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Abstract: This paper studies the effect of variable initial state error in iterative learning control
(ILC) algorithms for linear time-invariant (LTI) systems. It is first pointed out that the previous
result based on an average operator has a restriction due to a specific condition for convergence,
even though it shows that the effect of the initial state error can be accurately estimated while
the existing algorithms show only the boundness of the error or the convergence from stochastic
point of view. To relieve this limitation, a modified ILC algorithm is proposed and a sufficient
condition for convergence is presented. In order to show the validity of the proposed algorithm,
a numerical example is given.

1. INTRODUCTION

In many studies on iterative learning control (ILC) algo-
rithms, there have been a great deal of efforts to lighten
a restriction that the initial state value of the system
should be same as that of the desired trajectory at each
iteration. Lee and Bien found that the proportional term
of the error in PD-type ILC algorithms can be positively
utilized in a way that the effect of the initial state error is
exponentially reduced when the initial state value is same
at each iteration but different from the desired one (Lee
and Bien [1996]). Then, Park et al. generalized this result
to a PID-type ILC algorithm (Park et al. [1999]) and a
continuous operator-based ILC algorithm (Park and Bien
[2000]) showing that the error reduction can be effectively
controlled by using multiple learning gains or an appro-
priate operator. Sun and Wang also introduced initial
rectifying action to address the initial state error problem
(Sun and Wang [2002]). However, since it is practically
impossible to set the initial state value of the system at
the same value perfectly, it is inevitable to have deviation
in initialization from the initial state value at the previous
iteration even though it may be very small.

To relieve this limitation, there have been various studies
to analyze the effect of variable initial state error and
find a robust algorithm alleviating the requirement so that
the initial state xk(0) at each iteration k remains in the
neighborhood of any fixed point x0, i.e.,
� This work was supported by Brain Korea 21 project, School of
Information Technology, KAIST and the Science Research Cen-
ter/Engineering Research Center (SRC/ERC) program of the Min-
istry of Science and Technology/Korea Science and Engineering
Foundation (MOST/KOSEF) under Grant #R11-1999-008.

‖xk(0) − x0‖∞ ≤ ε (1)
where ‖ · ‖∞ is defined as

‖x‖∞ = sup
1≤i≤n

|xi|

for an n-dimensional vector x =
(
x1, x2, · · · , xn

)′, and its
induced matrix norm is defined as

‖A‖∞ = sup
1≤i≤n

r∑
j=1

|aij |

for an n × r matrix A with components aij . From the
boundness of the initial state error (1), they showed that
the output error trajectory ek(·) between the desired
output trajectory yd(·) and the output trajectory of the
system yk(·), ek(·) = yd(·)− yk(·), is bounded in the sense
of λ-norm as shown in the following inequality:

lim
k→∞

‖ek(·)‖λ ≤ ksO
(
λ−1

)
ε (2)

where ks depends on the system parameters and the
learning gains, O

(
λ−1

)
is a function of λ which decreases

as λ increases, and ‖ · ‖λ is defined by

‖f(·)‖λ = sup
0≤t≤T

e−λt‖f(t)‖∞
for a vector function f : [0, T ] → Rn. However, since
the boundness is obtained in the sense of λ-norm, the
previous result (2) cannot ensure that a huge magnitude
in the actual output error does not appear at a large time
instant t � 0 even when the error bound is very tiny
in the sense of λ-norm, since the λ-norm has the prop-
erty by which the actual error trajectory is exponentially
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weighted. For example, in the previous results, even when
limk→∞ ek(t) = εeat, the result shows a very small error
bound in the sense of λ-norm: limk→∞ ‖ek(·)‖λ ≤ ε, λ >
a = ‖A‖∞. This may prevent active applications of the
method in real world problems with a long time interval
[0, T ], T � 0. Sun and Wang proved the boundness of the
output error without using λ-norm (Sun and Wang [2003]).
However, the upper bound still increases as time interval
increases. Fang and Chow showed that the output error
asymptotically converges to zero, i.e., limk→∞ ek(t) = 0,
for 0 � t ≤ T (Fang and Chow [2003]). However, the
asymptotic convergence doesn’t show the effect of the
initial state error for whole trajectory. Saab studied the
convergence of the ILC algorithms from stochastic point
of view assuming zero-mean white initial state error and
showed that the input error covariance matrices converge
to zero (Saab [2003]). However, since the result is given in
the sense of mean and standard deviation, the exact effect
of the initial state error cannot be found. Recently, Park
proposed an average operator-based algorithm and showed
that the effect of the initial state error can be estimated
in terms of desired output trajectory, system parameters,
initial state values and learning gains assuming the initial
state value satisfies the following conditions (Park [2005]):

lim
k→∞

avg {xi(0)}k
i=0 = x0 (3)

and, for some positive constants β and γ,

‖avg {xi(0)}k
i=0 − x0‖∞ ≤ βe−γk (4)

where avg {·}k
i=0 denotes an average operator which is

defined as

avg {hi(·)}k
i=0 =

1
k + 1

k∑
i=0

hi(·)

for a sequence h0(·), h1(·), · · · , hk(·). However, the condi-
tion (4) still has a restriction that the algorithm can be
applied only when it is ensured that the property of initial-
ization process satisfies (4) by long periods of observation.
Otherwise, we cannot guarantee that the effect of the
initial state error is converged and accurately estimated.

The main purpose of this paper is to remove the strict
condition (4) and find a new convergence condition to get
a similar result by which the effect of the initial state error
can be obtained as a time function of initial state values,
system parameters and learning parameters. It is remarked
that the assumption (3) is acceptable in general since the
average of the samples approaches the population mean,
the mean of the underlying distribution, as the sample size
increases.

2. AVERAGE OPERATOR-BASED ILC

In this section, the effect of variable initial state error
is shown for LTI systems. Consider the linear system
described by (5) and the ILC algorithm described by (6).

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (5)

uk+1(t) = avg {ui(t)}k
i=0

+Γ
(
avg {ėi(t)}k

i=0 − R avg {ei(t)}k
i=0

)
(6)

Here, x ∈ Rn, u ∈ Rr and y ∈ Rq denote state,
input and output, respectively. A, B and C are matrices
with appropriate dimensions and it is assumed that CB
is a full rank matrix. Suppose that the desired output
trajectory yd(·) is continuously differentiable on [0, T ] and
the algorithm starts with a bounded control input u0(·).
As commented in Park [2005], the algorithm (6) can be
implemented by incremental update formulas to prevent
computational burden:

vk+1(t) = avg {ui(t)}k+1
i=0 =

k + 1
k + 2

vk(t) +
1

k + 2
uk+1(t)

v0(t) = u0(t)

sk+1(t) =
k+1∑
i=0

(ėi(t) − Rei(t)) = sk + ėk+1(t) − Rek+1(t)

s0(t) = ė0(t) − Re0(t)

uk+1 = vk(t) +
1

k + 1
Γsk(t).

This implementation requires memory only for vk(t), sk(t)
and k, and only the small computation for each iteration.

Before showing the effect of the initial state error, we need
the following lemmas, whose results are utilized in the
proof of the main result on convergence.
Lemma 1. Let ak be a nonnegative real value for every
integer k ≥ 0. Assume that a0 is bounded and suppose that
ε and ρ be real values such that ε > 0 and 0 ≤ ρ <

√
2−1.

Then, the inequality

ak+1 < ρ avg {ai}k
i=0 + ε

implies

ak <
(√

k + 1 −
√

k
)

a0 +
ε

1 − ρ
,∀k ≥ 0. (7)

Proof. For the proof, we employ the method of mathe-
matical induction. For each m ≥ 0, let Pm be the state-
ment that

am <
(√

m + 1 −√
m

)
a0 +

ε

1 − ρ
.

From the assumptions, we can easily obtain that the
statement P0 is true. That is

a0 <
(√

1 −
√

0
)

a0 +
ε

1 − ρ
.

Now, suppose that statement Pn is true for every integer
n with 0 ≤ n ≤ k. Then, it can be shown that

ak+1 < ρ avg {ai}k
i=0 + ε

<
ρ

k + 1

{(√
1 −

√
0
)

a0 +
ε

1 − ρ
+

(√
2 −

√
1
)

a0

+
ε

1 − ρ
+

(√
3 −

√
2
)

a0 +
ε

1 − ρ
+ · · ·

+
(√

k + 1 −
√

k
)

a0 +
ε

1 − ρ

}
+ ε
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=
ρ√

k + 1
a0 +

ε

1 − ρ
. (8)

Since 0 ≤ ρ <
√

2 − 1, we can find that

k + 1 + ρ <
√

(k + 2) (k + 1),∀k ≥ 0. (9)
From (8) and (9), we can conclude that

ak+1 <
(√

k + 2 −√
k + 1

)
a0 +

ε

1 − ρ

which establishes the truth of the statement Pk+1. By
mathematical induction, (7) is true. This completes the
proof.
Lemma 2. Let ak and bk be nonnegative real values for
every integer k ≥ 0. Assume that a0 is bounded and
suppose that limk→∞ bk = 0 and 0 ≤ ρ <

√
2 − 1. Then,

the inequality

ak+1 ≤ ρ avg {ai}k
i=0 + bk

implies

lim
k→∞

ak = 0.

Proof. Since limk→∞ bk = 0 and limk→∞ a0√
k+1+

√
k

= 0
from the assumptions, for any ε > 0, there exists a positive
K such that

bk <
ε

2
(1 − ρ) ,∀k ≥ K

and

a0√
k + 1 +

√
k

<
ε

2
,∀k ≥ K. (10)

This gives

ak+1 < ρ avg {ai}k
i=0 +

ε

2
(1 − ρ) ,∀k ≥ K.

From Lemma 1 and (10), we can obtain that

ak <
(√

k + 1 −
√

k
)

a0 +
1

1 − ρ

ε

2
(1 − ρ)

<
ε

2
+

ε

2
= ε,∀k ≥ K,

and we can conclude that

lim
k→∞

ak = 0.

This completes the proof.

Now, the effect of the initial state error for the ILC law
(6) will be shown.

Theorem 3. Suppose that the update law (6) is applied to
the system (5) and the initial state value at each iteration
satisfies the condition (3). If there exists ρ satisfying

‖I − ΓCB‖∞ ≤ ρ <
√

2 − 1
then

lim
k→∞

(
yk(t) + CeAt (x0 − xk(0))

)
= yd(t) − eRtC (xd(0) − x0) ,∀t ≥ 0.

Proof. Let ua(t) and xa(t) be the control input and the
state that satisfy (11)

xa(t) = x0 +

t∫
0

(Axa(τ) + Bua(τ)) dτ

yd(t) − eRtC (xd(0) − x0) = Cxa(t). (11)
Let

Δuk(t) = ua(t) − uk(t)

Δxk(t) = xa(t) − xk(t).
It follows from (6) and (11) that

Δuk+1(t) = avg {Δui(t)}k
i=0

− Γ
(
avg {ėi(t)}k

i=0 − R avg {ei(·)}k
i=0

)

= avg {Δui(t)}k
i=0

− Γ
(
C avg {Δẋi(t)}k

i=0 − RC avg {Δxi(·)}k
i=0

)

= (I − ΓCB) avg {Δui(t)}k
i=0

− Γ (CA − RC) avg {Δxi(t)}k
i=0 . (12)

Taking the norm ‖ · ‖λ on both sides of (12), we have

‖Δuk+1(·)‖λ ≤ ρ‖avg {Δui(·)}k
i=0 ‖λ

+ ‖Γ (CA − RC) ‖∞‖avg {Δxi(·)}k
i=0 ‖λ.(13)

From (11), we can obtain

Δxk(t) = eAt (x0 − xk(0)) +

t∫
0

eA(t−τ)BΔuk(τ)dτ.(14)

Applying an average operator and taking the norm ‖ · ‖λ

on both sides of (14), we find that

‖avg {Δxi(·)}k
i=0 ‖λ ≤ ‖x0 − avg {xi(0)}k

i=0 ‖∞
+

1 − e−(λ−a)T

λ − a
‖B‖∞‖avg {Δui(·)}k

i=0 ‖λ(15)

where

λ > a = ‖A‖∞.

Substituting (15) into (13), we further find that

‖Δuk+1(·)‖λ

≤
(

ρ + c1
1 − e−(λ−a)T

λ − a
‖B‖∞

)
‖avg {Δui(·)}k

i=0 ‖λ

+ c1‖x0 − avg {xi(0)}k
i=0 ‖∞ (16)

where

c1 = ‖Γ (CA − RC) ‖∞.

Since 0 ≤ ρ <
√

2 − 1 by assumption, it is possible to
choose λ sufficiently large so that

ρ0 = ρ + c1
1 − e−(λ−a)T

λ − a
‖B‖∞ <

√
2 − 1.

From (16) and Lemma 2, we can obtain that
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lim
k→∞

Δuk(t) = 0. (17)

From (11), (14) and (17), we can finally conclude that

lim
k→∞

(
yk(t) + CeAt (x0 − xk(0))

)
= yd(t) − eRtC (xd(0) − x0) .

This completes the proof.

Theorem 3 implies that if the initial state value satisfies
the condition (3), the effect of the initial state error can be
exactly determined by the information about the desired
output trajectory, the system parameters, the population
mean x0, the initial state value at the current iteration
xk(0) and the learning gain R. From the result of Theorem
3, we can easily find that the effect of the deviation in
the desired initial state value and the population mean,
xd(0) − x0, can be controlled by the learning gain R, and
the effect of the error between the population mean and
the initial state value of the system, x0 −xk(0), is affected
by the system matrix A. Thus, if the system is stable and
we choose R so that all the eigenvalues of R are negative,
the effect of the initial state error is asymptotically reduced
as time increases.

If we can get the uncertainty bounds for each component
of A and C, the bounds of C and CeAt can be obtained as
‖C‖∞ ≤ η1 and ‖CeAt‖∞ ≤ η2(t), respectively, and this
gives more accurate bound of the output error:

lim
k→∞

‖yd(t) − yk(t)‖∞ ≤ η1‖eRt‖∞‖xd(0) − x0‖∞ + η2(t)ε,

while the previous result (Park and Bien [2000]) only shows

lim
k→∞

‖yd(·) − yk(·)‖λ ≤ η1‖eR·‖λ‖xd(0) − x0‖∞

+ η1

(
1 +

1 − e−(λ−a)T

(λ − a) (1 − ρ0)
‖B‖∞‖Γ (CA − RC) ‖∞

)
ε

in the sense of λ-norm, where ‖x0 − xk(0)‖∞ ≤ ε and
a = ‖A‖∞.

It is remarked that, if the initial state value is the same as
x0 at each iteration, the effect of the initial state error in
Theorem 3 becomes

lim
k→∞

yk(t) = yd(t) − eRtC (xd(0) − x0)

and, by this observation, the proposed ILC algorithm (6)
can be considered as an extension of the previous result
(Lee and Bien [1996]).

If we adopt a continuous operator P as follows:

uk+1(t) = avg {ui(t)}k
i=0

+Γ
(
avg {ėi(t)}k

i=0 +
(
P avg {ei(·)}k

i=0

)
(t)

)
,

it can be easily shown that, based on the previous result
in Park and Bien [2000], the effect of the initial state error
can be controlled in a variety of ways:

lim
k→∞

(
yk(t) + CeAt (x0 − xk(0))

)
= yd(t) − ẽ(t),∀t ≥ 0

where ẽ(t) is the solution of

˙̃e(t) + (P ẽ(·)) (t) = 0

ẽ(0) = C (xd(0) − x0) .

It is also remarked that, when the system (5) has relative
degree (μ1, · · · , μq), we can apply the following algorithm
with a slight modification:

uk+1(t) = avg {ui(t)}k
i=0

+Γ
(
avg {e∗i (t)}k

i=0 − R∗avg {ei(t)}k
i=0

)

where

e∗i (t) =

⎡
⎢⎢⎢⎢⎣

dμ1

dtμ1
e1
i (t)

...
dμq

dtμq
eq
i (t)

⎤
⎥⎥⎥⎥⎦ , R∗ = diag

{
rμ1
1 , · · · , rμq

q

}
,

and ej
i (t) denotes the j-th component of ei(t). Then, the

effect of the initial state error in Theorem 3 is changed as
follows:

if there exists ρ satisfying

‖I − ΓD∗‖∞ ≤ ρ <
√

2 − 1

then

lim
k→∞

(
yk(t) + CeAt (x0 − xk(0))

)
= yd(t) − eR′tC (xd(0) − x0) ,∀t ≥ 0

where

D∗ =

⎡
⎢⎣

C1Aμ1−1B
...

CqAμq−1B

⎤
⎥⎦ , R′ = diag {r1, · · · , rq} ,

and Cj denotes the j-th row of C.

From the implementational point of view, it is rather
natural and effective that the learning algorithm is given
in discrete-time domain. For this end, we can consider LTI
system described by (18) and the ILC algorithm (19) which
utilizes one step ahead of the error giving a discrete-time
equivalent of a derivative:

xk(m + 1) = Axk(m) + Buk(m),m = 0, 1, · · · ,M − 1

yk(m) = Cxk(m),m = 0, 1, · · · ,M (18)

uk+1(m) = avg {ui(m)}k
i=0

+ Γ
(
avg {ei(m + 1)}k

i=0 − R avg {ei(m)}k
i=0

)
.(19)

Then, the effect of the initial state error can be equiva-
lently obtained:

lim
k→∞

(yk(m) + CAm (x0 − xk(0)))

= yd(m) − RmC (xd(0) − x0) ,m ∈ {0, 1, · · · ,M} .
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(a) Iteration-varying number δk

(b) ‖avg {xi(0)}k
i=0 − x0‖∞ = 1

k+1

∑k

i=0
δi

Fig. 1. Random number in the initial state value

3. NUMERICAL EXAMPLE

The following example is given to illustrate the validity of
the proposed algorithm.

Example 1: Consider the following linear time-invariant
system (Lee and Bien [1996]).

ẋ(t) =
[

0 1
−2 −3

]
x(t) +

[
0
1

]
u(t)

y(t) = [ 0 1 ] x(t)
Let the desired output trajectory be given as follows:

yd(t) = 4t(1 − t), 0 ≤ t ≤ 1.

Assume that the initial state value is varying and satisfies
the condition (3), which can be modeled as follows:

xk(0) =
[

0
0.1 + δk

]
.

Here, δk varies in [−0.01 0.01 ] as shown in Fig. 1. Γ is
chosen as 1.3 so that ‖I−ΓCB‖∞ = 0.3 <

√
2−1. Suppose

that the following ILC algorithm is applied:

uk+1(t) = avg {ui(t)}k
i=0

+1.3
(
avg {ėi(t)}k

i=0 + 3 avg {ei(t)}k
i=0

)
.

Fig. 2 (a) shows the output trajectory of the sys-
tem yk(·)(solid line) and the desired output trajectory
yd(·)(dashed line) at 200th iteration. Fig. 2 (b) shows the
maximum absolute error between yk(t)+CeAt (x0 − xk(0))
and yd(t)− eRtC (xd(0) − x0). As shown in Fig. 2, we can
observe that the output trajectory of the system, yk(t),

(a) Output trajectory at 200th iteration

(b) sup0≤t≤200‖yk(t) + CeAt (x0 − xk(0)) −
yd(t) + e−3tC (xd(0) − x0) ‖∞

Fig. 2. Output trajectory and the maximum error

approaches a time function yd(t) − eRtC (xd(0) − x0) −
CeAt (x0 − xk(0)).

4. CONCLUDING REMARK

In this paper, the robustness of the ILC algorithm against
variable initial state error was investigated and a modified
ILC algorithm was proposed based on an average operator
to remove a strict condition in the previous result. A
sufficient condition for convergence was given and it was
proved that the effect of the initial state error can be
exactly obtained by the information about the desired
output trajectory, the system parameters, the initial state
values and the learning parameters. From the result of
Theorem 3, we can conclude that the effect of the variable
initial state error can be rapidly removed as time increases
by adjusting the learning gain R when the system is
stable. The robustness against variable initial state error
for nonlinear systems is open to further investigation.
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