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Abstract: In this paper, adaptive variable structure neural control is investigated for a class of
SISO nonlinear systems in a Brunovsky form with state time-varying delays and unknown
hysteresis input. The unknown time-varying delay uncertainties are compensated for using
appropriate Lyapunov-Krasovskii functionals in the design. The effect of the unknown hysteresis
with the Prandtl-Ishlinskii model is mitigated using the proposed adaptive control. By utilizing
the integral-type Lyapunov function, the closed-loop control system is proved to be semi-globally
uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the approach.
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1. INTRODUCTION

In recent years, control of nonlinear systems preceded by
unknown hysteresis nonlinearities has received a great deal
of attention, since the hysteresis nonlinearities are common
in many industrial processes. Control of a system with
hysteresis nonlinearities is challenging, because they are
non-differentiable nonlinearities and severely limit system
performance such as giving rise to undesirable inaccu-
racy or oscillations, even leading to instability (Tao and
Kokotovic, 1995). Due to the nonsmooth characteristics
of hysteresis nonlinearities, traditional control methods
are insufficient in dealing with the effects of unknown
hysteresis. Therefore, the advanced control techniques to
mitigate the effects of hysteresis has been called upon and
has been studied for decades.

The most common approach is to construct an inverse
operator to cancel the effects of the hysteresis in (Tao
and Kokotovic, 1995) and (Tan and Baras, 2004). How-
ever, it is a challenging work to construct the inverse
operator for the hysteresis, due to the complexity and
uncertainty of hysteresis. As an alternative, approaches
combining the hysteresis model with the control technique
without constructing an inverse model have also been
developed. In (Su et al., 2000), robust adaptive control was
investigated for a class of nonlinear system with unknown
backlash-like hysteresis, for which, adaptive backstepping
control was designed in (Zhou et al., 2004). Most of the
above works are discussing about backlash-like hystere-
sis. Actually for the backlash-like hysteresis, it can be
written as a linear-in-input term plus a bounded term,
which can be compensated for using the standard robust
adaptive control design. However, backlash-like hysteresis
only can represents certain type of hysteresis nonlinearity.
⋆ This work is partially supported by A*STAR SERC Singapore
(Grant No. 052 101 0097).

Hysteresis is a very complex phenomenon and there exist
many hysteresis models in the literature. Interested read-
ers can refer to (Macki et al., 1993) for a review of the
hysteresis models. Some of them are more complex than
the backlash-like one, such as Prandtl-Ishlinskii model,
but they can capture the hysteresis phenomenon more
accurately. In (Su et al., 2005) and (Wang and Su, 2006),
adaptive variable structure control and adaptive backstep-
ping methods were proposed for a class of continuous-
time nonlinear dynamic systems preceded by a hysteresis
nonlinearity with the Prandtl-Ishlinskii model represen-
tation respectively. However, the nonlinear functions in
these works were assumed to be known, which limited the
applications of the proposed control. In this paper, to deal
with the presence of function uncertainties, approxima-
tion based techniques using neural networks is proposed,
since the neural networks has the universal approximation
capabilities, learning and adaptation, parallel distributed
structures (Narendra and Parthasarathy, 1990), (Lewis et
al., 1999), and (Ge et al., 2002).

Time-delay is frequently encountered in the models of en-
gineering systems, natural phenomena, and biological sys-
tems. The existence of time-delays in a system frequently
becomes a source of instability, and may degrade the
control performance. Therefore, a number of different ap-
proaches have been proposed in order to stabilize such sys-
tems with time-delays (Nguang, 2000), (Niculescu, 2001),
(Richard, 2003),(Ge et al., 2003) and (Ge and Tee, 2007).
Motivated by (Ge et al., 2003), where adaptive neural con-
trols were firstly presented for classes of nonlinear systems
with unknown constant time delays, we consider a class
of uncertain SISO nonlinear systems with unknown time-
varying delays and hysteresis nonlinearities in this paper.
The main contributions of the paper lie in:
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(i) the removal of the need for prior knowledge of func-
tional uncertainties with the use of neural network
approximation, compared with the works (Su et
al., 2005) and (Wang and Su, 2006);

(ii) the introduction of a continuous function in h(z),
through which the controller singularity problem is
avoided without designing practical controller like in
(Zhang and Ge, 2007) and (Ge et al., 2003), so that
the proof of Theorem is simplified as will be seen later;

(iii) the combination of Lyapunov-Krasovskii functional
and Young’s inequality in eliminating the unknown
time-varying delay τi(t) in the upper bounding func-
tion of the Lyapunov functional derivative, which
makes NN parametrization with known inputs pos-
sible.

The organization of this paper is as follows. The problem
formulation and preliminaries ar given in Section 2. In
Section 3, adaptive variable structure neural control is de-
veloped for a class of SISO time-varying delay systems with
hysteresis. Simulation studies are shown to demonstrate
the effectiveness of the approach in Section 4, followed by
conclusion in Section 5.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of uncertain SISO state time-varying
delay nonlinear systems in Brunovsky form with unknown
hysteresis in the following

ẋj = xj+1, j = 1, ..., n − 1

ẋn = f(x) + gτ (xτ ) + b(x)u + ∆(x, t)

xi(t) = φi(t), t ∈ [−τmax, 0], i = 1, ..., n

y = x1 (1)

where x = [x1, x2, ..., xn]T ∈ Rn is the state, xτ =
[x1(t − τ1(t)), ..., xn(t − τn(t))]T ∈ Rn is the delay state,
τ1(t), ..., τn(t) are unknown time-varying state delays,
φ1(t), ..., φn(t) are known continuous initial state vector
functions, τmax as will be defined later is a known constant,
y ∈ R denotes the output; f(x), gτ (xτ ) are unknown
continuous functions, b(x) is the unknown differentiable
control gains, ∆(x, t) is uncertain disturbance, u ∈ R is the
output of the hysteresis nonlinearity, which is represented
by the Prandtl-Ishlinskii model as follows

u(t) = p0v(t) − d[v](t) (2)

d[v](t) =

R
∫

0

p(r)Fr[v](t)dr (3)

Fr[v](0) = fr(v(0), 0)

Fr[v](t) = fr(v(t), Fr[v](tj)), for tj < t ≤ tj+1,

0 ≤ j ≤ N − 1

fr(v, w) = max(v − r,min(v + r, w))

with p0 =
∫ R

0
p(r)dr, p(r) is a given density function,

satisfying p(r) ≥ 0 with
∫ ∞

0
rp(r)dr < ∞, and Fr is known

as the play operator. Since p(r) vanishes for large values of
r, the choice of R = ∞ as the upper limit of integration in
the literature is just a matter of convenience. In addition,

the function v is monotone on each of the subintervals
(tj , tj+1], 0 ≤ j ≤ N − 1. See (Su et al., 2005) and (Wang
and Su, 2006) for the details.

Substituting (2) into (1), we obtain

ẋj = xj+1, j = 1, ..., n − 1

ẋn = f(x) + gτ (xτ ) + b(x)p0v − b(x)d[v](t) + ∆(x, t)

xi(t) = φi(t), t ∈ [−τmax, 0], i = 1, ..., n

y = x1 (4)

The control objective is to design an adaptive controller v
for system (4) such that the output y follows the specified
desired trajectory yd.

Define xd and e as

xd = [yd, ẏd, ..., y
(n−1)
d ]T

e = x − xd = [e1, e2, ..., en]T

and the filtered tracking error s as

s = (
d

dt
+ λ)n−1e1 =

n−1
∑

j=1

λjej + en (5)

where λj = Cj−1
n−1λ

n−j , j = 1, ..., n − 1, λ > 0, i = 1, ..., n
are positive constants, specified by the designer.

To facilitate control design later in Section 3, we need make
the following assumptions.

Assumption 1. The sign of b(x) is known, and there exist
constants b0 and b1 such that 0 ≤ b0 ≤ |b(x)| ≤ b1,
∀x ∈ Rn. Without loss of generality, we shall assume that
b(x) > 0, ∀x ∈ Rn. In addition, the constants b0 and b1

are used to handle the stability analysis only.

Assumption 2. The desired trajectory vector is continuous

and available, and [xT
d , y

(n)
d ]T ∈ Ωd ⊂ Rn+1 with Ωd known

compact set.

Assumption 3. There exist known nonnegative function
φ(x) and unknown positive constant ρ∗ such that |∆(x, t)|
≤ ρ∗φ(x), ∀x ∈ Rn and ∀t ≥ 0.

Assumption 4. The unknown continuous function gτ (x1(t−
τ1(t)), ..., xn(t − τn(t))) satisfies the inequality

|gτ (x1(t − τ1(t)), ..., xn(t − τn(t)))| ≤
n

∑

k=1

̺k(xk(t − τk(t)))

with ̺k(xk(t)) being known positive continuous functions,
i = 1, ..., n.

Assumption 5. The unknown state time-varying state de-
lays τi(t) satisfy the inequality

0 ≤ τi(t) ≤ τmax, τ̇i(t) ≤ τ̄max < 1, i = 1, ..., n

with the known constants τmax and τ̄max.

Assumption 6. There exist known constants p0min and
pmax, such that p0 > p0min, and p(r) ≤ pmax for all
r ∈ [0, R].

3. CONTROL DESIGN AND STABILITY ANALYSIS

From (4) and (5), we obtain
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ṡ = f(x) + gτ (xτ ) + b(x)p0v − b(x)d[v](t) + ∆(x, t) + ν

(6)

where ν =
∑n−1

j=1 λjej+1 − y
(n)
d .

Define the following integral Lyapunov function candidate,
which was firstly proposed in (Ge et al., 1999) to avoid
control singularity:

Vs =

s
∫

0

σ

b(ψ, σ + ν1)
dσ (7)

where ν1 = y
(n−1)
d −

∑n−1
j=1 λjej , and ψ = [x1, ..., xn−1]

T .
Then, Vs can be rewritten as the following form by using
Second Mean Value Theorem for Integrals in (Zhang and
Ge, 2007)

Vs =
s2

2b(ψ, λss + ν1)
, λs ∈ (0, 1)

Since 0 < b0 < b(x), it is shown that Vs is positive
definitive with respect to s. Differentiating Vs with respect
to time t, we obtain

V̇s =
s

b(x)
ṡ +

s
∫

0

σ
[∂b−1(ψ, σ + ν1)

∂ψ
ψ̇

]

dσ

+ν̇1

s
∫

0

σ
[∂b−1(ψ, σ + ν1)

∂ν1

]

dσ (8)

Because ∂b−1(ψ, σ + ν1)/∂ν1 = ∂b−1(ψ, σ + ν1)/∂σ and
ν̇1 = −ν, it is shown that

ν̇1

s
∫

0

σ
[∂b−1(ψ, σ + ν1)

∂ν1

]

dσ =− νs

b(x)
+

s
∫

0

ν

b(ψ, σ + ν1)
dσ

(9)

Substituting (6) and (9) into (8), we have

V̇s =
s

b(x)

[

f(x) + gτ (xτ ) + b(x)p0v − b(x)d[v](t) + ∆(x, t)

+ν
]

+

s
∫

0

σ
[

n−1
∑

k=1

∂b−1(ψ, σ + ν1)

∂xk

xk+1

]

dσ − νs

b(x)

+

s
∫

0

ν

b(ψ, σ + ν1)
dσ

≤ sQ(z) + s
[

p0v − d[v](t)
]

+
(n + φ2(x))s2

2b2(x)

+
1

2

n
∑

i=1

̺2
i (xi(t − τi(t))) +

ρ∗2

2
(10)

where

Q(z) =
f(x)

b(x)
+ s

1
∫

0

[

θ
n−1
∑

k=1

∂b−1(ψ, θs + ν1)

∂xk

xk+1

+
ν

b(ψ, θs + ν1)

]

dθ

with z = [xT , s, ν, ν1]
T ∈ Rn+3.

To overcome the design difficulties from the unknown time-
varying delays τ1(t), ..., τn(t), the following Lyapunov-
Krasovskii functional can be considered

VU (t) =
1

2(1 − τ̄max)

n
∑

i=1

t
∫

t−τi(t)

̺2
i (xi(τ))dτ (11)

Its time derivative is

V̇U (t) =
1

2(1 − τ̄max)

n
∑

i=1

[

̺2
i (xi(t)) − ̺2

i (xi(t − τi(t)))

(1 − τ̇i(t))
]

(12)

Combining (10) and (12), we obtain

V̇s + V̇U ≤ sh(z) + s
[

p0v − d[v](t)
]

+
ρ∗2

2

+
1

2(1 − τ̄max)

[

1 − s2

c2
s

]

n
∑

i=1

̺2
i (xi) (13)

where

h(z) = Q(z) +
(n + φ2(x))s

2b2(x)
+

s

2(1 − τ̄max)c2
s

n
∑

i=1

̺2
i (xi)

(14)

and cs is a positive design constant that can be chosen
arbitrarily small.

Remark 1. Due to the appearance of 1
z

in Q(z) or α∗

in (Ge et al., 2003), and the appearance of 1
s1

in h1(z1)

in (Zhang and Ge, 2007), practical robust controller
was constructed. However, in this paper, h(z) in (14)
does not contain 1

s
by introducing continuous function

s
2(1−τ̄max)c2

s

∑n
i=1 ̺2

i (xi). It is easy to know that if |s| > cs,

the final term of right hand side of (13) is less than zero;
if |s| ≤ cs, then it is bounded. Accordingly, (13) makes
the control design and stability analysis possible while
the controller cannot occur the singularity problem. This
approach can effectively simplify the proof of Theorem 1
without discussing many cases like (Ge et al., 2003) and
(Zhang and Ge, 2007) as will be seen later.

If we use RBFNN in (Ge et al., 2002), ŴT S(z), as the
approximation of the function h(z) (14) on the compact
set Ω, which will be defined later in Theorem 1, then we
have

h(z) = ŴT S(z) − W̃T S(z) + µl (15)

where the approximation error µl satisfies |µl| ≤ µ∗
l with

positive constant µ∗
l .

Consider the following control laws

v =−sgn(s)

p0min

[k0(t)|s| + |ŴT S(z)|] + vh (16)

vh(t) =−sgn(s)

p0min

R
∫

0

p̂(t, r)|Fr[v](t)|dr (17)

k0(t) = k1 + k2(t) +
1

2
(18)
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where k1 is any positive constant and k2(t) can be chosen
as

k2(t) =
k3

2(1 − τ̄max)s2

n
∑

i=1

t
∫

t−τmax

̺2
i (xi(τ))dτ (19)

with k3 a positive constant specified by the designer.

The adaptation laws are chosen as

˙̂
W = Γ[S(z)s − σŴ ] (20)

∂

∂t
p̂(t, r) =

{

0, if p̂(t, r) ≥ pmax

η|s||Fr[u](t)|, if 0 ≤ p̂(t, r) < pmax

(21)

with Γ > 0, σ and η are strictly positive constants.

Theorem 1. Consider the closed-loop system consisting of
the plant (4), the control laws (16) (17) and adaptation
laws (20) (21). Under Assumptions 1-6, for bounded initial
conditions, the overall closed-loop neural control system is
semi-globally stable in the sense that all of the signals
in the closed-loop system are bounded, the parameter
estimates

Ŵ ∈ Ωw =
{

Ŵ |‖W̃‖ ≤
√

2µ

λmin(Γ−1)

}

and ∀x(0) ∈ Ω0 (as will be defined later in the proof), the
state vector

x ∈ Ωc =
{

x| ‖x − xd‖ ≤ c0(1 + ‖Λ‖)‖ω(0)‖

+[1 +
(1 + ‖Λ‖)c0

λ
]
√

2b1µ, xd ∈ Ωd

}

⊂ Ω

proof: The proof includes two steps. We shall first assume
that x ∈ Ω, ∀t ≥ 0, on which NN approximation (15) is
valid, and construct adaptive NN control over Ω. Then, we
shall show that there exists nonempty initial set Ω0 such
that the state x indeed remains in the compact set Ω for
all t ≥ 0 if initial state x(0) initiates from Ω0.

Step 1: Suppose that x ∈ Ω, ∀t ≥ 0, then NN approx-
imation (15) is valid. Consider the following Lyapunov
function candidate

V (t) = Vs(t) + VU (t) +
1

2
W̃T Γ−1W̃ +

1

2η

R
∫

0

p̃2(t, r)dr

Differentiating V (t) with respect to time t and using (13),
(15), (16) and (20) lead to

V̇ (t)≤ s[ŴT S(z) − W̃T S(z) + µl] +
ρ∗2

2

+s
[

p0

(

− sgn(s)

p0min

[k0(t)|s| + |ŴT S(z)|] + vh

)

−d[v](t)
]

+
1

2(1 − τ̄max)

[

1 − s2

c2
s

]

n
∑

i=1

̺2
i (xi)

+W̃T [S(z)s − σŴ ] +
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr

≤−k1s
2 − k3VU +

µ∗2
l + ρ∗2

2
− σW̃T Ŵ

+
1

2(1 − τ̄max)

[

1 − s2

c2
s

]

n
∑

i=1

̺2
i (xi) + s

[

p0vh −

R
∫

0

p(r)Fr[v](t)dr
]

+
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr (22)

For the fourth term in (22), by completion of squares, we
have

−σW̃T Ŵ ≤ −σ

2
‖W̃‖2 +

σ

2
‖W ∗‖2 (23)

For the fifth term in (22), if |s| > cs, then it is less than
zero; if |s| ≤ cs, then it is bounded. Therefore, we have

1

2(1 − τ̄max)

[

1 − s2

c2
s

]

n
∑

i=1

̺2
i (xi) ≤

1

2(1 − τ̄max)
̺max(24)

where ̺max = maxx∈Ωcs

∑n
i=1 ̺2

i (xi).

For the last two terms in (22), using vh in (17), we have

s
[

p0vh −
R

∫

0

p(r)Fr[v](t)dr
]

+
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr

≤−|s|
R

∫

0

p̃(t, r)|Fr[v](t)|dr +
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr (25)

Case(i): When r ∈ Rmax = {r : p̂(t, r) ≥ pmax}, and
Rmax ⊂ [0, R], according to (21), we have

p̃(t, r)≥ 0 (26)

Proj(p̂(t, r), η|s||Fr[u](t)|) = 0 (27)

Substituting (26) and (27) into (25), we obtain

s
[

p0vh −
R

∫

0

p(r)Fr[v](t)dr
]

+
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr ≤ 0

Case (ii): When r ∈ Rc
max, which is the complement set of

Rmax in [0, R], i.e., 0 ≤ p̂(t, r) < pmax, according to (21),
we have

Proj(p̂(t, r), η|s||Fr[u](t)|) = η|s||Fr[u](t)| (28)

Substituting (28) into (25), we obtain

s
[

p0vh −
R

∫

0

p(r)Fr[v](t)dr
]

+
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr

≤−|s|
R

∫

0

p̃(t, r)|Fr[v](t)|dr + |s|
R

∫

0

p̃(t, r)|Fr[u](t)|dr = 0

Combining Case (i) with Case (ii), we have

s
[

p0vh −
R

∫

0

p(r)Fr[v](t)dr
]

+
1

η

R
∫

0

p̃(t, r)
∂

∂t
p̂(t, r)dr

≤ 0 (29)

Substituting (23), (24) and (29) into (22), we have
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V̇ (t)≤−k1s
2 − k3VU − σ

2
‖W̃‖2 +

σ

2
‖W ∗‖2 +

µ2
0 + ρ∗2

2

+
1

2(1 − τ̄max)
̺max (30)

From Assumption 6 and the adaptation law (21), we know
the boundedness of |p̃(t, r)| ≤ pmax, which leads to the

boundedness of 1
2η

∫ R

0
p̃2(t, r)dr. Adding and subtracting

the term 1
2η

∫ R

0
p̃2(t, r)dr on the right hand side of (30),

we have

V̇ (t)≤−k1s
2 − k3VU − σ

2
‖W̃‖2 − 1

2η

R
∫

0

p̃2(t, r)dr

+
σ

2
‖W ∗‖2 +

µ2
0 + ρ∗2

2
+

1

2(1 − τ̄max)
̺max

+
1

2η

R
∫

0

p̃2(t, r)dr

≤−λ10V (t) + µ10 (31)

where constants λ10 and µ10 are defined as follows

λ10 = min{2k1b0, k3,
σ

λmax(Γ−1)
, 1}

µ10 =
σ

2
‖W ∗‖2 +

µ2
0 + ρ∗2

2
+

1

2(1 − τ̄max)
̺max

+
1

2η

R
∫

0

p̃2(t, r)dr (32)

Multiplying (31) by eλ10t and integrating over [0, t], we
have

0 ≤ V (t) ≤ µ10

λ10
+ [V (0) − µ10

λ10
]e−λ10t ≤ µ (33)

where µ = µ10

λ10
+V (0). Therefore, ‖W̃‖ ≤

√

2µ/λmin(Γ−1)

and |s| ≤
√

2b1V (t) ≤
√

2b1µ .

Define ω = [e1, ..., en−1]
T ∈ Rn−1. From (5), we know

that (i) there is a state space representation for mapping
s = [ΛT 1]e, i.e., ω̇ = Asω + bss with Λ = [λ1, ..., λn−1]

T ,
bs = [0, ..., 0, 1]T , As being a stable matrix; (ii) there is a
positive constant c10 such that ‖eAst‖ ≤ c10e

−λt, and (iii)
the solution of ω is

ω(t) = eAstω(0) +

t
∫

0

eAs(t−τ)bss(τ)dτ

Accordingly, it follows that

‖ω(t)‖ ≤ c10‖ω(0)‖e−λt + c10

t
∫

0

e−λ(t−τ)|s(τ)|dτ

≤ c10‖ω(0)‖ +
c10

√
2b1µ

λ
(34)

Noting s = ΛT ω + en and e = [ωT , en]T , we have

‖e‖ ≤ ‖ω‖ + |en| ≤ (1 + ‖Λ‖)‖ω‖ + |s|
Substituting (34) into the above inequality leads to

‖e‖ ≤ c10(1 + ‖Λ‖)‖ω(0)‖ + [1 +
(1 + ‖Λ‖)c10

λ
]
√

2b1µ

Since c10, ‖Λ‖ and λ are positive constants, and ω(0) and
s(0) depend on x(0)−xd(0), we conclude that there exists

a positive constant R(τmax, c, x(0), W̃ (0)) depending on

τmax, c, x(0) and W̃ (0) such that

‖e‖ ≤ R(τmax, c, x(0), W̃ (0)), ∀t ≥ 0

where c = µ10

λ10
, and R(τmax, c, x(0), W̃ (0)) = c10(1 +

‖Λ‖)‖ω(0)‖ + [1 + (1+‖Λ‖)c10

λ
]
√

2b1µ.

Noting x = e + xd and Assumption 2, we obtain

‖x‖ ≤ ‖e‖ + ‖xd‖ ≤ c10(1 + ‖Λ‖)‖ω(0)‖

+[1 +
(1 + ‖Λ‖)c10

λ
]
√

2b1µ + ‖xd‖ ∈ L∞

Therefore, we can conclude that all the closed-loop sig-
nals are semi-globally uniformly ultimately bounded for
bounded initial conditions.

Step 2: In the following, we shall find the conditions such
that x ∈ Ω, ∀t ≥ 0. Firstly, define a set

Ω0 =
{

x(0)|{x|‖x − xd‖ < R(0, 0, x(0), 0, 0)} ⊂ Ω,

xd ∈ Ωd

}

which is not empty. It is easy to see that for all x(0) ∈ Ω0

and xd ∈ Ωd, we have x ∈ Ω, ∀t ≥ 0. Then, for the system
with x(0) ∈ Ω0, bounded Ŵ (0) and xd ∈ Ωd, the following
constants c∗ and τ∗

max can be determined by

c∗ = sup
c∈R+

{

c|{x|‖x − xd‖ < R(0, c, x(0), W̃ (0))} ⊂ Ω,

xd ∈ Ωd

}

τ∗
max = sup

τmax∈R+

{

τmax|{x|‖x − xd‖ ≤ R(τmax, c, x(0),

W̃ (0)), c ≤ c∗} ⊂ Ω, xd ∈ Ωd

}

From (32), we know that if the adaptive control parameter
σ is chosen to be sufficiently small and k1, k3, and λmin(Γ)
are taken to be sufficiently large, then the constant c = µ10

λ10

can be made arbitrary small. Therefore, for the initial
condition x(0) ∈ Ω0, bounded Ŵ and xd ∈ Ωd, if the
adaptive control parameters are appropriately chosen such
that µ10

λ10
≤ c∗, and the upper bound τmax of time-varying

delay τ1(t), ..., τn(t) satisfies τmax ≤ τ∗
max, then system

state x indeed stays in Ω for all time. This completes the
proof.

4. SIMULATION STUDIES

To demonstrate the effectiveness of the proposed approach,
we consider the following first-order nonlinear system:

ẋ =
1 − e−x

1 + e−x
+ 0.1x(t − τ(t)) + u + 0.2 sin(x)

y = x

where u = p0v −
∫ R

0
p(r)Fr[v](t)dr, τ(t) = 1 − 0.5 cos(t),

τmax = 2, τ̄max = 0.6; p(r) = 0.35e−0.003(r−1)2 for
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r ∈ [0, 100]. Our objective is to design v such that the
output y will follow the desired trajectory yd = sin(2t) +
0.1cos(6.7t). For RBFNN, we consider the centers for S(z)
to be evenly spaced in a regular lattice in R4. Employing
four nodes for each input dimension, we end up with
44 = 256 nodes for the network ŴT S(z). The following
initial conditions and controller design parameters are
adopted in the simulation: pmax = 0.35, p0 min = 0.35,
p̂(0, r) = 0, x(0) = 0.5, v(0) = 0, Γ = diag{1.0}, σ = 0.1

and Ŵ (0) = 0.

The simulation results are shown in Figs 1 and 2. We can
observe the good tracking performance and the bounded-
ness of the control signal.

5. CONCLUSION

Adaptive variable structure neural control has been pro-
posed for a class of uncertain SISO nonlinear systems with
unknown state time-varying delays and hysteresis non-
linearities. The uncertainties from unknown time-varying
delays have been compensated for through the use of ap-
propriate Lyapunov-Krasovskii functionals. The controller
has been made to be free from singularity problem by uti-
lizing integral Lyapunov function. Based on the principle
of sliding mode control, the developed controller can guar-
antee that all signals involved are semi-globally uniformly
ultimately bounded. Simulation results have verified the
effectiveness of the proposed approach.
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Fig. 1. Output tracking error y − yd
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Fig. 2. Control input v(t)
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