 
model with the subsequent their integration into a global model 
respecting the geometry and physical-mechanical properties of 
transportation tools connecting local processes.  At first, this 
approach compared to the former one seems to be more 
adequate to the real process, however, it does not handle the 
multimodality feature equally well. To make it more adequate 
the simulation experiments are done for the process involved 
with the subsequent presentation of the simulation results to 
the process engineers. Having studied the simulation results the 
process engineers provide their comments telling how in their 
expert opinion the process should have behaved in the 
respective situations. Their recommendations are presented as 
a sort of the ES which substitutes the created set of physical-
chemical and physical-mechanical models in the critical 
situations identified by expert process engineers. As an 
alternative (or addition) to the above approaches one can use 
the expert-statistical approach. 

3.2. An example of application 

Consider the above arguments applied to the latest version of 
the expert-statistical inventory control system ADAPIN 
(“ADAPtive INventories”), the first version of the ESS 
ADAPIN was described in Borzenko et al., 1990. ESS 
ADAPIN is designed to study the pattern of change in the 
demand for commodities, estimate the stock-out probability, 
and forecast requests for replenishing the stock. Order sizes 
generated by the ADAPIN system make it possible to meet 
the service requirements specified by the user.  

An obvious mechanism for inventory control in the context of 

stochastic behavior and intrinsic uncertainty of the demand 
statistics is offered by adaptive control schemes. To solve the 
inventory planning (scheduling) problem, which means, 
generate scheduled requests for the whole period of planning (a 
year, a quarter, a month) at the level of a major warehouse one 
may use the following adaptive algorithm (Lototsky et al, 1987): 

 
)(ˆ 01 rpGxx −−=+ nnnn ,           (1) 

 
where 1ˆ +nx  is a planned value of the carryover stock at the 
beginning of the next planning period, nx  is a real value of the 
initial stock vector in the previous planning period, np  is a 
vector (commodity type-wise) of the stockout probability in the 
previous period, 0r  is a vector of service levels, while nG  is a 
matrix of coefficients at the n-th step which meets conditions: 
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For inventory control the ESS ADAPIN uses so-called 
“myopic”, parametric two-level (S, s)-inventory control 
strategies. In this case adaptive algorithms for recalculation of 
the strategy parameters can be written as (Lototsky et al, 1991): 
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xt is the stock at the t-th step, zt is demand at the t-th step, r is 
the service level, B is the parameter which is a function of 
supply and storage costs, while coefficients {γ t} and {γ’ t} 
meet the conditions 
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Let K be a number of steps in the planning period. The ESS 
ADAPIN uses two models to evaluate components of  np : 
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In the decision making process an expert is provided with the 
results of statistical processing, whereas decisions made by 
the expert are treated as feedback in the expert-statistical 
systems for inventory control. In ESS ADAPIN the user may 
choose between estimates )1(

np̂  and )2(
np̂ , he also may update 

the order size for replenishing the stock. 

That is to say, if 1ˆ +tx  is the stock size recommended by the 
expert-statistical system for the next step, while the expert-user 
specifies the order size assuming that the stock should equal  

 
xxx tt Δ+= ++ 11 ˆ ,           (7) 

 
then, using data on the expert adjustment xΔ , the model 
parameters, specifically, the coefficients {gt}are updated. 

The main adaptive algorithm is a one-dimensional analog of 
algorithm (1), where the coefficients γ t are described as 
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where tμ  and tν  are parameters which may be a function of 
time. Now if the expert-made adjustment xΔ  at the  t-th step 
meets (7), then it follows from (1), (7) and (8) that  
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which is to be treated as an equation in variables tμ  and tν . 

It is exactly the equation that is solved in the ADAPIN system 
when recalculating the parameters tμ  and tν , and when the 
following constraints hold: ,, )1()0()1()0( νννμμμ ≤≤≤≤ tt  where 

,0and  ,0,,, )0()1()0()1()0( ≠≥ μννμμ  chosen to meet the 
convergence requirements (4). 

3. METHOD OF ANALOGS IN PREDICTION 
OF SHORT TIME SERIES 

3.1. Background 

In a sufficiently general case, the time series can be 
represented by the sum of three components:  

1) systematic component, trend; 
2) relatively smooth oscillations about the trend which 
occur with a greater or lesser regularity (in particular, the 
seasonal effect); 
3) random (called also sometimes “nonsystematic” or 
“irregular”) oscillations. 

Traditionally, the statistical methods of time series prediction 
mostly come to decomposing the observation sequence, 
predicting each its component, and merging the individual 
predictions (Box et al, 1970). Obviously, statistically reliable 
prediction of time series is possible (being trust) only if the 
prediction base period, that is, the number of the known 
values of the time series, is sufficient to draw reliable 
conclusions about the time profile of each component. 

Statistical analysis suggests that in order to take care fully into 
account all components the prediction base period should 
contain several hundreds of units. For periods of several tens of 
units, satisfactory predictions can be constructed only for the 
time series representable as the sum of the trend, seasonal, and 
random components. What is more, such models must have a 
very limited number of parameters. Series made up by the sum 
of the trend and the random component sometimes may be 
predicted for even a smaller base period. Finally, for a 
prediction base period smaller than some calculated value Nmin, 
a more or less satisfactory prediction on the basis of 
observations is impossible at all, and additional data are 
required. The value of Nmin is defined by the desired prediction 
accuracy, its maximum horizon, trend nature (model), and the 
random component of the time series. For the given 
requirements on prediction, we refer to the time series as short 
if its base (observation) period is smaller than Nmin. 

The short time series are representable as the sum of trend 
and random component. For the short time series, detailed 
study of the properties of the random component makes no 
sense because for small base periods the statistical 
conclusions prove to be insufficiently reliable. However, the 
random component can not be completely discarded because 
its value shows the mismatch between the actual values of the 
time series over the prediction base period and those 
calculated from the model. The mismatch can be used to 
specify the prediction based on the experts opinions. 

In this case, the decision makers have at their disposal a very 
limited (firstly often hollow) measurement statistics and can 
resort to the help of expert or expert team. If the observation 
sample is limited and its information is too scant for reliable 
estimation and prediction, then it is advisable to unite all the 
objective (statistics, measurements) and subjective (expert) 
information available to the DMs or, stated differently, to make 
use of the expert-statistical approach (Mandel’, 1996, 1997). 

3.2. Analog method in the problems of prediction 

The analog method proceeds from the assumption that in 
some knowledge domains the experts try to predict the time 
series on the basis of their concepts of objects or processes 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3182



whose prehistory they know well. It is also assumed that the 
number of these objects or processes is sufficiently great and 
the attribute space of the objects making up the core of 
experts professional experience yields to neat or – as it is 
often the case – fuzzy classification (Bauman et al, 1982, 
1999; Bauman, 1988). In formal terms, this means that it is 
possible to construct algorithms (recurrent, in particular) to 
determine the extremum of the given metric functional 

 
( )∑=
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where χ is a convex function, iA  are the point classes, iAp  

are the a priori probabilities of the classes iA , and iAM  are 
the first unnormalized moments of the classes iA . At that, 
membership in a class, if neat, is established by a 
characteristic function assuming 1 on the object belonging to 
the fixed class or 0, otherwise, or by the membership function 

1)(0 :)( ≤≤ xhxh ii  with ∑ =
i
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This means in fact that the expert experience can be 
structured in a sense. Generally speaking, however, there is 
no obvious need for such classification in the object attribute 
space because the experts are free to manage their experience 
and the scheme of automatic classification is just a formal 
model of the space at hand. Nevertheless, as will be seen 
below, the methods of automatic classification can prove to 
be very useful for prediction. 

Structuring and analysis of their own experience enable the 
experts to generate for each of the newly presented time 
series (called below the prediction object, PO) a list of 
previously observed objects that from their point of view are 
analogs of the PO. The PO presented to the expert is a 
segment of a time series of length N: y(t), t = 0, 1, 2,… , N, 
(in a special case of no data sample, N can be zero). In 
response to the presented data sample (and/or revealed PO), 
the expert lists analog objects represented in the prediction 
system data base by “complete” time series, that is, series of 
lengths considerably exceeding N. 

Let Z be the set of the numbers of the analog objects 
indicated by the expert. The expert has the right – not the 
obligation – to define two more numerical characteristics for 
each object: the similarity coefficient Zklk ∈  , , (by default 
assumed to be unity) and the scale coefficient Zksk ∈  , , (by 
default assumed to be unity). 

3.3. Procedure of Prediction by the Analog Method 

Interaction of the expert and the expert-statistical prediction 
system (ESPS) provides the set Z of analogs of the PO under 
consideration. For this set, the ESPS database contains 
information about “complete”, that is, represented by much 
longer time series, realizations of operation of the analog 

objects. This information is represented by the collection 
 } , ,...2 ,1 ,0  ,  ),({ 1NnZknxk =∈  where NN >>1 . Additionally, 

the sets of values of the similarity, }  ,{ Zklk ∈ , and scale, 
}  ,{ Zksk ∈ , coefficients are given. 

To predict the values of the PO time series at the instant n, 
n > N, the following formula can be used now: 
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If N = 0, that is, if there is no data sample on PO at all, then 
all Zkk ∈  ,α , are assumed to be equal to 1. 

3.4. Analog method: fields of application and practical 
recommendations 

It is recommended to use the expert-statistical prediction 
procedures based on the analog method if: 

− there is no statistical information about the PO or 
prediction can be based only on the subjective information; 
− the expert for some reasons is unwilling or finds it 
difficult to reveal the interval or point estimates of the future 
values of time series; 
− there is expert information about the PO that allows one 
to classify (identify) it with one or another similarity class; 
− there exists a representative set of statistical information 
about a substantial number of objects from the given 
knowledge domain. 

3.5. Analog method: reliability estimate 

Estimation of reliability (trust) of the analog method 
(Mandel’, 2000) requires many experiments because the 
degree of trust of the predictions generated on the basis of 
very short, sometimes lacking, samples depends in fact on the 
expert’s competence and on the performance of the decision 
support ESPS. The results of some experiments with such the 
EXPAM system that was developed at Trapeznikov Institute 
of Control Sciences are described in (Belyakov et al, 2002a). 
As was noted in this paper, large-scale experiments with such 
systems are very difficult because they distract high-paid 
skilled experts for a long time. Therefore, the following two 
variants of actions to estimate reliability and effectiveness of 
the decision support ESPS are possible: 
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1) careful logging and analysis of the results of introducing 
into practice and running such systems; 
2) design of simulation systems for the decision support 
ESPS’s where computers simulate behavior of experts 
interacting with the ESPS. 

One of such simulation systems, EXPRIM, was designed at 
Trapeznikov Institute of Control Sciences. In this system, a 
sixteen-parameter model of expert behavior was realized. It 
simulates various levels of professionalism and psychological 
types of experts dealing with prediction of demand for new 
products on the basis of the EXPAM decision support ESPS. 
The reader is referred to (Belyakov et al, 2002a, b). for a detailed 
description of the experiments with the EXPRIM and EXPAM 
systems. For the case of hollow (!) data sample, we just present 
one revealing graph (see Fig. 2) of the prediction accuracy vs. 
expert professionalism varying from the lowermost (abscissa is 
1) to the uppermost (“wizard” expert, abscissa is 5). 

0
10
20
30
40
50
60
70
80

1 2 3 4 5

 

Fig. 2. The rms prediction error deviation for the first point 
vs. expert professionalism. 

The accuracy of prediction proved to be sufficiently high 
already at the first point (!) of the future series (we recall that 
the sample is empty at all for the first point). We draw 
attention to the fact that in the simulation experiment even 
the experts who actually have the zero level of 
professionalism (professionalism parameter 1) and choose 
analogs “higgledy-piggledy” corrected choice of analogs by 
means of the EXPAM system so that at the first step their 
prediction accuracy was quite passable 60 %. 

4. ADAPTIVE ALGORITHMS FOR INVENTORY 
CONTOL AND THEIR APPLICATIONS 

4.1. Background 

Several groups of adaptive algorithms have already been 
developed for the solution of various problems in the 
inventory control theory, see, for instance (Lototsky et al, 
1987, 1991; Belyakov et al, 2005). Initially these have been 
algorithms intended for systems to control supplies by the 
criterion of meeting the specified level of services provided 
to consumers of type quite close to algorithm (1): 

 
[ ]ρπγ −−=+ nnnn xx ˆˆ 1 ,        (13) 

 
where 1ˆ +nx  is an estimate of the recommended stock at the 
(n+1)-th step, nx  is a real stock at the n-th step, ρ  – is the 
specified service level, nπ̂  is the estimate of the probability 

of no shortage at the n-th step, while { }  1
∞
=nnγ is a sequence of 

non-negative coefficients meeting the known conditions (4). 

Next synthesized were adaptive algorithms to solve the 
problem of so cold “myopic” inventory control (for one step 
planning period) (see algorithm (3)). 

4.2. New adaptive algorithms 

When inventory control is done in a multi-step process using the 
criterion of the minimal total average cost an optimal strategy of 
choosing the order size belongs as a rule (Hadley et al, 1969) to 
the class of (R, r)-strategies. It is assumed that the distribution 
function F(x) of the demand ξ  for one step is a priori unknown 
and during the functioning of the supply system a sequence of 
demand values is registered ξ1, ξ2,… , ξn.  

For a stationary functioning mode of the inventory system the 
approximate recurrent algorithms have been obtained as (see 
Mandel’ et al, 2008): 
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where A is a constant cost of placing an order, c is the price 
of unit inventory, h is the unit cost of inventory holding, d is 
the unit shortage cost, '

nγ  and ''
nγ  are coefficients meeting 

the conditions of (5), );,( ξη rR  is the function of the type 
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while recurrent estimates of the average demand value nz  and of 

the second moment nz 2  are obtained from the formulas:  
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4.3. Adaptive expert-statistical systems 

When implementing algorithms (14)–(18) within the expert-
statistical inventory control system the experts can correct 
estimates of parameters nR̂  and nr̂ , as well as the impact on the 
coefficients of adaptive algorithms (14) and (15) by specifying the 
parameters λi and μi, i = 1, 2 ,  in the formula which resembles (8): 

 
 )/(   and   )/( 22

''
11

' nn nn +=+= μλγμλγ .       (19) 
 

5. CONCLUSIONS 

The expert-statistical method implies that experts contribute 
to the solution of the forecasting problem based on the 
identification by the experts of the analogs of the process 
forecasted among the processes that they have observed 
earlier. It is assumed that for the earlier observed processes 
there exists rather representative statistical information which 
can be utilized along with rather limited statistical material 
directly with regard to the process forecasted. 

One of the main mathematical tools of ESS basic models 
creating are adaptive or robust models. New adaptive inventory 
control algorithms under criteria of the minimal total average 
cost at planning period are the example of such basic model. 
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