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Abstract: The problem of the identification of Hammerstein and Wiener models is considered
in this paper. The suggested approach in this paper utilizes the spectral magnitude matching
method that minimizes the sum squared error between the spectral magnitudes - evaluated for
a number of short-time frames - of the measured output signal of the nonlinear system and
the output signal of the nonlinear model. The coefficients of Hammerstein and Wiener models
are estimated using the generalized Newton iterative algorithm. Simulation results show that
the suggested approach gives very good results especially for moderate and high signal to noise
ratios.
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1. INTRODUCTION

Block-structured models are used to model nonlinear sys-
tems that can be represented by interconnections of linear
dynamics and static nonlinear elements. There are four
commonly used block-structured models in the literature.
Namely: Hammerstein model (N-L), Wiener model (L-N),
Hammerstein-Wiener cascade model (N-L-N) and Wiener-
Hammerstein cascade model (L-N-L). For these nonlinear
models, it is assumed that only the input and the out-
put signals of the model are measurable. See Abd-Elrady
(2005) for more details.

Hammerstein model consists of a static nonlinearity fol-
lowed by a linear dynamic system, as shown in Fig. 1.
It is considered as the easiest nonlinear model to use for
identification purposes compared to other nonlinear model
structures. This is due to the fact that it is possible to
transfer the SISO Hammerstein model to MISO model
which is linear in parameters. Hence, linear techniques can
be used for estimation purposes.

One can find a quite substantial literature dealing with the
identification of Hammerstein models. Generally speak-
ing, existing identification methods for Hammerstein mod-
els can be divided into iterative methods Stoica (1981),
Vörös (1997), Vörös (1999), over-parameterization meth-
ods Boutayeb et al. (1996), stochastic methods, Billings
et al. (1978), Greblicki (1996), separable least squares
methods Bai (2002), Westwick et al. (2001), blind iden-
tification methods Bai et al. (2002) and frequency domain
methods Bai (2003).

On the other hand, Wiener model consists of a linear
dynamic system followed by a static nonlinearity, as shown
in Fig. 2. Wiener models arise in practice whenever a
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Fig. 1. Hammerstein model (N-L) structure.

dynamic

system
nonlinearity

     Linear Static yn(n)y(n)u(n)

Fig. 2. Wiener model (L-N) structure.

measurement device has a nonlinear characteristic, see
Billings et al. (1978), Greblicki (1992), Kalafatis et al.
(2001), Koeppl et al. (2002), Nordsjö (1998), Wigren
(1990).

On the contrary to Hammerstein model, it is not possible
for Wiener model to identify the linear dynamics indepen-
dently of the static nonlinearity. Independent parameter-
ization of the two blocks requires maintaining the static
gain to be constant in one of the blocks, see Abd-Elrady
(2002), Wigren (1990). Also, it is important in what way
disturbances enter to the system, i.e. before or after the
static nonlinearity.

Using a parametric description for the linear dynamic
block and the static nonlinearity, a prediction error cri-
terion can be used to estimate the parameters of Wiener
model as done in Wigren (1993), Wigren (1994). Also,
nonparametric approaches have been used to identify the
Wiener model in Greblicki (1992), Bai (2003).

In Quatieri et al. (2000), a method was introduced for
estimating telephone handset nonlinearity by matching the
spectral magnitude of the distorted signal to the output
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Fig. 3. Hammerstein system with measurement noise.

of a nonlinear channel model. The nonlinear model was
chosen as a Wiener-Hammerstein cascade system (L-N-
L) with a static nonlinearity described by a finite-order
polynomial. The nonlinear model coefficients were esti-
mated using the generalized Newton iterative algorithm
Luenberger (1973), Widrow et al. (1985) that minimize a
cost function of the sum squared error between the spectral
magnitudes - evaluated for a number of short-time frames
- of the measured distorted signal and the output signal
of the nonlinear model. In this paper, the same approach
of Quatieri et al. (2000) is used for the identification of
Hammerstein and Wiener models.

The paper is organized as follows. Hammerstein and
Wiener systems are discussed in Sec. 2 and Sec. 3, respec-
tively. The spectral magnitude matching (SMM) method
is presented in Sec. 4. In Sec. 5, some simulation examples
are given. Conclusions are presented in Sec. 6.

2. HAMMERSTEIN SYSTEM

Assume that the nonlinear block of Hammerstein system
of Fig. 3 is characterized as

y(n) = f(u(n))

= c1u(n) + c2u
2(n) + · · · + cnc

unc(n).
(1)

Assume also that Hammerstein system has the following
output

x(n) = yn(n) + v(n) (2)
where v(n) is zero-mean additive white Gaussian noise
(AWGN) and yn(n) is characterized by the following input-
output relation

yn(n) = H(z−1)y(n)

=
B(z−1)

A(z−1)
y(n).

(3)

Here A(z−1) and B(z−1) are polynomials in the shift
operator z−1 (z−1y(n) = y(n − 1)) with

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · · + ana
z−na

B(z−1) = b1z
−1 + b2z

−2 + · · · + bnb
z−nb .

(4)

In order to have a unique parameterization of the Hammer-
stein model structure, the first coefficient of the nonlinear
function f(.), i.e. c1 is set equal to 1, see Ding et al. (2005),
Bai (2002).

Let us define a parameter vector θ as follows

θ = ( a1 a2 · · · ana
b1 b2 · · · bnb

c2 · · · cnc
)
T

. (5)

The aim of this paper is the estimation of the parameter
vector θ by minimizing the difference between the spectral
magnitudes of the true measured output data of the
nonlinear system described by Eqs. (1)-(4) and the output
of the Hammerstein model structure.

3. WIENER SYSTEM

As it was mentioned in Sec. 1, it is important in what
way disturbances enter to Wiener system. Two different
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Fig. 4. Wiener system with measurement noise.
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Fig. 5. Wiener system with disturbance noise.

cases are given in Figs. 4-5. In Fig. 4, v(n) is considered
as a measurement noise but in Fig. 5 it is considered as
a disturbance and v(n) will be nonlinearly mapped at the
output of the system. Only the case of Fig. 4 is considered
in this section. The two cases will be considered in the
simulation study in Sec. 5.

Assume that the linear block of Wiener system of Fig. 4
is characterized as

y(n) = H(z−1)u(n)

=
B(z−1)

A(z−1)
u(n)

(6)

where A(z−1) and B(z−1) are given by (4). Assume also
that Wiener system has the following output

x(n) = yn(n) + v(n). (7)

Here the output of the nonlinear block yn(n) is given by

yn(n) = f(y(n))

= c1y(n) + c2y
2(n) + · · · + cnc

ync(n).
(8)

Similarly as in Sec. 2, the parameter vector θ which
defined in Eq. (5) is estimated by minimizing the difference
between the spectral magnitudes of the true measured
output data of the nonlinear system described by Eqs. (6)-
(8) and the output of the Wiener model structure. This is
the topic of the next section.

4. THE SPECTRAL MAGNITUDE MATCHING
APPROACH

The suggested SMM method shown in Fig. 6 minimizes the
error between spectral magnitudes of the measured signal
x(n) and the output signal z(n) through the following cost
function, see Quatieri et al. (2000):

Vθ =

K−1∑

k=0

L−1∑

l=0

[|X(ωl; k)| − |Z(ωl; k;θ)|]
2

(9)

where X(ωl; k) and Z(ωl; k;θ) are the short-time DFT
of the nonlinear system measured output signal and the
nonlinear model output signal, respectively. Here, K is the
number of uniformly-spaced short-time frames and L is the
DFT length.

The cost function in Eq. (9) can be written as

Vθ = ΓT
θ Γθ (10)

where
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Fig. 6. Identification of Hammerstein and Wiener models
using the SMM method.

Γθ =





γ0(θ)
γ1(θ)

...
γK−1(θ)




(11)

and

γk(θ) =




|X(ω0; k)| − |Z(ω0; k;θ)|

...
|X(ωL−1; k)| − |Z(ωL−1; k;θ)|



 , k = 0, ..,K−1.

(12)

The parameter vector θ that minimizes the cost function
Vθ can be estimated similarly as in Quatieri et al. (2000)
using the generalized Newton iteration algorithm, see
Luenberger (1973), Söderström et al. (1989), Widrow et al.
(1985). Hence, the estimate of the parameter vector follows
as

θ̂(m + 1) = θ̂(m) + µ ∆(m) (13)

where m is the iteration index, µ is the adaptation gain,
and the gradient ∆(m) is given by

∆(m) = −

[
d2Vθ

dθ2

]−1 [
dVθ

dθ

]

= −
(
JT (m)J(m)

)−1

JT (m)Γθ |
θ=θ̂(m)

.

(14)

Here J(m) is the Jacobian matrix of first derivative of Γθ

with respect to θ evaluated at θ = θ̂(m), i.e.

J(m) =
dΓθ

dθ
|
θ=θ̂(m)

=





J0(m)
J1(m)

...
JK−1(m)





(15)

where

Jk(m) =
dγk(θ)

dθ
|
θ=θ̂(m)

= −





d|Z(ω0; k;θ)|

dθ
...

d|Z(ωL−1; k;θ)|

dθ





|
θ=̂θ(m)

, k = 0, · · · ,K − 1.

(16)

Due to the fact that there is no close form expression for
the gradient ∆(m), an approximate gradient was evalu-
ated in Quatieri et al. (2000) by finite element approxima-
tion. The same approach is considered here. The approxi-
mation follows the following lines:

1. Initiate with a parameter vector θ̂(0) and compute
the DFT magnitude |X(ωl; k)|.

2. Compute the DFT magnitude |Z(ωl; k; θ̂)| based on

the current value of the parameter vector θ̂(m) and
form Γθ.

3. Recalculate z(n; θ̂) for each perturbed component of

θ̂(m) and then compute its DFT magnitude. The

(i, j) element of the matrix element Jk(m) denoted as
Jk

i,j(m) is evaluated using a first backward difference

for each element of θ̂(m) as

Jk
i,j(m) =

∂γk
i (θ̂;m)

∂θ̂j(m)

≈ −
1

εm

(
|Z(ωi; k; θ̂1(m), · · · , θ̂j(m) + εm, · · · )|

−|Z(ωi; k; θ̂1(m), · · · , θ̂j(m), · · · )|
)

(17)

where γk
i (θ̂;m) is the ith element of γk(θ), θ̂j(m) is

the jth element of the parameter vector θ̂(m) and εm

is a small adaptive perturbation evaluated as

εm =
Vθ(m)

Vθ(0)
ε0 (18)

where ε0 is the initial perturbation, Vθ(0) is the
initial value of Vθ, and Vθ(m) is the value of Vθ

at iteration m. This means that the perturbation
decreases proportionally with the error.

4. Finally, evaluate the correction term ∆(m) from

Eq. (14) and update the parameter vector θ̂ using
Eq. (13).

In the SMM method, the spectral magnitudes of the
measured output signal x(n) and the output signal of
the nonlinear model z(n) are calculated using DFT for a
number of short-time frames. In order to have accurate
estimates, long data length is needed. Since the SMM
method is off-line identification process, in each iteration
the output signal corresponding to the input data length
has to be evaluated and the DFT for the time frames is
calculated. Also, in the gradient calculations, the previous
steps are repeated for each perturbed parameter. Mean-
while, a matrix inversion is needed in Eq. (14). Therefore,
the computation complexity of the SMM method is quite
high.
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Fig. 7. Parameters convergence of the Hammerstein model
structure. True values (dotted) and estimated (solid).

In order to have a feeling of the computation complexity
of the SMM method, let us assume the following. The
linear block is an IIR filter with na = nb = 4, the
static nonlinear block is described as a polynomial with
nc = 4, the length of the input data is 104 which is
divided into K = 10 short frames and the DFT length
is L = 250. Straightforward calculations show that 1.73 ×
106 additions and 2.77 × 106 multiplications are needed
in every iteration. This is without counting the DFT
calculations and the matrix inversion. In case the size
of the parameter vector and/or the number of the short-
time frames increase, the computation complexity will be
even higher. Future research will consider the possibility of
reducing the computation complexity of the SMM method.

5. SIMULATION EXAMPLES

In order to investigate the performance of the suggested
approach of Sec. 4, the following simulation examples were
performed.

Example 1: Identification of Hammerstein model structure.
In this simulation study the following Hammerstein system
of Fig. 3 was considered:

A(z−1)yn(n) = B(z−1)y(n)

A(z−1) = 1 − 1.5z−1 + 0.7z−2

B(z−1) = z−1 + 0.2z−2 (19)

y(n) = f(u(n)) = u(n) + 0.5u2(n) + 0.25u3(n)

θ = ( a1 a2 b1 b2 c2 c3 )
T

.

The data were generated from the system described by
(19) using PRBS of length 8× 103 samples. In the estima-
tion process, 8 time frames were used each with 103 sam-
ples and 250 DFT frequency components, i.e. K = 8 and
L = 250. Also the adaptation gain and the initial pertur-
bation were chosen as µ = 0.1 and ε0 = 0.5, respectively.

The initial parameter vector was θ(0) = ( 0 0 1 0 0 0 )
T
.

The AWGN v(n) was chosen such that a signal to noise
ratio (SNR) of 40 dB was achieved.
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Fig. 8. ES and Eθ for the Hammerstein model structure.

As a performance measure, the normalized spectral error
which is defined as

Es(m) =

∑L−1
l=0 (|X̄(ωl)| − |Z̄(ωl; θ̂(m))|)2

∑L−1
l=0 |X̄(ωl)|2

(20)

has been used. Here X̄(ωl) and Z̄(ωl; θ̂(m)) are the mean-
values of the DFT of x(n) and z(n) over the time frames,
and defined as

X̄(ωl) =
1

K

K−1∑

k=0

|X(ωl; k)|, l = 0, · · · , L − 1. (21)

Z̄(ωl; θ̂(m)) =
1

K

K−1∑

k=0

|Z(ωl; k; θ̂(m))|, l = 0, · · · , L − 1.

(22)
Moreover, the normalized parameter error vector which is
defined as

Eθ(m) =
‖θ̂(m) − θo‖2

‖θo‖2
(23)

has been evaluated, where θo is the true parameter vector.
The simulation results are given in Figs. 7-8. The achieved
values were ES = −69.55 dB and Eθ = −78.27 dB.

Also, in order to study the performance of the suggested
approach with SNR, the previous simulations were re-
peated for different SNRs. The mean values of Eθ eval-
uated at the end of the 250 iterations over 100 different
realization experiments are given in Fig. 9. The results of
Fig. 9 show that the suggested approach gives very good
results for different SNRs.

Example 2: Identification of Wiener model structure.
In this simulation study the following Wiener system of
Fig. 4 was considered:

A(z−1)y(n) = B(z−1)u(n)

A(z−1) = 1 + 0.2z−1 − 0.35z−2

B(z−1) = z−1 + 0.5z−2 (24)

yn(n) = f(y(n)) = y(n) + 0.5y2(n) + 0.25y3(n)

θ = ( a1 a2 b1 b2 c2 c3 )
T

.
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Fig. 9. Eθ vs. SNR for the Hammerstein model structure.
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Fig. 10. Parameters convergence of the Wiener model
structure. True values (dotted) and estimated (solid).

The data were generated and the suggested approach was
initialized as done in Example 1. The simulation results
at SNR = 40 dB are given in Figs. 10-11. The achieved
values were ES = −61.5 dB and Eθ = −63.1 dB.

Also, similarly to Example 1, a simulation study with SNR
was performed for the Wiener system with measurement
noise (cf. Fig. 4) and with disturbance noise (cf. Fig. 5).
The results are given in Fig. 12. The results of Fig. 12 show
that the suggested approach gives good results in both
cases especially for moderate and high SNRs. Also, the
results in the measurement noise case are more accurate
as expected.

6. CONCLUSION

In this paper a suggested approach for the identification
of Hammerstein and Wiener models has been presented.
The approach utilizes the spectral magnitude matching
method and the generalized Newton iterative algorithm to
estimate the parameter vector. This estimation is done by
minimizing the difference between the spectral magnitudes
of the measured data and the output of the nonlinear
model over a number of uniform short-time DFT frames.
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Fig. 11. ES and Eθ for the Wiener model structure.
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Fig. 12. Eθ vs. SNR. Wiener model with measurement
noise (solid) and with disturbance noise (dashed).

The suggested method is simple and straightforward to
be applied for identification purposes. On the other hand,
the computation complexity is high due to the fact that
the gradient is evaluated approximately using DFT and
finite element approximation at each iteration. Simulation
results show that the suggested approach gives very accu-
rate estimates.
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