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Abstract: The stabilization with time delay in observation and control represents extremely
difficult mathematical challenges in distributed parameter systems control. It is well-known
that the closed-loop stability achieved by some stabilizing output feedback laws is not robust
for any small time delay. When this happens, it necessary to reconsider the stabilizing feedback
control laws. We are concerned with a particularly interesting case: boundary output feedback
stabilization of one-dimensional wave equation system for which the boundary observation
suffers a time delay. This stabilization problem has been unsolved for over two decades. We
construct an infinite-dimensional observer such that the estimation error converges exponentially
to zero as time goes to infinity and we design a stabilizing state feedback law. Using the
separation principle as in the finite dimensional cases, we show that the delay system is
exponentially stabilized by the feedback law based on the estimated state.

1. INTRODUCTION

In a practical control system, there is often a time delay be-
tween the sent control and the information via the observa-
tion of the system. A general case occurs in sampled-data
control systems. Time delay may destroy the stability or
cause periodic oscillations for a control system Gumowski
and Mira [1968]. For distributed parameter control sys-
tems, the stabilization with time delay in observation and
control represents difficult mathematical challenges [Flem-
ing, 1988, p.69]. The first example of one-dimensional wave
equation with boundary feedback in Datko et al. [1986],
Datko [1988] illustrates that every small time delay in
the known stabilizing boundary output feedback schemes
could destabilize the system. This interesting case was par-
ticularly mentioned in (Fleming [1988], p.69). Afterwards
the time delay problem was raised over and over again:
whether a small time delay causes catastrophic behavior
in actual systems (see Datko [1995], Datko and You [1991],
Datko [1991, 1997]). If it does, the current control theory
for elastic systems is invalid. The difficulty to overcome
time delay problem for elastic systems is that there are
an infinite number of eigenvalues on the imaginary axis,
which is in sharp contrast to parabolic systems. A general
result of Logemann et al. [1996] shows that if there is a
time delay in the output of an infinite-dimensional control
system, the stabilization by the output PI feedbacks is not
robust to time delay.
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Recently inspired by the works of Deguenon et al. [2006],
Smyshlyaev and Krstic [2005], we solved successfully the
stabilization problem of one dimensional wave equation
system with boundary control and non-collocated obser-
vation Guo and Xu [2007]. The idea behind is to use the
separation principle which is valid for finite-dimensional
linear systems [Callier and Desoer, 1991, p.329] and also
for some nonlinear systems Gauthier and Kupka [1992].
For infinite-dimensional systems, applying the principle is
generally more complex, since different stabilities like weak
stability, strong stability and exponential stability are not
equivalent (see also Nguyen and Egeland [2006]). However
we show that the principle still works for the stabilization
of time-delayed distributed parameter systems.

In this paper, we are concerned with the following one-
dimensional wave equation under boundary control and
collocated observation with time delay:

wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0, wx(1, t) = u(t), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,
y(t) = wt(1, t− τ), t > 0,

(1)

where u is the control (input), τ > 0 is a constant time
delay and y is the output observation which suffers a delay
time τ . This is to say that the information concerning the
initial condition is available only after time τ . Of course
the delay is a dynamical system which represents somehow
a memory. We have to precise the initial condition for
the memory such that the trajectory of the system (1)
is determined. Without lost of generality we assume that
wt(1, s) = 0 ∀ s ∈ [−τ, 0].
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It is well-known that if the system (1) is time delay
free or τ = 0, the proportional output feedback control
u(t) = −ky(t), k > 0 exponentially stabilizes the system.
However, if there is a sufficiently small time delay τ > 0,
then the closed-loop system by the output feedback control
u(t) = −ky(t), k > 0, has at least one eigenvalue with
positive real part (see Datko et al. [1986], Datko [1988]),
and so unstability appears. In other words the stabilizing
output feedback control law can not tolerate any small
delay in the control feedback law. The drawback of the
feedback control law makes it almost useless or extremely
dangerous to applications, since usually there is some small
delay from the received information to the sent control.
This problem has been pointed out in [Fleming, 1988, p.69]
and the stabilization of (1) with τ > 0 is the particularly
interesting case discussed there.

For the system (1) the energy state space is the Hilbert
space H = H1

L(0, 1) × L2(0, 1),H1
L(0, 1) = {f | f ∈

H1(0, 1), f(0) = 0} with state variable (w(·, t), wt(·, t)).
The input space and the output space are the same U =
Y = C. The norm of (w(·, t), wt(·, t)) in H is defined by
the energy

E(t) =
1
2
‖(w(·, t), wt(·, t))‖2 =

1
2

∫ 1

0

[w2
x(x, t)+w2

t (x, t)]dx.

Our idea of solving the stabilization of system (1) is to use
the separation principle. We design an infinite-dimensional
observer for the system (1) such that the estimation error
converges exponentially to zero as time goes to infinity. To
stabilize the system we apply a stabilizing state feedback
law based on the estimated state through the observer.

In the next section, Section 2, we show that the system is
well-posed in the sense of D. Salamon (cf. Curtain [1997]).
This seems necessary for the design of the observer. The
exact observability and controllability are illustrated in
Section 3. Section 4 is devoted to the design of the
observer. Finally, in Section 5, we design a stabilizing
feedback control law and show that the closed-loop system
is exponentially stable.

2. WELL-POSEDNESS

We begin by considering the dynamical system (1) without
delay. The first question is its well-posedness in the sense
of D. Salamon. The question is to know if the following
mapping is continuous: the mapping which, to each pair
of initial condition and control input signal, associates the
state and the output observation signal.

It is well known that the following system
wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0, t ≥ 0,
wx(1, t) = u(t), t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,
yw(t) = wt(1, t), t ≥ 0,

(2)

can be written as a second-order system in H studied in
Guo and Luo [2002]:{

wtt(·, t) + Aw(·, t) + Bu(t) = 0,
yw(t) = −B∗wt(·, t), (3)

where

Af = −f ′′,∀ f ∈ D(A)
= {f ∈ H2(0, 1) ∩H1

L(0, 1)|f ′(1) = 0}
B = −δ(x− 1)

(4)

and δ(·) denotes the Dirac distribution. The operator
A has eigen-pairs {λn = (n − 1/2π)i, ϕn = sin(n −
1/2)πx}n∈Z. Since |bn| = |〈b, sin(n − 1/2)πx〉| = 1 for
any n ∈ Z, it follows from Proposition 2 of Guo and Luo
[2002] that B is an admissible input operator. A direct
computation shows that the transfer function of (2) is

H(s) =
es − e−s

es + e−s
, ∀ Res > 0,

which is bounded on the open right half complex plane.
Hence the system (2) is well-posed in the sense of
D.Salamon (see Curtain [1997]), that is to say, for any
u ∈ L2

loc(0,∞; R) and (w0, w1) ∈ H, there exists a unique
solution (w(·, t), wt(·, t)) ∈ C(0,∞;H1

L(0, 1)× L2(0, 1)) to
(2), and moreover, for any T > 0, there exists a constant
DT such that

‖(w(·, T ), wt(·, T ))‖2 +
∫ T

0

|yw(s)|2ds

≤ DT

[
‖(w0, w1)‖2 +

∫ T

0

|u(s)|2ds

]
.

(5)

Now let us return to our dynamical system (1). Since there
is a time delay in the output observation, the state space
for the whole system is the Hilbert space H = H×L2(0, τ).
As we have said in the Introduction, the time delay is a
dynamical system of memory and described by the state
equation

ξ(s, t) = wt(1, t− s), 0 < s < τ, t > 0,
ξ(s, 0) = ξ0(s), 0 < s < τ,

(6)

where ξ0(s) is a known function in L2(0, τ). The norm on
the state space H is given by

‖(w1, w2, ξ)′‖2
H = ‖(w1, w2)′‖2

H +
∫ τ

0

ξ2(s)ds.

Then the well-posedness of (1) follows immediately from
(5): ∥∥∥∥∥

[
w(·, T )
wt(·, T )
ξ(·, T )

]∥∥∥∥∥
2

H

+
∫ T

0

|y(s)|2ds

≤ D̃T

∥∥∥∥∥
[

w0

w1

ξ0

]∥∥∥∥∥
2

H

+
∫ T

0

|u(s)|2ds

 (7)

where D̃T = max(1, DT ). Hence the system (1) with delay
is also well-posed.

So we have proved the following Theorem 1.
Theorem 1. The system (1) is well-posed: For any (w0, w1,
ξ0) ∈ H and u ∈ L2

loc(0,∞; R) there exists a unique
solution to (1)+(6) such that (w(·, t), wt(·, t), ξ(·, t)) ∈
C(0,∞;H), and moreover, for any T > 0 there exists a
constant DT such that

‖(w(·, T ), wt(·, T ), ξ(·, T ))‖2 +
∫ T

0

|y(t)|2dt

≤ DT

[
‖(w0, w1, ξ0)‖2 +

∫ T

0

|u(t)|2dt

]
.

(8)
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3. EXACT OBSERVABILITY AND EXACT
CONTROLLABILITY

In this section we consider the exact observability of the
dynamical system with delay:

wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = wx(1, t) = 0, t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,
y(t) = wt(1, t− τ), t > 0.

(9)

To complete the description of (9) we have to add to it the
state equation with an initial condition

ξ(s, t) = wt(1, t− s), 0 < s < τ, t > 0,
ξ(s, 0) = ξ0(s), 0 < s < τ.

(10)

We will study the exact observability and the exact con-
trollability of (9)+(10) on the state space H. Let us begin
by the exact observability.

3.1 Exact observability

Define the energy function for the system (9) by

E(t) =
1
2

∫ 1

0

[|wx(x, t)|2 + |wt(x, t)|2]dx.

Then E(t) = E(0) for any t ≥ 0. On the other hand, define

ρ(t) =
∫ 1

0

xwx(x, t)wt(x, t)dx.

Then |ρ(t)| ≤ E(t) for any t ≥ 0. Notice that

ρ̇(t) =
1
2
|wt(1, t)|2 − E(t).

We have

(T − 2)E(0) ≤ 1
2

∫ T

0

|wt(1, t)|2dt ≤ (T + 2)E(0). (11)

As a consequence the system (9) without delay is exactly
observable on each interval [0,T] with T > 2. T = 2 is the
minimal time needed for the propagation of all the wave to
be observed on the only boundary x = 1. The question is
to know if the dynamical system (9) with delay is exactly
observable. It is easy to see that the response is positive.

Indeed, from (11) we write for each T > 2 + τ

2(T − τ − 2)E(0) ≤
∫ T−τ

0

w2
t (1, t) dt ≤ 2(T − τ + 2)E(0).

(12)
Since∫ T

0

y2(t)dt =
∫ 0

−τ

w2
t (1, s)ds +

∫ T−τ

0

w2
t (1, s)ds,

by (12) we get easily

c1Ẽ(0) ≤
∫ T

0

y2(t) dt ≤ c2Ẽ(0),

where
c1 = min{2(T − τ − 2), 2}
c2 = max{2(T − τ + 2), 2}

2Ẽ(0) =
∫ 1

0

(w2
0(x) + w2

1(x))dx +
∫ 0

−τ

ξ2
0(s)ds.

We have proved the following result.
Theorem 2. The system (9) is exactly observable on each
interval [0, T ] with T > τ + 2.

3.2 Exact controllability

We consider the system on H with control
wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0, wx(1, t) = u(t), t > 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 < x < 1,
ξ(s, t) = wt(1, t− s), 0 < s < τ, t > 0,
ξ(s, 0) = ξ0(s), 0 < s < τ.

(13)

We will say that the system (13) is exactly controllable
on H if there exists a T > 0 such that for each couple of
states (w0, w1, ξ0) ∈ H and (wT

0 , wT
1 , ξT

0 ) ∈ H, a control
u ∈ L2(0, T ) can be found so that the solution of the
system satisfies{

w(·, 0) = w0

wt(·, 0) = w1

ξ(·, 0) = ξ0

and

 w(·, T ) = wT
0

wt(·, T ) = wT
1

ξ(·, T ) = ξT
0 .

(14)

It is well-known that the system (13) is exactly controllable
on H. For each couple (w0, w1), (wT

0 , wT
1 ) ∈ H we find

some u ∈ L2(0, T ) such that the conditions (14) are
satisfied (except the last one on ξ), as soon as T > 2.
Then we have the exact controllability on H for T > 2+τ .
Theorem 3. The system (13) is exactly controllable on
each interval [0, T ] with T > τ + 2.

Proof. Let T > τ +2. We consider the backward evolution
of the following system

ztt(x, t)− zxx(x, t) = 0, 0 < x < 1, T − τ < t < T,
z(0, t) = 0,
zt(1, t) = ξT

0 (T − t),
z(x, T ) = wT

0 (x), zt(x, T ) = wT
1 (x).

(15)
This way the system (14) is drived to the state (z(·, T −
τ), zt(·, T−τ)) ∈ H and we get a control signal u ∈ L2(T−
τ, T ) by defining u2(t) = zx(1, t) ∀ t ∈ (T − τ, T ), as the
system is well-posed as stated in Section 2. With this signal
u2 as control and (w(·, T − τ), wt(·, T − τ)) = (z(·, T −
τ), zt(·, T−τ)) as initial condition, we consider the forward
evolution of the same system but with a different boundary
condition{

wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, T − τ < t < T,
w(0, t) = 0,
wx(1, t) = u2(t).

(16)
Since the solution is unique, it has the same solution as
(15) and so ξ(s, T ) = wt(1, T − s) = ξT

0 (s) ∀ s ∈ (T −
τ, T ). Il rests only to find a control u1 ∈ L2(0, T − τ) such
that the solution of (13) verifies{

w(·, 0) = w0

wt(·, 0) = w1
and

{
w(·, T − τ) = z(·, T − τ)
wt(·, T − τ) = zt(·, T − τ).

(17)
This is possible because the system is exactly controllable
on H for any T > 2. Then the concatenation u(t) of the
two controls does the work, this is, drives the system (13)
from the initial condition to the final condition:

u(t) =
{

u1(t), t ∈ (0, T − τ);
u2(t), t ∈ (T − τ, T ).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8757



4. OBSERVER DESIGN

From the discussions in previous sections, we know that
the system (1) is well-posed and exactly observable. These
imply that the output belongs to L2

loc(0,∞) and could be
used to recover the state. Let us design an observer for the
system (1) (see Demetriou [2004] for other observers).

Now we proceed step by step. First, we construct the
observer for w(x, t− τ). Since z(x, t) = w(x, t− τ) satisfies

ztt(x, t)− zxx(x, t) = 0, 0 < x < 1, t > τ,
z(0, t) = 0,
zx(1, t) = u(t− τ),
z(x, τ) = w0(x), zt(x, τ) = w1(x), 0 < x < 1,
y(t) = z(1, t), t > τ,

(18)

we construct naturally an observer for (18) by the principle
of “copy of the plant and injection of the output”:

ŵtt(x, t)− ŵxx(x, t) = 0, 0 < x < 1, t > τ,
ŵ(0, t) = 0,
ŵx(1, t) = u(t− τ)− k1 [ŵt(1, t)− y(t)] , k1 > 0,
ŵ(x, τ) = ŵ0(x), ŵt(x, τ) = ŵ1(x), 0 < x < 1.

(19)
where (ŵ0, ŵ1) is an arbitrary initial state of the observer.
Let

ε(x, t) = ŵ(x, t)− z(x, t). (20)
Then ε satisfies

εtt(x, t)− εxx(x, t) = 0, 0 < x < 1, t ≥ τ,
ε(0, t) = 0,
εx(1, t) = −k1εt(1, t),
ε(x, τ) = ŵ0(x)− w0(x),
εt(x, τ) = ŵ1(x)− w1(x).

(21)

It is well-known that for any k1 > 0, the system (21) is
exponentially stable in H:

‖(ε(·, t), εt(·, t))‖ ≤ Me−ω(t−τ)‖(ε(·, τ), εt(·, τ))‖ (22)
for some positive constants M and ω and for every t ≥ τ .

In order to show that (19) is indeed an observer of the
system (18), we need to solve (19). This is a direct
consequence of Corollary 1 of Guo and Luo [2002] since
(19) can be written as
ŵtt(·, t) + Aŵ(·, t) + k1bb

∗ŵt(·, t) + b[u(t− τ) + k1y(t)] = 0
(23)

where A, b are defined in (4).
Proposition 4. The system (19) is well-posed: for any
(ŵ0, ŵ1) ∈ H, u ∈ L2

loc(0,∞), there exists a unique
solution to (19) such that (ŵ(·, t), ŵt(·, t)) ∈ C(τ,∞;H).
Moreover, for any T > τ , there exists a constant CT such
that

‖(ŵ(·, T ), ŵt(·, T ))‖2

≤ CT

[
‖(ŵ0, ŵ1)‖2 +

∫ T

τ

|y(t)|2dt +
∫ T−τ

0

|u(t)|2dt

]
.

Keep in mind that the closed-loop system (1) is exponen-
tially stable if u(t) = −k2wt(1, t), k2 > 0. However, the
variable wt(1, t) is not directly measurable, since there is a
delay τ in the output y(t) = wt(1, t−τ). Now the observer
(19) gives us the estimated state w(x, t − τ). In order to
get wt(1, t), we need to predict the values of w on [t−τ, t].
To do this, we consider ŵ(x, s, t) = w(x, t − τ + s) with
t ≥ τ and s ∈ [0, τ ].

By (1), ŵ(x, s, t) satisfies
ŵss(x, s, t)− ŵxx(x, s, t) = 0, 0 < x < 1,
ŵ(0, s, t) = 0, 0 ≤ s ≤ τ, t ≥ τ,
ŵx(1, s, t) = u(t− τ + s),
ŵ(x, 0, t) = ŵ(x, t), ŵs(x, 0, t) = ŵt(x, t),

(24)

where (ŵ(x, t), ŵt(x, t)) are determined by (19). Since (24)
can be written as

ŵss(·, s, t) + Aŵxx(·, s, t) + Bu(t− τ + s) = 0, (25)
As the same as (18) the system (24) is well-posed.

Proposition 5. The system (24) is well-posed: for any t ≥
τ , (w0, w1) ∈ H and u ∈ L2

loc(0,∞), there exists a unique
solution to (24) such that ŵ(·, s, t), ŵt(·, s, t)) ∈ C(0, τ ;H).
Moreover there exists a constant Ct such that

‖ŵ(·, s, t), ŵs(·, s, t))‖2 ≤ Ct

[
‖(w0, w1)‖2 +

∫ t

0

|u(t)|2dt

]
.

We finally get the estimated state variable by
w̃(x, t) = ŵ(x, τ, t), w̃t(x, t) = ŵs(x, τ, t), t ≥ τ. (26)

And we have exponential convergence of the observer.
Theorem 6. For any t ≥ τ , we have∥∥∥∥(w(·, t)− w̃(·, t)

wt(·, t)− w̃t(·, t)

)∥∥∥∥ ≤ Me−ω(t−τ)

∥∥∥∥(ŵ0 − w0

ŵ1 − w1

)∥∥∥∥ (27)

where (ŵ0, ŵ1) is the initial state of the observer (19),
(w0, w1) is the initial state of the original system (1), and
M,ω are constants in (22).

Proof. Let
ε(x, s, t) = ŵ(x, s, t)− w(x, t− τ + s). (28)

Then ε(x, s, t) satisfies
εss(x, s, t)− εxx(x, s, t) = 0,
ε(0, s, t) = 0, 0 ≤ s ≤ τ, t ≥ τ,
εx(1, s, t) = 0,
ε(x, 0, t) = ε(x, t)εs(x, 0, t) = εt(x, t)

(29)

which is a conservative system
‖(ε(·, τ, t), εs(·, τ, t))‖ = ‖(ε(·, t), εt(·, t))‖. (30)

This together with (21) and (22) gives (27).

5. STABILIZATION BY THE ESTIMATED STATE
FEEDBACK

Again the u(t) = −k2wt(1, t) stabilizes exponentially the
system (1). Now, by (26) and Theorem 6, we have the
estimated state w̃t(1, t) of wt(1, t). Naturally, we design
the estimated state feedback control law:

u∗(t) =
{
−k2ŵs(1, τ, t), t > τ,

0, t ∈ [0, τ ], (31)

under which, the closed-loop system becomes a system of
partial differential equations (32)-(34):

wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = 0,
wx(1, t) = u∗(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x),

(32)


ŵtt(x, t)− ŵxx(x, t) = 0, 0 < x < 1, t ≥ τ,
ŵ(0, t) = 0,
ŵx(1, t) = −k2u

∗(t− τ)− k1 [ŵt(1, t)− y(t)] ,
ŵ(x, τ) = ŵ0(x), ŵt(x, τ) = ŵ1(x)

(33)
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
ŵss(x, s, t)− ŵxx(x, s, t) = 0, 0 < s < τ, t ≥ τ,
ŵ(0, s, t) = 0,
ŵx(1, s, t) = −k2u

∗(t− τ + s),
ŵ(x, 0, t) = ŵ(x, t), ŵs(x, 0, t) = ŵt(x, t).

(34)

We consider the closed-loop system (32)-(34) in the state
space X = H×H×H. The system (32)-(34) is equivalent
to (35)-(37) for t ≥ τ :{

wtt(x, t)− wxx(x, t) = 0, 0 < x < 1, t ≥ τ,
w(0, t) = 0,
wx(1, t) = −k2wt(1, t)− k2εs(1, τ, t),

(35)


εtt(x, t)− εxx(x, t) = 0, 0 < x < 1, t ≥ τ,
ε(0, t) = 0,
εx(1, t) = −k1εt(1, t),
ε(x, τ) = ŵ0(x)− w0(x),
εt(x, τ) = ŵ1(x)− w1(x)

(36)


εss(x, s, t)− εxx(x, s, t) = 0, 0 < s < τ, t ≥ τ,
ε(0, s, t) = 0,
εx(1, s, t) = 0,
ε(x, 0, t) = ε(x, t), εs(x, 0, t) = εt(x, t).

(37)

Theorem 7. Let k1 >, k2 > 0 and t ≥ τ . Then for any
(w0, w1) ∈ H, (ŵ0, ŵ1) ∈ H, there exists a unique so-
lution to system (35)-(37) such that (w(·, t), wt(·, t)) ∈
C(τ,∞;H), (ε(·, t), εt(·, t)) ∈ C(τ,∞;H), (ε(·, s, t), εs(·, s, t))
∈ C([0, τ ] × (τ,∞);H) and for any t ≥ τ , there exists a
constant Ct > 0 such that∥∥∥∥(

w(·, t)
wt(·, t)

)∥∥∥∥ +
∥∥∥∥(

ε(·, t)
εt(·, t)

)∥∥∥∥ +
∥∥∥∥(

ε(·, s, t)
εs(·, s, t)

)∥∥∥∥
≤ Ct

[∥∥∥∥(
w0

w1

)∥∥∥∥ +
∥∥∥∥(

ŵ0

ŵ1)

)∥∥∥∥]
.

Proof. Only some essential ideas are given to outline the
proof. First, it is well-known that for any (w0, w1) ∈
H, (ŵ0, ŵ1) ∈ H, there is a unique C0-semigroup solution
(ε(·, t), εt(·, t)) ∈ C(τ,∞;H) to (36) such that (22) holds
true. Next, for any given time t > τ , since (37) is a
classical one-dimensional wave equation in (x, s), for any
(ε(·, t), εt(·, t)) ∈ H that is guaranteed by (36), there exists
a unique solution to (37) such that
‖(ε(·, s, t), εs(·, s, t))‖ = ‖(ε(·, t), εt(·, t))‖, ∀ s ∈ [0, τ ].

(38)
Hence (ε(·, s, t), εs(·, s, t)) ∈ C([0, τ ] × (τ,∞);H). Let us
now consider the following wave equation:

pξξ(x, ξ)− pxx(x, ξ) = 0, 0 < x < 1, ξ > t− τ,
p(0, ξ) = 0, ξ ≥ t− τ,
px(1, ξ) = 0, ξ ≥ t− τ,
p(x, t− τ) = ε(x, t), pξ(x, t− τ) = εt(x, t).

(39)

Then we have
ε(x, s, t) = p(x, t− τ + s), x ∈ [0, 1], s ∈ [0, τ ], t ≥ τ. (40)

Hence
εs(1, τ, ξ) = pξ(1, ξ), ∀ ξ ≥ t− τ. (41)

On the other hand, it follows from the right hand side
inequality of (11) that for any T > t− τ ,∫ T

t−τ

|εs(1, τ, ξ)|2dξ =
∫ T

t−τ

|pξ(1, ξ)|2dξ (42)

≤ 2(T − t + τ + 2)‖(ε(·, t), εt(·, t))‖2. (43)

In particular, setting t = 2τ leads to∫ T

τ

|εs(1, τ, t)|2dt ≤ (T−τ+2)‖(ε(·, 2τ), εt(·, 2τ))‖2. (44)

Thirdly, since (35) can be written as

wtt(·, t) + Aw(·, t) + k2bb
∗wt(·, t) + k2bεs(1, τ, t) = 0 (45)

which is well-posed as mentioned in previous section.
Hence for any t > τ , there exists a constants C̃t > 0 such
that

‖(w(·, t), wt(·, t)‖2 ≤ C̃t [‖(w(·, τ), wt(·, τ))‖ (46)

+
∫ t

τ

|εs(1, τ, ξ)|2dξ
]

(47)

= C̃t

[
‖(w0, w1)‖+

∫ t

τ

|εs(1, τ, ξ)|2dξ

]
. (48)

This together with (38), (44) and (22) gives the required
result.

The wave equation system with time delay is exponentially
stabilized by the boundary output feedback law which is
constituted of a stabilizing static state feedback and a
converging observer.
Theorem 8. Let k1 > 0 and k2 > 0. Then there are some
positive constants M > 0 and ω > 0 such that, for
every initial conditions (w0, w1) ∈ H and (ẑ0, ẑ1) ∈ H,
the solution of (32)-(34) for the closed-loop system decays
exponentially to zero in function of time t, with t > τ and
0 < s < τ :∥∥∥∥(

w(·, t)
wt(·, t)

)∥∥∥∥
H

+
∥∥∥∥(

ŵ(·, t)
ŵt(·, t)

)∥∥∥∥
H

+
∥∥∥∥(

ŵ(·, s, t)
ŵs(·, s, t)

)∥∥∥∥
H

≤ Me−ω(t−τ)

[∥∥∥∥(
w0

w1

)∥∥∥∥
H

+
∥∥∥∥(

ŵ0

ŵ1

)∥∥∥∥
H

]
. (49)

Proof. We give only some essential ideas. We prove first
exponential convergence of the error (ẑ(x, t) − w(x, t −
τ), ẑt(x, t) − wt(x, t − τ)) to zero in H. It is obvious
from (36). Let the initial condition be sufficiently smooth.
We prove, by some elaborated computations, that the
time function εs(1, τ, t) = (ŵξ(1, τ, t) − wt(1, t)) is square
summable. From (35) it implies that the state variable
(w(., t), wt(., t)) is square-summable in H, or it is in
L2(R+,H). Actually it decays exponentially to zero as
function of time t. We have used several facts. In par-
ticular we have exponential stability of the underlying
semigroups; we have the concatenation properties of the
semigroups and the observation function εs(1, τ, t) with
respect to the initial conditions. Due to the page limita-
tion, we omit the detailed computation.

We could modify K1 > 0 and K2 > 0 to adjust the decay
rate of the solution for the closed-loop system.

In our future work the design of observers and stabilizing
output feedback laws will be carried out for the wave
equation with time delay via the approach of transfer
functions and compared with the results of the present
paper. Another interesting question is to what extent the
stabilization feedback proposed in the paper is robust with
respect to variations in the time-delay.
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