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Abstract: This paper considers the problem of robust mixed 7,/ H_ delayed state feedback control for a

class of uncertain neutral systems with time-varying discrete and distributed delays. Based on the
Lyapunov-Krasovskii functional theory, new required sufficient conditions are established in terms of
delay-range-dependent linear matrix inequalities (LMlIs) for the stability and stabilization of the considered
system using some free matrices. The desired robust mixed H, / H,, delayed control is derived based on a

convex optimization method such that the resulting closed-loop system is asymptotically stable and
satisfies H, performance with a guaranteed cost and a prescribed level of H_, performance, simultaneously.

Finally, a numerical example is given to illustrate the effectiveness of our approach.

1. INTRODUCTION

Delay systems represent a class of infinite-dimensional
systems largely used to describe propagation and transport
phenomena or population dynamics. Neutral delay systems
constitute a more general class than those of the retarded
type. Stability of these systems proves to be a more complex
issue because the system involves the derivative of the
delayed state. Especially, in the past few decades increased
attention has been devoted to the problem of robust delay-
independent stability or delay-dependent stability and
stabilization via different approaches for linear neutral
systems with delayed state and/or input and parameter
uncertainties (see, Han, 2004; He et. al., 2007; Han and Yu,
2004; Lam et. al., 2005). Among the past results on neutral
delay systems, the LMI approach is an efficient method to
solve many control problems such as stability analysis and
stabilization (Fridman, 2001; Chen and Zheng, 2007) and
H_ control problems (Chen, 2005; Fridman and Shaked,

2003; Gao and Wang, 2003; Xu et. al., 2001; Chen, 2006; Xu
et. al., 2002). It is also worth citing that some appreciable
works have been performed to design a guaranteed-cost
(observer-based) control for the neutral system performance
representation (Karimi, 2008; Chen et. al., 2006; Lien, 2005;
Park, 2003; Xu et. al., 2003). To the best of our knowledge, a
robust mixed H,/H_ delayed state feedback control for

uncertain neutral systems with time-varying discrete and
distributed delays has not been fully investigated in the past
and remains to be important and challenging.

This paper develops an efficient approach for robust mixed
H,/H_ delayed state feedback control problem of uncertain
neutral systems with discrete and distributed time-varying
delays. The main merit of the proposed method is the fact
that it provides a convex problem such the control gain can
be found from the LMI formulations. New required sufficient
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conditions are established in terms of delay-range-dependent
LMIs combined with the Lyapunov-Krasovskii method for
the existence of the desired robust mixed H,/H_ control

such that the resulting closed-loop system is asymptotically
stable and satisfies both, H, performance with a guaranteed
cost and a prescribed level of H_ performance. A numerical
example is given to illustrate the use of our results.

2. PROBLEM DESCRIPTION
Consider a class of neutral systems with discrete and
distributed delays and norm-bounded time-varying
uncertainties represented by
X(1) — Ay x(t — d () =(A+ A A@®)) x(1) + (4 + A 4,()) x(t — h(F))
+(4; + A4, (1)) Jt'x(s) ds +(B+AB(@)u(t)+ (B, +AB, (1)) w(t),

t-2(8)
x(1) = (1), te [-max {h,,d,,7,}, 0]
z(t) =(C+AC@) x(t)+(D+AD(@))u(t),

(la-c)
where x(t)e R", u(®)e R, w()e L5[0,) and z(r)e R* are
state, input, disturbance and controlled output, respectively.
The time-varying function ¢(¢) is continuous vector valued
initial function and the time-varying delays A(r),d(¢) and z(¢)
are functions satisfying, respectively,

By <h(t)<hy,  h(t)<h;, (2a)
0<d(t)<d,, d()<d, <], (2b)
0<z(t) <7, (1) <71, <. (2¢)

Moreover, A A(t),A 4,(t),A A4, (1), A A, (t), A B(t),A B, (£),AC(t),
and AD(¢r) are bounded uncertainties and defined as follows:
[A4() A4,() A4, (1) AB(1) AB(1)]
=HAWE E, E, E, EJ| Q)
[ace) AD@)=HAW(E; E,]

10.3182/20080706-5-KR-1001.0544



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

where the uncertain matrix A(¢) satisfies A7 (1) A(r) <1 .
Definition 1: The H, and H_ performance measures of the
system (1) are defined, respectively, as

Jy = TZT(X(’))SI 2x@)+u” @) S, ut) dt, (4a)

J.=[Z" Oz -y w Owe) dt,

0

where the operator y(x(¢)) in (4a) is defined by
Z(x(0)=x(0) =4 Ay x(t = d (1)) ®)
and S, >0, S, >0 and the positive scalar y are given.

Assumption 1: The full state variable x(¢z) is available for
measurement.

(4b)

In this paper, the authors’ attention will be focused on the
design of the following robust mixed H,/H_ delayed state

feedback control law,

u(t) =K y(x(1)) (6)
where the matrix K of the appropriate dimension is to be
determined such that for any delays satisfying (2) the
resulting closed-loop system is asymptotically stable and
J, £J,, where the constant scalar J, is an upper bound of

the H, performance measure which satisfies an H,_ norm

bound y . It can be easily seen that the resulting closed-loop
system (1) and (6) is of the following form,
xX(t) =(A+AA(t)+(B+AB@))K) y(t) +¢ (A+A A(t))
X A, x(t—d(t)+ (4, +A A, () x(t —=h())+ (4, +A 4, (1)) (7)

X jx(s) ds+ 4, 5(t—d(1)+ (B, + A B, () w(?),

1=7(t)

Lemma 1: (Wang et. al., 1992) Given matrices Y =Y", D,

E and F of appropriate dimensions with F” F <[, then the
matrix inequality Y +sym(DF E)<0, the operator sym (A)

represents 4+ A’ , holds for all F if and only if there exists
a scalar £>0 such that

Y+eDD" +¢'E"E<0

3. ROBUST CONTROL SYNTHESIS
In this section, both the asymptotic stability and mixed
H,/H_ performance of the interconnection of plant and the

control are investigated such sufficient stability conditions
are derived for the existence of the control (6) combined with
the Lyapunov method in terms of LMIs. In the literature,
extensions of the quadratic Lyapunov functions to the
quadratic Lyapunov-Krasovskii functionals have been
proposed for time-delayed systems (Park, 1999). Now, we
choose a Lyapunov functional candidate for the uncertain
neutral system (1) as

rO=210, ®)
where

K0 = 2GO) P2G0) s 1,(1)=3 [x(5)" R, x(s) ds
i=ly—p;
t 0 ¢
Vi) = [x()" Ry x(s) ds»> V()= [ [ 5(s)" Ry %(s) ds d&»

t—h(t) —hy t+60

—h ot t
Vi@ = [ [5(s)" Ry %(s) dsd@> V()= [x(s)" Rgx(s) ds>
—hy t+60 t—d (1)

_t[x(s)r Ry x(s) ds df -
B

Vit)= [#(s)" Ry i(s) ds» Vs(@)= |
t—d (1) t=7(t)

Differentiating ¥, (¢) in ¢ we obtain
Vi) <2 2(x(0)" P {(A+ A A@) + (B+AB0))K) y(x(1)

+ (A, + A A (t)x(t—h(t) + 1—1512 (A+A A1) Ayx(t —d(t)) )

+(4; + A A4,(1)) jx(s) ds + (B, + AB())w(t)

t—7(t)

Differentiating other terms in (8) give (4, =h, —h,)

(10)
(11)

t t—h(t

. )

Vi(t) = i) Ry i(6)— [ 5(s)T Ryi(s) ds— | x(s) Ryi(s) ds (12)
t—h(t) t—hy

. t—h(t) t=hy

V(0)=h,x(t)" Ry 5(6)— [ i(s)" Ry x(s) ds— [ x(s)" R, %(s) ds (13)

t—hy t—h(t)

V()= 530" R, x(0)=x(t—h))T R, x(1~h,)

i=1

V3(t) < T (0) Ry x(6) = (1= hy)x" (1t = h(0)) Ry x(t = h(0))

Vo) < X" (0) Ryx(t) = (1= dy)x" (t=d () Ry x(t — (1)) (14)
Vo) S 5T (O) R, 5(6) — (1= )& (t=d () R, 5t —d () (15)
Vo) < 1x(t)" Rex(t) — (1-1,) jx(s)f Ry x(s) ds (16)

t—7(t)
Moreover, from the Leibniz-Newton formula, the following
equations hold for {N,}?, with appropriate dimensions:

t

20" (ON, +x7 (= h(O)N, () =2t ~h(D) ~ [ i(s) ds) =0

t—h(t)

(17)

t=hy

20T (N, +x" (t=h(t))N,)(x(t —hy)— x(t — h(t))— jjc(s) ds)=0 (18)

t—h(t)
Now, to establish the H_ performance measure for the

system (1), assume zero initial condition, then we have
V(t)| ., =0. Consider the index J_ in (4b), then along the

solution of (1) for any nonzero w(¢) there holds

(19)

Substituting (1c), (7) and from (8)-(16) and adding the left
sides of equations (17) and (18) into (19), we obtain

J.< TZT(t)z(t) —-PW (OWO+V () dt

J. < T ST (OZKe) dt (20)
0

where (1) = col {y(x(t)), x(t—h(t)),x(t —h,),x(t—h,),x(t—d(1)),

x(t—d (1)), jx(s) ds, w(r)} 1s an augmented state vector and the

1=7(t)
matrix ¥ is given by
S=I+A" (bR, +h,R, +R)A+h, M R;'M] +h,M,R;' M’

21)

where
(M, 1M, Ny 0 IT;s 0 P(4; + A4 (1)) P(B+AB(1))]

Ty Ny 0 gy 0 0 0
¥ % —R 0 0 0 0 0

- % % ¥ R, 0 0 0 0
. 0 0 0
woxx ¥ —(—d)R 0 0
* * * * * * _(1_1-2)R8 0
% % % % % % % — 72]
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with M| =col {N|,N,,0}, M, =col {N;,N,,0} and
A =[A+AA(t)+ (B +AB(t)K, 4 + A4(1), 0,0, (A + A1) 4,
Ay, A3+ A4, (1), By + AB (1]
1), = sym{P((A+ AA()) + (B + AB(1))K) + Ny}
+KT(B+AB(@)) (R, + hy, R,)(B+AB(t))K
+((C+ACH) + (D +AD)K) ((C+AC(®1))

+(D+AD@)K) + iR,. + R + 7 Ry,
H,2 =P (4, + A4, [(;;)—N +N; -N;,
I, = (ZR + R+ TiR) A + -~ (P+ N4,
E((C +AC(1)) +(D +AD()K) (C + AC(1)) 4,
M,, =—(1-h3)R,

I, =—(1-d,)R, +(1—d,) > 4 (C+AC(®t))" (C+AC(t))+iR,. +R,+T,Ry)A4,

—sym{N,+N,},

where the symbol * denotes the elements below the main
diagonal of a symmetric block matrix. Thus, if the inequality
<0 holds, the inequality J_ <0 is satisfied. The inequality

¥ <0 yields (by Schur complement)

M AT h, AT AT M, hoM, |
#  —h,R} 0 0 0 0
* * —h,RSY 0 0 0 |, (22
£ % = -Ry' 0 0
* * * * - h2R4 0
* * * * * - h12R5

Let &=diag{X,R,,R,,R,,Rs,R;, Ry, 1,1,1,I,R,,Rs}
X =P and R, =R,

where

for i=1,---,8 . Pre-multiplying £ and
post-multiplying & to the matrix inequality (22) yield

n, 0, hA" h,d" 4" M, h,M,
w1 0 0 0 0 0
w0 % — h2]_?4 0 0 0 0
% * —h,R, 0 0 0 23)
* * * * —R, 0 0
* * * * * — th4 0
% % % % % % —h,R;

+sym (¥, (1,, ® A)P,)< 0
and by Lemma 1 and applying Schur complement, the
following inequality is obtained for any scalar ¢ >0,

0 ey, Y
* —gl 0 |<0 (24)
* * —&1
where
‘f, 10, wA’  n,A" AT mM, h,M, |
* M, 0 0 0 0 0
% % —hR, 0 0 0 0
= « = —pR 0 0 0

# # * # -R, 0 0

* * * * * - th4 0

* * * * * * - hlst

_ﬁll 12112 XNSE 0
x My RNR 0
* * _EI 0
ﬁl _ * * * _R2
ES ES ES ES
ES * ES ES
ES ES ES ES
ES ES ES ES
T (1 + XN 4, R 0 AR, B,
iENZAZE(, 0 0 0
0 0 0 0
0 0 0 0
—(—d,)R; 0 0 0
s —(1-d,)R, 0 0
* * ~(=7)R; 0
* * * —;/21
11, =[w,,0,0,0,m,,0,0,0]" ,
I, = diag {- 1_3 R ,—1,—R1,—§2,—1_? -R ,—1'11_?8} S

Y, =diagly, .v,.y;},

v, =lp" 0 ¢ hel ol 0 he!
with

7
hoo! ol 0 o,

I1,, = sym {(AX + BKX + XN, X},
ﬁlz =A1§3 +X(=N,+N; _Ns)ﬁs )
I:[22 :7(17h3)1§3 *Es (vym{N4 +N2})E3 >

A=[AX + BKX, AR, 0 0,74 A4, R, 4, R, ARy, B, ],

Ml =col {)QVIE4,E3N2E4,O} :Mz =col {)HV3R5,R3N4R5 05,
@, =col {BKX,h,BKX ,(C+DK)X, X, X, X,X,1,X},

@, = col0, - CA R ARy o AR AR ARy - ARy}
v, =col{H 0}, v, =col{H,,H ,H,,0},
v, =diag{H,,H,,H,,0,0},
o, =|EX+E.kX ER, 0 0 0 0 ER, E, 0

¢2:[E3KX 0]:¢3:lEsX+E6KX 000 1d E5A2R6 OJ

B4R, 0 ERy E, o]

?, :[EX+E3KX ER, 0 0
On the other hand, by applying the same Lyapunov-
Krasovskii functional candidate (8) for the uncertain neutral
system (1), under w(r)=0, for the index J, in (4a) we get

Sy < [ 2T O) S, 2@+ 2" @)K S, K x(x(0) +V (1) dt
‘ (25)

<[ OB dt

o'—-X

where 9(1) = col {y(x(1)), x(t — h(t)), x(t — hy),x(t — hy),x(t — d(2)),
x(t—d(1)), Jt.x(s) ds} and the matrix % is given by
t—7(t)
S=Tl+ A" (hyR, + h, Ry + R))A+hy M\R;'MT + h,M,R;'M !
(26)
where
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m, M, N, 0 s 0 P45 + A4, (1)
s T Ny 0 N4 0 0
* ® =R 0 0 0 0
M=| = # ¥ —R, 0 0 0
® ® ® #* ﬁss 0 0
* ® ® * # -(1-d,)R, 0
| * ® ® ® #* * —(1-73)Rs |
with

A=[A+ A1)+ (B+ABU)K, 4 + A, (1), 0,0,ﬁ(A +AA(t) 4y,
Ay, Ay + A4, (2)]
ﬁn =sym{P((A+AA(1))+(B+AB()K)+ N,} + K" (B+AB(t))’

3
X(Ry+h, RYB+AB(t)K+K'S,K+S, +> R +R,+7, Ry,
i=1
- 3
I, =R +R, +T,R)A, +-(P+N))4,,
v B

3
I, =—(1-d,)R, +2Ri + R+ T R4, -
=

Therefore, the condition £ <0 in (25) implies
T V(1) dt =limV (t) -V (0)
T (27)
< —I}(T(X(t))sl Xx@O)+ 1" (x@)K" S, K y(x(1)) dt

By Theorem 1.6 of the reference Kolmanovskii and Myshkis
(1992), we conclude that the system (1) with w()=0 is

asymptotically stabilizabe by (6). Now, by considering the
asymptotically stability of the system (1) by (6) the H,

performance measure for the system is established as
IZT(X(I)) S, x(x@) + 1" (x(ODK" S, K y(x(1)) dt <V (0) = J,
0

where
Jo =(3(0)— - 4, (=d(0)))" P($(0) — - 4, $(=d(0)))
+§2: [6()" R, ¢(s) ds+ [4(s)" R, 4(s) ds

i=l p, ~h(0)
~hy 0

+ f f #(s)" R, §(s) ds dO+ [ [ 6(s)" Ry §(s) ds d

+ [9(5)" Ry 6(s) ds+ [(s)" R, §(s) ds+ [ [9(s)" Ry 4(s) ds df
-d(0) ~d(0) -7(0) §

(28)

Similar to the case of H_ performance measure, after

applying some matrix manipulations to the inequality =<0
we obtain for any scalar ¢, >0,

0 ev, W
5 —g 0 |<0 (29)
* * — 32]
where
', 0, mA"  h AT AT WM, h,M, |
* M, 0 0 0 0 0
# E— hZEA 0 0 0 0
=+ « % —nR 0 0 0
® ok * * -R, 0 0
® ok * * #*  —I,R, 0
L * * * * * * _hlzﬁs i

1:I]l lfIIZ {NSE

* HZZ RSNAR]

* * |

Im, =| = * s

* * *

* * *

* * *
0 (I +XN)4,R, 0 AR, |
0 0 0 0
0 0 0 0
—R, 0 0 0
* -(1-d,)R, 0 0
# # -(1-4d,)R, 0
* * * - (1-7,)R, |

I, =[@,,0,0,0,,,0,0,0,0]"
I, = diag {-R,,— l,R,,~ S,,— S,,~R,,— R,,— R, ,~R,,—T,R,} ,
¥, = diag (, W, V.} »
= 0 ¢ mel o wpl mpl gl o,
with
A=[AX + BKX, A R, 0,0, A4, Ry, 4,R;, 4R ],
@, = col {BKX ,h,BKX S, X,S,KX, X, X, X, X,1,X},
@y = col {0, 12 A, Ry, 7 Ay R T Ay R 7 o R, - ARy}
M, =col {XN,R,,R;N,R,,0},
M, = col {XN,Ry,R;N, R0}, ¥, = col {H,,0},
v, =col{H,,H,0},¥, =diag{H,,H,,H,,0},
G =|EX+EKX ER, 0 0 0 0 ER, 0,
¢, =[E.kx 0],

¢4=[EX+E3KX ER; 0 0 {-E4R 0 ER 0].

Theorem 1: Consider the system (1)-(3) and let >0 be a
given scalar. If there exists scalars {g},, >0, a matrix Y,

and positive definite matrices X and {R,}},, satisfying the
following LMIs,

M oew, 9]
* —gl 0 |<0 (30a)
ox —gl
bl & ¥, ¥ 1
« —el 0 |<0 (30b)
* * -&,1
where
T, T, wA" AT AT m M, WM, |
« I, 0 0 0 0 0
% % _h2§4 0 0 0
M=« =+ « —pR 0 0 '
* * * * —§7 0 0
* * * * * _h2§4 0
* * * * * * _huES
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[sym{(A+ DX +BY} (4 -2DR,+&X R, 0
s -2¢,R, —BR 0
# # -R, 0
I, = * * * -R,
* k * *
* k * k
* * * k
1—%12 Azﬁi 0 As_x
—-&,4,R, 0 0
0 0 0
0 0 0
—(1-d,)R, 0 0
* ~(1-d,)R, 0
5 5 ~(1-7,)R, |

1, =[®,,0,0,0,,,0,0,0]",

Y. =lg7 0 @7 wp! P 0 wg hpl @0 0,

fa, f, A" h,AT AT m M, h,M, |
« T, 0 0 0 0 0
* % —hR, 0 0 0 0

M=% x  «  —p,R 0 0 o |
* * * * _R7 0 0
* * * * * _th4 0
* * * * * * _huR5

11, =[d,,0,0,0,,,0,0,0,0]",
=l o @ mpl o mEl ngl ¢ ol
&, =col{B,,0},
A=[AX + BY, AR, 0,0, A4, R, A, R, 4, Ry, By ],

M, = col{R,,&,R,,0} , M, =col {Rs,~5>Rs 0},
@, =col {BY,h,BY,CX + DY, X, X,X,X,1,X},
@, = col {BY,h,BY,$,X,S,Y, X, X, X, X,1,X},
#=|EX+EY ER, 0 0 0 0 ER E 0
o, =|E;y 0],a3=[E5X+E6Y 0 0 0 ——E. 4R, 0],

1—d,

64=[EX+E3Y ERy 0 0 {-EA4Rg 0 ERy E, 0],

A=[AX + BY, AR, , 0, 0,72 A4, Rg, 4, Ry, ARy ],

P = [EX+E3Y E11_33 0000 E2§8 0]: ?, =[E3Y 0]:

P, = [EX+E3Y ER; 0 0 {-EA4R; 0 ER 0]
then, the robust mixed H,/H_ delayed state feedback control
gain in (6) is given by K=Y X' and an upper bound of the
H, performance measure is obtained by

Jo = (9(0) = 4, §(=d(0)))" X' (#(0) 4 4, ¢(=d (0)))
+ Z [o() R 4(s) ds+ [o(s)" Ry §(s) ds

=l —h(0)
+ f T () R §(s) ds d6+ jf B(s) R d(s) ds db @1

“hy 0

+ [0() R, 6(s) ds+ [§(s) R, §(s) ds

—hy

~d(0) —_d(0)
+ [ [o)" R p(s) ds dp
—2(0) B

Proof: Omitted due to space constraints. m

4. SIMULATION RESULTS
Consider the system (1) with the following matrices

-1 0 0.01 -0.04 0 0.1
A= A = ; Ay = ;
02 —-12 0.02 0.01 0 0.1
01 0 2 0 00
0 0.1 1 1 0 1
D—O'S—IO'S—1'¢(t)— 0.5 |
L R =03

H, :m; H, :M; E=[l 01]; E =[05 02];

E,=[02 03]; E£,=03; E,=0; E,=[0.1 0]; E,=0.1.

Using Theorem 1 and solving LMIs (30a, b) with parameters
h=01h,=08,h=07d =d,=03, 7,=03,and 7,=0, the
corresponding suboptimal H, performance measure of the
resulting closed-loop system is given by J, =1.5539 and the

minimum value of the parameter » in optimal H_
performance measure is obtained as 0.578 . Hence, according

to Theorem 1, a robust mixed H,/H, delayed state feedback
control law is given by

u(t)=[-0.5835 -0.0008]x(r)+[0 0.0835]x(s - 0.3sin(¢)?) .
(32)
For simulation purpose, we simply choose a unit step in the
time interval [1,2] as the disturbance, A(¢)=sin(¢) as the

norm-bounded uncertainty and select time delays as
h(t)=0.1+0.7sin(t)>, d(t)=03sin(t)> and 7(r)=0.3. The
simulation results are shown in Figures 1 and 2. Responses of
two states, i.e.,x,(?),x,(t), of the closed-loop system are

depicted in Figure 1 and compared with the corresponding
state trajectories in the open-loop system under the initial

condition x(0)=[0.5 —0.3]". It is seen from Figure 1 that the

closed-loop system is asymptotically stable. The
corresponding control signal (32) is also shown in Figure 2.

5. CONCLUSION
The problem of robust mixed H,/H_ delayed state feedback

control was proposed for a class of uncertain neutral systems
with time-varying discrete and distributed delays. Based on
the Lyapunov-Krasovskii functional theory, new required
sufficient conditions were established in terms of delay-
range-dependent LMIs for the stability and stabilization of
the considered system with considering a mixed H,/H_

performance measure.
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