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Abstract: The objective of the research work here presented is the rejection of a broadband
disturbance in a vibrating flexible structure. From a technological point of view, the problem
is tackled using an advanced lightweight magnetostrictive resonant actuator with an integrated
optical strain sensor. The adopted control strategy consists of a two-levels controller. Usefully
exploiting the measurement of the integrated sensor, a low-level feedback loop, aimed at
linearizing the actuator behaviour, is designed by resorting to a model-following approach.
An optimal control law is specifically implemented as the high-level feedback loop providing a
H∞ strongly stabilizing controller with bandpass capability for both low- and high-frequencies
measurement disturbances affecting the accelerometer used as control sensor. The advanced
control system has been experimentally tested on an aeronautical stiffened panel.

Keywords: Mechatronic systems; integrated sensors and actuators; multi sensor systems;
transportation systems; optimal control

1. INTRODUCTION

The present work related to the MESEMA project, whose
target is reported by Lecce et al. (2006), has the objec-
tive to prove an advanced control concept for the vibra-
tion reduction, relying on the use of an integrated ac-
tuator/sensor based on unconventional technologies. The
problem to be addressed is the reduction of broadband
vibrations on an aeronautical structure from 100Hz to
400Hz. Many researcher contributed to solve the active
vibration control problem. The general approach consists
in measuring a signal related to an undesired vibration and
manipulate it by a controller, that in turn computes the
corrective action to exert on the structure by means of one
or more actuators in order to reduce the vibration.

The selection of the most appropriate actuator strongly
depends on the force requirements in terms of force levels
and frequency range in relation to the weight limitations
which are very restrictive when aeronautical applications
are considered. To tackle the vibration control presented
in this paper, an actuator based on a proven and patented
actuator concept by May et al. (2003), the magnetostric-
tive auxiliary mass damper (shown in Fig. 1) was selected.
In order to satisfy both the force and the weight require-
ments, the actuator, even though optimally designed for
the specific application by May et al. (2006), uses a non-
linear amplification mechanism of the displacement which
is a source of nonlinearity in the overall system. Therefore,
a suitable control algorithm is necessary to counteract
the undesired effects of this nonlinearity, e.g. excitation
of high-frequency unmodelled structural dynamics or shift
of the actuator resonant frequency. In order to implement
the actuator controller by resorting to a feedback strategy,
an innovative optical strain sensor based on a fibre Bragg
grating (FBG) has been integrated into the actuator so as

to usefully exploit its advantages clarified by Kersey et al.
(1997).

When model based approaches are used to tackle the
control design phase for the vibration control problem
discussed above, the question of a suitable modelling tech-
nique of the vibrating structure arises. Such systems are
described by partial differential equations (PDE’s), that
can be suitably cast in a infinite set of ordinary differ-
ential equation (ODE’s). Next, a model order reduction
takes place, and a finite set of ODE’s is deduced. This
operation, however, generally involves truncation of the
high frequency dynamics, whose effect must be negligible,
otherwise “spillover” effects may appear (Balas, 1982).
This can be obtained by “filtering out” high frequency dy-
namics, by employing low-pass filtering within the control
action. Also low frequencies must be filtered out, otherwise
the very low frequency components of the measured signal
would saturate the actuators, thus resulting in a very
poor control performance. Typical examples are the rigid-
body dynamics, that is immaterial in vibration control
and is obviously sensed by an accelerometer. In principle,
the filtering capability of the controller can be arbitrar-
ily imposed by employing a loop-shaping technique, but
this techniques does not guarantee strong stabilization,
i.e. stabilization with a stable controller. In practical im-
plementation of the controller, strong stabilization is a
crucial requirement, since unstable controllers may tend
to saturate actuators during transient phases. Moreover,
it is well known that unstable elements in the forward
path degrade the performances of the control system (Sko-
gestad and Postlethwaite, 2005). Stable stabilizing con-
trollers have been discussed in the last years, mainly in
the SISO case, starting from the paper by Youla et al.
(1974) till the more recent solutions based on LMI’s as
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proposed by Gümüssoy and Özbay (2005) or parametric
optimization as by Campos-Delgado and K. (2003). A very
effective solution applicable to the MIMO case appeared
in 1994 (Halevi, 1994), when Halevi proposed a suitable
selection of the weighting matrices for an LQG problem so
as to achieve strong stability. All the above results aim at
solving the problem in the general case, hence no closed-
form solution is given. This is a strong limitation when the
control of high-order systems is addressed, since numeri-
cal solution are often ill-conditioned hence the resulting
controller is not implementable.

The control strategy selected to tackle both the problem
of actuator control and vibration reduction consists of
a multi-loop architecture, where the inner controller is
designed so as to counteract the effects of the nonlinear
behaviour of the smart actuator while the outer controller
uses a robust control strategy to reject the primary distur-
bance field. In detail, a model-following control strategy in-
spired to the one proposed by Balestrino et al. (1984) mak-
ing use of the displacement of the actuator’s seismic mass
measured through the FBG is adopted. The characteristic
of the model-following algorithm consists in preserving the
nature of the input signal of the low-level control system,
which is the output of the high-level vibration control
system. This part of the control algorithm is designed
by following the approach of Cavallo et al. (2008), where
a closed-form solution to a strongly stabilizing H2 and
H∞ control problem is proposed. The effectiveness of the
advanced control system has been demonstrated through
experiments performed on a real aeronautical structure,
i.e. an aluminium stiffened skin panel.

Fig. 1. Smart actuator mounted to the structure.

Fig. 2. Integrated optical sensor.

2. ADVANCED CONTROL SYSTEM

The control system for vibration reduction proposed in
this paper has to be considered advanced in the sense that
it makes use of an unconventional actuator based on a
smart material with an integrated innovative optical sensor
and of a hierarchical control architecture with two nested
control loops. The objective of the inner controller, based
on a model-following approach, is to reduce the undesired
effects of the actuator nonlinearity. The outer controller,
based on a H∞ robust control strategy, is devoted to
achieve the main objective of reducing the disturbing
vibrations. In the following subsections, technical details
of each component of the advanced control system are
presented.

2.1 Integrated Actuator/Sensor

Fig. 3 shows the fundamental construction inside the
smart auxiliary mass damper designed and manufactured
by May et al. (2003). It consists of magnetostrictive rods
surrounded by two coils. The coils are on two backing
plates that are connected with the stiff frame via two
elastic suspensions arranged in parallel. The frame itself
is mounted to the vibrating mechanical structure. Due to
the magnetostrictive effect a magnetic field caused by a
driving current in the coils produces a small extension in
the magnetostrictive rods in the horizontal direction. This
extension is transformed by the elastic suspensions to a
significantly larger motion of the total mass –consisting
of the magnetostrictive rods, the coils and the backing
plates– in the perpendicular direction. The kinematics of
the displacement amplification is strongly nonlinear and
the amplification factor decisively depends on the angle
of the elastic suspension at the working point α0 of the
mechanical construction (see Fig. 3), and is greater the
smaller this angle α0 is chosen. As a result of Newton’s
second law, the total moved mass produces an inertial
force that has an effect on the vibrating mechanical struc-
ture (May et al., 2003, 2006).

With the objective of minimizing the nonlinear effects of
the actuator using a feedback controller, an optical strain
sensor has been integrated in the device to measure the
displacement of the inertial mass, so as to estimate the
state of the mechanical system. The sensor, based on a
Fiber Bragg Grating (FBG), is sensitive to the strain
of the optical fiber in which it is written. Therefore, by
bonding the FBG between the backing plate and the
fixation frame (see Fig. 1), the strain of the fiber is
related to the displacement of the backing plate itself.
Using a special optoelectronic circuit which interrogates
the FBG in reflection mode, the sensed displacement can
be converted into a voltage signal with an estimated
sensitivity of about 37.6mV/µm. For further details on
the sensor integration and the interrogation technique, the
interested reader is referred to the recent paper by May
et al. (2007).

The most relevant effect of the actuator nonlinear kinemat-
ics when it is mounted to the vibrating structure is a de-
pendence of the natural frequencies of the structure on the
input current amplitude. This effect is particularly relevant
in the frequency range close to the resonant frequency
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Fig. 3. Schematic design of the smart auxiliary mass
damper.

of the actuator. Fig. 4 reports the frequency response
function (FRF) measured from the input current to the
optically sensed displacement using different amplitudes
of the exciting chirp signal, i.e. 0.6, 1.2, 2A. The shift of
the natural frequencies appears evident.
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Fig. 4. Actuator FRF measured at different current am-
plitudes: 0.6A (black), 1.2A (blue), 2A (red).

2.2 Actuator Controller

As mentioned before, the actuator nonlinearity causes a
dependence of the structural frequency response on the
amplitude of the driving current, that makes the actuator
difficult to use in the vibration control system. Therefore,
the low-level control objective is to reduce alterations of
the structural response due to variations of the input
current level.

First of all, a linear model reproducing the behaviour of the
actuator mounted to the structure in the neighborhood of
a given working condition, i.e. with a given current ampli-
tude, is identified using a frequency domain identification
procedure (Kollár, 1993). It can be written in the classical
state-space form as

ẋa = Aaxa + Bau (1)

ya = Caxa + Dau (2)

where u is the actuator input current (which will be com-
puted by the vibration controller) and ya is the measured
Bragg signal.

The adopted control strategy is based on a model-following
approach (Balestrino et al., 1984) and the control scheme
is reported in Fig. 5, as the subsystem inside the orange
frame. The characteristic of the model-following algorithm
consists in preserving the nature of the input signal which
has to be computed by the outer control loop. This makes
the use of the actuator more transparent in the higher level
control system computing the reference current as a result
of an outer feedback loop. This is accomplished by defining
a reference model whose input is just the reference current
ur = u while the total actuator current is the sum of the
reference current and a corrective current uc computed by
the controller on the basis of the error ey = ya−yr between
the actual displacement ya and the reference displacement
yr. In particular, the reference model is selected equal to
the linear model identified as above, i.e.

ẋr = Aaxr + Baur (3)

yr = Caxr + Daur (4)

As a consequence, it is easy to verify that the dynamics
of the state error ex = xa − xr is described by the state
space representation

ėx = Aaex + Bauc (5)

ey = Caex + Dauc (6)

Since the state ex is obviously not accessible, the controller
is designed according to a standard LQG procedure con-
sisting of a Kalman filter as observer of the error dynamics
and an optimal state feedback regulator. Therefore, its
dynamic equations can be written in the form

ẋc = Acxc + Bcey (7)

uc = Ccxc (8)

where Ac = Aa − LCa − BaF + LDaF , Bc = L and
Cc = −F , with L and F being the solutions of the two
classical Riccati equations.

2.3 Vibration Controller

The high-level controller has been designed considering
the structure with the controlled actuator as a standard
control problem framework depicted in Fig. 5. In this
figure, P is the system to control in the cyan frame,
K the controller (green frame) and the transfer function
from the generalized disturbance w to the generalized
output z is given by the lower LFT (Linear Fractional
Transformation) Fl(P,K) and denoted by Tzw.

The vibration controller has been designed on the ba-
sis of an optimal control strategy presented in Cavallo
et al. (2008) for a MIMO (Multi Input Multi Output)
square system, i.e. it has as many (control) inputs as
outputs. In particular,assume that in the system P the
control inputs and measured outputs have been suitably
scaled Maciejowski (1989), so that it can be described by

ẋ = Ax + Bww + Buu (9)

z = Czx + Dzuu (10)

y = Cyx + Dyww (11)
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Fig. 5. Advanced control scheme for vibration control.

where

Dzu =

(

0
I

)

, Dyw = ( 0 I ) (12)

x = (xT
1 xT

2 )T ∈ R
2n is the state vector, u ∈ R

m the control
input, y ∈ R

m the measured (control) output, w ∈ R
n+m

the disturbance (state and measurement disturbances),
z ∈ R

n+m the performance output.

The model describes the dynamics of mechanical systems
with n degrees of freedom and, if n is high enough, is
a good approximation of infinite-dimensional flexible sys-
tems. More specifically, it is well known that a flexible sys-
tem can be described by a system of PDE’s with suitable
boundary conditions. By using model order truncation
techniques, e.g. FEM strategies, the PDE’s can be trans-
lated into a finite number of ODE’s Meirovitch (1990).
By resorting to the “modal coordinates” the following
description is obtained Junkins and Kim (1993).

A =

(

0 I
−Ω −Λ

)

, (13)

Bw =

(

0 0
B2w 0

)

, Bu =

(

0
B2u

)

, (14)

Cz =

(

0 BT
2w

0 0

)

, (15)

Cy =
(

0 BT
2u,

)

, (16)

where

Ω = diag(ω2
1 , . . . , ω2

n), Λ = diag(2ζ1ω1, . . . , 2ζnωn) (17)

In this case x1 are the modal coordinates and x2 the modal
velocities. Moreover, assuming velocity measurement avail-
able, the output matrix has the form (16). The choice of
the disturbance matrix Bw has a physical justification, i.e.
the relationship between modal coordinates and velocities
is not subject to uncertainties or perturbations, thus the
first n rows of Bw are zero. Also the selection of the

matrix Cz has a physical interpretation, since in noise and
vibration reduction, the focus is on the velocity reduction,
rather than on modal coordinates control.

A selection of the disturbance matrix is proposed in order
to design a strongly stabilizing H∞ controller with a set
of m zeros at the origin, so as to guarantee bandpass
properties to the controller. Let

B2w = (αΛ + B2uBT
2u)1/2 (18)

where α > 0 is a scalar coefficient to be suitably selected.

The matrix Bw resulting from (14), (18) is composed of
two terms: the one weights disturbances in the range of
Bu, while the other tries to consider also off-range terms,
in particular by weighting the system natural modes.
Note that all the modes are weighted, and thus H∞

design will try to reduce structural peaks due to vibration
modes and to increase robustness with respect to matched
disturbances (i.e. in the range of the control input matrix).

Before discussing the solution of the H∞ problem, consider
the characterization of controllers with bandpass capabil-
ities. The following Theorem addresses this issue.

Theorem 1. With reference to the system (9)-(16), assume
that a realization of the controller K(s) is

ẋc = Acxc + Bcy (19)

u = Ccxc (20)

where

Ac = A + aB̃Υ−1 + bΥB̃ (21)

Bc = cΥBu (22)

Cc = dBT
u Υ−1 (23)

and a, b, c 6= 0, d 6= 0 are real scalars, B̃ = BuBT
u and Υ

is a symmetric positive definite matrix. If Υ is chosen as

Υ =

(

Υ1 0
0 Υ2

)

(24)
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with Υ1,Υ2 ∈ R
n×n then K has m zeros in 0.

Based on the above results, an H∞ controller is derived
with bandpass frequency shape. Moreover, the controller
is also stable, as stated by the following Theorem.

Theorem 2. Consider the system (9)-(17), with Bw chosen
as in (18). Then, the following controller is strongly
stabilizing

K∞(s, γ) = − γ2

γ2 − 2
BT

u (sI − A∞)−1Bu (25)

where

A∞ =

(

0 I
−Ω −Λ∞

)

(26)

and

Λ∞ =

(

1 − 2

γ2

)

Λ + 2
γ2 − 1

γ2 − 2

√

γ2 − 1

γ2
B2uBT

2u. (27)

Moreover, if

α = 2
√

1 − γ−2 (28)

is considered in (18), then the LFT Tzw satisfies

‖Tzw‖∞ < γ (29)

and, inf γ =
√

2.

The proofs of both theorems can be found in (Cavallo
et al., 2008).

3. EXPERIMENTAL RESULTS

This section reports the results of the experiments carried
out to test the effectiveness of the advanced control system
for vibration reduction of flexible structures. The control
strategy has been applied to reduce the vibrations of a
real aeronautical structure, i.e. a fuselage skin panel of
a BOEING 717. The panel is stiffened by two bulkheads
and three orthogonal stiffeners rivetted to the rear of the
panel itself and has been suspended by a couple of soft
springs to simulate the free boundary conditions. The
actuator has been mounted to a stiffener by removing a
rivet; the output acceleration is measured by means of
an accelerometer by PCB placed on the rear part of the
panel in correspondence with the actuator mounting point
(co-located case). The control algorithm has been digitally
implemented by using a dSPACE rapid prototyping real-
time control system with 16-bit A/D channels and 14-bit
D/A channels at a sampling frequency of 20 kHz.

As the first step of the design procedure, the linear model
in Eqs (1),(2) has been identified by resorting to the
FDIDENT Matlab Toolbox, resulting in a 24th order
system. Using this system as reference model, the LQG
controller in Eqs. (7),(8) has been designed experimentally
tuning the weighting matrices of the Riccati equations. In
order to verify the effect of the designed controller, the
following indicator has been defined to compare the FRFs
estimated at two different levels of the input current

E(ω) = |H0.6(jω) − H1.2(jω)| (30)

where H0.6(jω) and H1.2(jω) are the FRFs measured with
an amplitude of the input chirp current signal equal to
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Fig. 6. Indicator E(ω) defined in Eq. (30) with actuator
controller switched off (blue) and on (red).

0.6A and 1.2A respectively. The results are shown in
Fig. 6 reporting the indicator E evaluated with the actua-
tor controller switched off and on. For the whole frequency
range the indicator assumes lower values when the actu-
ator controller is activated, meaning that the alteration
of the structural response due to the nonlinearity of the
actuator is significantly reduced.
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Fig. 7. Experimental identification of the structure: mea-
sured FRF (blue) and modelled FRF (red)

The second step of the design procedure is devoted to
identify a model of the plant P in Eqs. (9)–(11) necessary
for computing the H∞ vibration controller in Eqs. (25)–
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(27) presented in Section 2.3. By applying the gray-box
identification procedure specifically devised for flexible
structures proposed by Cavallo et al. (2007), a model with
35 modes has been estimated whose FRF is compared to
the measured FRF in Fig. 7. Choosing the value 1.5 for the
design parameter γ in Eq. (29), the resulting controller has
been implemented on the dSPACE system. The complete
advanced control system has been tested considering the
four case studies obtained by combining the ON/OFF
states of the low-level (inner) and the high-level (outer)
controllers. In Fig. 8 the magnitude of the FRF from the
input disturbance to the measured acceleration is reported
in the four case studies. As expected, the higher values
correspond to the open loop (Inner OFF/Outer OFF)
case, while the better disturbance rejection (vibration
reduction) is obtained when both feedback controllers are
active (Inner ON/Outer ON), with a reduction of 14.4 dB
of the infinity norm.
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Fig. 8. Experimental results for the two-level control
scheme.

4. CONCLUSION

The presented control solution for a vibration reduction
problem can be referred to as an advanced control system
from a twofold point of view. It exploits an unconventional
actuation system constituted by a smart actuator with an
integrated optical sensor and it is based on a multi-loop
control architecture, where the inner controller is aimed
at linearizing the actuator behaviour and the outer loop
is devoted to reject the broadband disturbance acting on
the structure. The experiment has been conducted on a
relatively small scale test article using only one actuator
just to prove the control concept, and owing to the good
results, the implementation of the system on a full scale
test article (fuselage segment of a civil aircraft) using a
large number of actuators has been agreed by the project
consortium and is already in progress.
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