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Abstract: An active sensor fault compensation control law is developed for a class of nonlinear systems to 
guarantee the closed-loop stability in the presence of a fault, based on a fuzzy logic system and sliding 
mode. Through the adaptive process of the parameters, the dynamics caused by the fault is counteracted. 
The fuzzy sliding mode control is introduced to attenuate the fuzzy approximation error. Simultaneously, 
the closed-loop system is stable in Lyapunov sense and the tracking error converges to a neighbourhood of 
zero. The example of the proposed design indicates that the fault compensation control law is effective for 
a nonlinear system. 

 

1. INTRODUCTION 

In the past decades, people are faced with more complex 
systems when the performance requirements increase. 
Actuator, sensor or component faults drastically change the 
complex system behavior. Therefore, it is necessary to 
improve reliability of a system by diagnosing faults of 
individual components and applying fault-tolerant control 
(FTC) systems [1-20]. 
 
Within the category of the passive fault-tolerant controls, 
reliable control is widely used. Results and scheme details 
can be found in [5-7]. Robust control design is often adopted 
for reliable control to have the guaranteed closed-loop 
stability and ∞H  performance. This type control is typically 
conservative, without controller adjustment after detection of 
a fault; the tolerance comes at the cost to the control 
performance. 
 
In an active fault-tolerant control, faults are accommodated, 
typically by a reconfiguration of the feedback control law. An 
excellent overview on the subject has been given by [8]. 
Faults are typically associated with sensors and actuators 
failures; in correspondence, respective tolerant strategies can 
be so designed. Different methods for dealing with the 
reconfiguration problem have been reported. Most of them 
adopt the following methods: neural networks [33], fuzzy 
logic systems [7], adaptive control [22], [23], [31], 
eigenstructure assignment [24], Markov model [32], 
multiple-model tracking [25], [26], and compensation via 
additive input design [27], [28], [29]. In particular, an 
excellent overview of the fault accommodation has been 
discussed in [30]. Most fault compensation applied the neural 

networks to accommodate the faults. However, It is difficult 
for the Neural networks to attenuate the approximation errors. 
The sensor fault compensation strategy based on both fuzzy 
logic system and sliding mode controller for nonlinear 
systems is provided for the first time in this paper. In our 
design, Also, the fuzzy sliding mode control is introduced to 
attenuate the fuzzy approximation error. The closed-loop 
system is simultaneously stable in Lyapunove sense. 
 
Sliding mode control, due to its robustness against modeling 
imprecisions and external disturbances, has been successfully 
employed to the fault-tolerant control. Some existed 
references utilize the sliding mode and the Lyapunov 
function syntheses approach to design globally stable 
controllers in case of the presence of a fault. However, some 
of them are limited to nonlinear systems with constant 
control gain; or the convergence of the tracking error depends 
on the assumption that the error is square integrable; or the 
control scheme depends on the assumptions to make the 
parameters matched completely, which may not be easy to 
check or realize. In this article, the fault compensation 
strategy based on both fuzzy logic system and sliding mode 
controller for nonlinear systems for first time is proposed for 
the first time in this article. We adopt a stable fuzzy adaptive 
controller through sliding mode control and weakened the 
above restrictive conditions. It utilizes the properties of the 
linguistic variables that fuzzy control itself possesses, adopts 
inference approach to substitute the discontinuous parts in the 
sliding mode and to make the control signal smooth. Thus, 
fuzzy sliding mode control has an exact mathematical 
expression which can attenuate the chattering phenomenon 
being inherent to the conventional sliding mode controller. 
 
The remainder of the paper is organized as follows. The  
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problem statement and its assumptions are given in Section 2, 
followed by the formulation of our controller and its relevant 
proofs in Section 3. An illustrative example is given in 
Section 4 to demonstrate the effectiveness of the proposed 
method. Finally, conclusions are drawn in Section 5. 

2. PROBLEM STATEMENTS 

Consider a system described as: 
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where , ,n px R y u R∈ ∈  are the state, output and input of the 
system, respectively. 
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Definition 1 system (1) has uniform strong relative degree 
vector 1[ , , ] T

pr r"  if for all integer 1i im r< −  and nx R∀ ∈ , 
the following equations is held 
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Assumption 1  System (1) has uniform strong relative degree 
vector 1[ , , ] T

pr r"  for nx R∀ ∈ . 
From Assumption 1, there exists differential coefficient 
homeomorphism [34]  
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where 1 2( , , , )T
pf f f f= "  is sensor fault function. n r

i Rη −∈  

is a diffeomorfism on nR  and the iη  dynamics, which are 
referred to as the “internal dynamics”, can be expressed as 
follows: 
 

   ( , ) ( )i i i i iq q xη ξ η= =�                       (7) 
 
f  characterizes the changes in the dynamics due to the 

actuator failure, where T  is the actuator fault occurrence 
time (determined by the fault diagnosis). The nonlinear fault 
function f  is multiplied by a switching function ( )t Tβ − , 
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The system (1) without the fault occurrence is called “normal 
system”. 
 
Assumption 2  ( )g x  is bounded away from singularity over a 
compact set nS R⊂ , specifically  
 

         2( ) ( ( ) ( )) 0Tg x tr g x g x b= ≥ >               (10) 
 
where b  represents the smallest singular value of the matrix 

( )g x . 
Let imy  as the reference input, assume ( ), , , r

im im imy y y� "  are all 
bounded and measurable. Define the tracking error as 
The sliding mode control is based on a notational 
simplification, which amounts to replacing a high order 
tracking problem by a first order stabilization problem. 
Although “perfect” performance can in principle be achieved 
in the presence of arbitrary parameter inaccuracies. In some 
applications where control chattering is acceptable, the 
control can yield extremely high performance (Slotine 1991). 
The aim of a sliding controller is to 
 
(i) Design a control law to effectively account for 
parameter uncertainty, e.g. imprecision on the mass 
properties or loads, inaccuracies on the torque constants of 
the actuators, friction, and so on. 
the presence of unmodeled dynamics, such as structural 
resonant models, neglected time-delays ( in the actuators, for 
instance), or finite sampling rate.  
(ii) Quantify the effect on tracking performance of discarding 
any particular term in the dynamic model. 

 
( ) ( ) ( )i i ime t y t y t= − , 1 2( , , )T

pe e e e= " ,        (11) 

1 2( , , )T
m m m pmy y y y= "                                     (12) 
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The control objective: design the fault-tolerant controller 
such that  
(1) All the variables of the closed-loop systems are bounded.  
(2) the tracking error ( )e t  converges to zero or a 

neighborhood of zero asymptotically. 
 

3. MAIN RESULT 
 

First, the fuzzy logic system of ( )f x  for adjusting the 
parameter vector γ̂  is built as following 

 
    ˆ ˆ( ) ( )Tf x xγ γ σ=                                     (13) 

 
*γ  is the optimal parameter vector of γ , define *γ  to be as 

follows: 
 

      * ˆarg min [sup ( ) ( ) ]x N f x f xγγ γ∈Ω ∈= −           (14) 

 
where Ω  is feasible field of γ , N  is a subspace of rR . 
from the lemma 1, there exists the nonnegative function 

( )xε  and a constant ε  such that 
 

*ˆ( ) ( ) ( )f x f x xγ ε− =                              (15) 
 

For the fault, design the controller as following 
 

 1 ( ) 1( )[ ( ) ]
2

T n
N m bu g x x K e y s kuζ μ−= − + + + −    (16) 

 1 ˆ( )[ ( )]Fu g x f x γ−= −                                            (17) 
 
where 1( )k g x ε−= , 0 1( , , )T T
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K satisfies Hurwitz polynomial: 
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which roots will lie in the open left half-plane. 

1( , , )T
b b pbu u u= "  is the fuzzy sliding mode controller and is 

determined as follows: 
  Define the sliding hyper planes )(tsi  as  
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where iυ  is a strictly positive constant. 
Design the fuzzy sliding mode controller ibu  as follows: 

First, define the linguistic description of the is  and ibu  as 
following: 
 

1 2 5( ) { , , , , } { , , , }iT s NB NM ZR PM PB C C C= = "       (19) 
 

1 2 5( ) { , , , , } { , , , }ibT u NB NM ZR PM PB F F F= = "      (20) 
 

where NB , NM , ZR , PM  and PB  are labels of fuzzy 
sets, which express “negative big”, “negative medium”, 
“zero”, “positive medium” and “positive big”. They are take 
to be triangle-shaped fuzzy sets.  
 
Using intuitive inference, the fuzzy relationship between the 
tracking error is  and the controller ibu  can be built as: 
 

6: if is , then is , 1,2, ,5j j j
i ibR s C u F j− = "  

(21) 
 
From the j th rule, it can be obtained that the fuzzy relation 
is 
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therefore, the total fuzzy relation is  
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the fuzzy set F  can be calculated singleton, max-min fuzzy 
reasoning: 
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using center-average deffuziffier, we have the control output 
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It’s mathematical expression was derived [35] as follows 
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where i
i

i

s
z

ϕ
= , where iϕ  is the width of the border layer, 

when i is ϕ≥ , it is easy to check  
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Choose the adaptive law as follows 
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where P  is the positive solution of (34). 
 

          TPA A P Q+ = −                                   (34) 
 

Theorem 1  Consider the system (5), under the assumption 
1, adopt the normal controller Nu  determined by the 
equation (21), the fault tolerant controller Fu  determined by 
the equation (22) and the adaptive law (31) and (32), then 
tracking error converges to a neighborhood of zero. 
Proof: choose the sliding hyper plane Ts e PB= , 
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 Let * ˆμ μ μ= −�  is estimate error, choose the Lyapunov 
function as following 
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from sgn( )s s s=  and the adaptive laws (31) and (32), we 
have 
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where * TQ PBB PμΓ = + . 

Assume λ  is the minimum eigenvalue of Γ , then the 
equation (38) becomes 
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from above, we have V L∞∈ , ∞∈Le . 
Integrating (39), yields 
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4.  EXAMPLE 

Consider the system as follows: 
 

1 2

1 2sin
x x
y x
=
=

�
 

uxxxxx )]exp(1[)sin()2( 121
2
22 −+++=�      (41) 

12 sin xy =  
                                                                                  

The given reference output is 0, 1,2imy i= = . 
Define the close-set as follows  
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Employ five fuzzy rules as follows: 
 

:lR IF lAisx THEN y′  is lB , 

2, 1,0,1,2l = − − . 
 
Where 
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then  
 

          ˆ( ) ( )Ty x v xγ′ =                                 (45) 
 
We use the fuzzy logic system to approximate the unknown 
fault functions (it is added to the plant in 1T s= ) 
 

1( ) sin( )
2

f x xπθ= , 1
1

1( )
1 exp( )

g x
x
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             (46) 

 
where ( 1, 1)θ ∈ − . We take the parameters of the controller 
with the fault tolerant as follows  
 

       1 20.5, 0.9,η η= = 0.5ϕ = , 2.0ε =           (47) 
 

5. CONCLUSION 

Because it is difficult for the Neural networks to attenuate the 
approximation errors. The fault compensation strategy based 
on both fuzzy logic system and sliding mode controller for 
nonlinear systems is proposed in this paper. In our design, 
Also, the fuzzy sliding mode control is introduced to 
attenuate the fuzzy approximation error. The closed-loop 
system is simultaneously stable in Lyapunove sense. 
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