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Abstract: This paper proposes a nonlinear model predictive control scheme with particular application to 
the regulation of acetate concentration in order to maximize the biomass growth during fed-batch cultures 
of E. Coli. A reference feed rate which enables to maintain the acetate concentration at a specified level is 
first determined by means of optimal conditions. This feed rate is further used as the reference control 
trajectory within the NMPC algorithm. Finally, to avoid discretization problems during NMPC application, 
the on-line optimization is moved into a nonlinear programming strategy using the control vector 
parameterization approach (CVP). Some simulation results obtained on a fed-batch E. Coli bioreactor 
validate the efficiency of the proposed control strategy. 

 

1. INTRODUCTION 

The bacterium Escherichia coli represents the universal cell-
factory for the fermentative production of bio-
pharmaceuticals. Several valuable products such as 
recombinant proteins, antibiotics and amino acids are today 
commercially produced using fermentation techniques and 
there is an enormous economic incentive to optimize such 
processes. However, in industry, the control of bioreactors is 
most often limited to basic pH, temperature and partial 
pressure of dissolved oxygen and dissolved carbon dioxide 
regulations (Diaz et al., 1996). There is, however, no doubt 
that computer control of the biochemical state variables can 
help increasing the process performance significantly. In this 
way, (Jenzsch et al., 2005) proposed a generic model control 
of the specific growth rate in recombinant E. Coli 
cultivations. Another approach is concerned with the control 
of acetate concentration using model-based adaptive 
linearizing control by reducing the model (Bastin et al., 1990, 
Rocha, 2003). Other structures exist which apply linear 
predictive control to a linearized model, combining 
robustification features to deal with system nonlinearities and 
disturbances (Renard et al., 2006). 

In this direction, this paper proposes a nonlinear model 
predictive control structure which aims at maximizing the 
biomass productivity of cultures of E. Coli through acetate 
concentration control, by manipulating the feed rate. Indeed, 
the presence of acetate affects the productivity; the growth of 
biomass being inhibited when acetate is present at high 
concentrations. The developed NMPC law includes on the 
one hand a reference to be followed by the acetate 
concentration and on the other hand a reference trajectory for 
the control signal, so called optimal reference feed rate. This 
original model reference NMPC appears to be a powerful 
strategy managing the difficulty of the related non-linear 
problems. Furthermore, complexity of on-line optimization 
related to NMPC for this kind of process is avoided through 
control vector parameterization (CVP). 

The paper is organized as follows. Section 2 reminds the 
main steps leading to the elaboration of the dynamical model 
of E. Coli cultures. The theoretical background required to 
formulate the model reference NMPC structure is presented 
in Section 3, from the optimal reference feed rate design to 
the acetate concentration regulation constraining the feed rate 
to follow this optimal feed rate. This section also examines 
the CVP approach implemented in real time to decrease the 
complexity of the NMPC optimization. This control strategy 
is applied to fed-batch cultures of E. Coli in Section 4. Final-
ly, some conclusions and perspectives are given in Section 5. 

2. PROCESS MODELLING 

The growth of the bacteria E. Coli follows the bottleneck 
theory (Rocha, 2003; Hollywood et al., 1976; Gray et al., 
1966; Amarasingham et al., 1965; Xu et al., 1999; Luli et al., 
1990). Indeed, E. Coli has a limited respiratory capacity. 
Acetate is produced when glucose exceeds the respiratory 
capacity, which corresponds to the oxido-fermentative 
regime. Acetate is consumed when glucose is less than the 
respiratory capacity; which is the oxidative regime. When the 
quantity of glucose exactly fills the respiratory capacity, the 
system operates in optimal conditions. This case corresponds 
to the edge between the two regimes, when acetate is not 
produced nor consumed (Fig. 1). It will be seen in further 
developments that the aim of the control is to force the E. 
Coli culture to remain at the edge between these regimes. 
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Fig. 1. Schematic representation of the bottleneck theory. 
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Following the previous scheme, the metabolism of E. Coli is 
described through three macroscopic reactions (Rocha, 2003; 
Galvanauskas et al., 1998; Cockshott et al., 1999): 

 Glucose oxidation: 

CkXOkSk r
851

1 +⎯→⎯+  (1) 

 Glucose fermentation:  

AkCkXOkSk r
3962

2 ++⎯→⎯+  (2) 

 Acetate oxidation:  

CkXOkAk r
1074

3 +⎯→⎯+  (3) 

where S , O , X , C  and A  represent glucose (substrate), 
oxygen, biomass, carbon dioxide and acetate respectively (in 
the sequel S , O , X , C  and A  will represent 
concentrations). ik  are the stoichiometric coefficients. jr  are 
the growth rates. Reactions (1) and (3) describe the oxidative 
regime, reactions (1) and (2) the oxido-fermentative regime. 
The relationship between the growth rates and the specific 
growth rate jµ , which depends on the operating regimes 
(Table 1), is as follows (Bernard, 2002): 

Xr jj µ=  (4) 

Table 1.  Specific growth rates depending on the regimes 

Specific 
growth rate 

Oxido-
fermentative 

regime 

Oxidative 
regime 

1µ  
1

,

k
q critS  

1k
qS  

2µ  
2

, )(
k
qq critSS −

 0  

3µ  0  
4k

q AC  

 

Based on the previous reaction scheme, mass balances yield 
the following dynamic model (Bastin et al., 1990): 
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where W  is the culture medium weight (kg), inF  is the 
influent flow-rate (kg/h), inS  is the influent glucose 
concentration (g/kg), OTR  is the oxygen transfer rate from 
gas to liquid phase, CTR  the carbon dioxide transfer rate 
from liquid to gas phase. 

Considering the bottleneck assumption, the kinetic terms 
associated with the glucose consumption Sq , the critical 

glucose specific uptake rate critSq ,  and the specific acetate 
uptake rate ACq  are expressed by the relations: 

SK
Sqq

S
SS +

= max  (6) 

AK
K

k

q
q

Oi

Oi

OS

O
critS +

=
,

,max  (7) 

AK
K

AK
Aqq

Ai

Ai

A
ACAC ++

=
,

,
max  (8) 

where maxSq , maxOq  and maxACq  are the maximum 
specific growth rates, SK  and AK  are the saturation 
constants of substrate (glucose) and acetate respectively, OSk  
is the oxygen yield related to glucose, OiK ,  and AiK ,  are the 
inhibition constants related to oxygen uptake and acetate 
uptake respectively. Sq  follows a Monod law and ACq  a 
Monod law multiplied by an inhibition factor, which are both 
classically used by biologists to characterize the behaviour of 
uptake rates. 

Finally, since oxygen is always regulated to induce no 
influence on the growth of bacteria, the dynamic model (5) 
can be formulated in a compact form, reduced to four 
differential equations, considered as the control model used 
during the NMPC synthesis: 

X
W
F

Xr
dt
dX in

X −=  (9) 

)( SS
W
FXq

dt
dS

in
in

S −−−=  (10) 

A
W
FXr

dt
dA in

A −=  (11) 

inF
dt

dW
=  (12) 

denoted as ))(),(()( tFtxftx in=&  in further developments 
with T][ WASXx = . Xr  and Ar  in (9) and (11) 
depend on the operating regime and are given in Table 2. 

Table 2.  Expressions of Xr  and Ar  

Growth 
rates 

Oxido-fermentative 
regime 

Oxidative 
regime 

Xr  
1

,

2

, )(
k

q
k
qq critScritSS +

−
 

41 k
q

k
q ACS +  

Ar  
2

,
3

)(
k
qq

k critSS −
 ACq−  

3. NMPC APPLIED TO E. COLI BIOREACTOR 

As mentioned in Section 2, the aim is to regulate the acetate 
concentration at zero, when the acetate is not produced nor 
consumed, that is at the border of the two regimes describing 
the optimal conditions. However, due to sensitivity problems 
of sensors in a too close neighbourhood of zero, it appears to 
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be much more realistic to regulate the acetate concentration at 
a reference value close to zero, but not zero. Based on the 
simplified model (9), (10), (11), (12) developed in Section 2, 
the following approach considers model reference NMPC 
formulation for acetate concentration regulation. 

3.1. Problem formulation 

The objective is to regulate acetate concentration A  to a 
reference value setA  close to zero while constraining the 
substrate feed rate inF  to track a specified feed rate profile 

refF  which will be determined later. The formulation of the 
model reference optimization problem without terminal 
constraints is as follows (Mayne et al., 2000): 

∑∑
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j
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j
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2
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where { }1 1,..., , ,...,k k N ink ink NA A F Fχ + + + −=  is the optimization 
vector, N is the prediction horizon (which is here assumed to 
equal the control horizon), Â  is the predicted output, x̂  is 
the predicted state vector, λ  is the control weighting factor 
and [ ]0100=H . 

Among the whole sequence resulting from the on-line 
optimization of (13) under nonlinear constraints (14), only 
the first optimal control is applied as input to the system. At 
the next sampling time, the current state is obtained and the 
optimization problem (13)-(14) is solved again with the new 
initial state value, according to the well-known receding 
horizon principle.  

However, two major problems result when solving this 
optimization problem (13)-(14): This formulation requires 
discretization of the system with a small sampling time, so 
that the discretized model remains significant compared to 
the continuous one. This leads to a sampling time much too 
short compared to the time response of the system and the 
nonlinear constraints increase the on-line computation time of 
the optimization phase. However the most important 
drawback is that it may also induce unfeasibility problems. 

3.2. Optimization through Control Vector Parameterization 

In order to avoid these two problems, the formulation (13)-
(14) is moved into a nonlinear programming problem (NLP) 
by time-discretizing the control actions )(tFin  over the 
prediction horizon, choosing an adequate sampling time 
much larger than the one which could have resulted from the 
classical discretization. Furthermore, a piecewise constant 
approximation of these control actions is considered for the 
continuous-time computation of the predicted state vector, 
thus without discretizing the state variables. This approach 

called Control Vector Parameterization (CVP) (Vassiliadis, 
1993) is classically considered also for chemical and 
biochemical processes (Schlegel et al., 2006; Balsa-Canto, 
2001). Using this approach, the formulation of the NMPC 
problem becomes: 

∑ ∑
= =

+
′ −+−++
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N

j

N

j
refinjkset jkjkjk

FFAA
1 1

22 )()ˆ(min
11

λ
χ

(15) 

s.t.  0≥inF  (16) 

where { }
11

,,,
−++

=′
Nkkk ininin FFF Kχ  is the new 

optimization vector. The number of constraints has been 
drastically decreased since the CVP technique implicitly 
considers model constraints when performing prediction of 
the state vector. Going one step further to avoid constraint 
(16), the variable in the optimization vector is moved to: 

)exp(vFin =  (17) 

leading to the following minimization problem without 
constraint anymore: 

∑ ∑
= =

−++
′′ −++

−+−
N

j

N

j
refjkjkset jkjk

FvAA
1 1

2
1

2 ))(exp()ˆ(min
1

λ
χ

(18) 

where { }11 ,, −++=′′ Nkkk vvv Kχ  is the final optimization 
vector. The overall structure of the developed NMPC strategy 
is summarized in Fig. 2. 

New control sequence 
over eTN  

ODE solution 
dynamic model 

over eT  H  
A

x  

ν,x  initialization at 
each sampling time eT  

State prediction over 
eTN  with CVP, 

dynamic model 
{ }NÂ  

{ }NsetA NMPC cost function 
calculation newJ  

on?Optimizati
End

 NO 

{ }
NoptinF  

YES 

Optimization 
phase 

System 
evolution 

Optimisation 
result )1(optinF

{ }
NrefF

 

Fig. 2. Overall structure of the NMPC&CVP strategy. 

3.3. Determination of the reference feed rate 

The objective is to maintain operating conditions to the 
optimal biological behaviour. In fact, as mentioned before 
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(Fig. 1), these conditions are satisfied if the system works at 
the edge between the two operating regimes; in this case, the 
acetate is not produced, leading to 2 0µ =  and thus: 

ScritS qq =  (19) 

and the acetate is not consumed, leading to 3 0µ =  and thus: 

0=ACq  (20) 

The optimal feed rate is thus defined for a unique pair of 
acetate and glucose concentrations, satisfying (19) and (20): 

critStStA == )(,0)(  (21) 

Condition (21) in (10) leads to 0≡S&  which provides the 
expression of the reference feed rate: 

critSSin

S
ref SS

tWtXq
tF

=−
=

)(
)()(

)(  (22) 

From the values in Table 2 and condition (21), it appears that 
Xr  in equation (9) is constant in the two operating regimes. 

In this case, solving the differential equations (9) and (12) 
gives the final expression of the reference feed rate: 

0,)(
)0()0(

)(
==−

=
ASS

tr

in

S
ref

crit

Xe
SS

WXq
tF  (23) 

The same approach can be applied to determine the optimal 
feed rate when the acetate concentration is assumed to be 
maintained at a value setA  close to zero. Indeed, in this 
general case, acetate must be produced leading the system to 
work in the oxido-fermentative regime. In order to maintain 
A  to setA , the operating regime cannot change, which 

implies, according to the bottleneck theory, that the substrate 
concentration will also be maintained at a constant value 

critS . Similarly to the previous case, the optimal feed rate is 
thus defined for a unique pair of acetate and glucose 
concentrations setAA =  and critSS = . Combining (10) and 
(11) when the derivatives are equal to zero, the expression of 

critS  results from the following equation: 

0)( =−−
=

S
AA

A
in q

A
rSS

ref

 (24) 

This yields to the general expression of the optimal feed rate: 

setcrit

X

AASS

tr

in

S
ref e

SS
WXq

tF
==−

=
,)(

)0()0(
)(  (25) 

4. SIMULATION RESULTS 

The proposed strategy (model reference NMPC including 
CVP and change of variable) is now implemented to the 
acetate concentration )(tA  regulation of the E. Coli 

bioreactor. Parameters and initial values considered for 
simulations are reported in Appendix A and B. The sample 
time eT  is chosen equal to 2 min. The prediction horizon and 
weighting factor are respectively equal to 10=N  and 1=λ . 
The proposed approach has been implemented in the 
Matlab™ environment, using the optimization LSQNONLIN 
routine under Matlab R2006a on a 3 Ghz PC with 512 Mo of 
ram. The chosen setpoint is g/kg5.0=setA . Mean 
computation time for each control value calculation is 2 s. 

Figures 3 to 8 show the evolution of the state and control 
variables over 20 hours (required time to complete the 
culture). The acetate regulation works well, which was the 
objective of the control strategy. Before min15=t , the 
system operates in the oxidative regime as shown in Fig. 8, 
trying to track the optimal feed rate. After min15=t , the 
feed rate recovers the optimal trajectory, the operating regime 
is maintained in the oxido-fermentative regime. 
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Fig. 3. Biomass concentration evolution over 20 hours. 
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Fig. 4. Substrate concentration evolution over 20 hours. 
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Fig. 5. Acetate concentration evolution over 20 hours. 
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Fig. 6. Feed rate and reference feed rate evolutions over 20 
hours. 

0 0.25 0.5 0.75 10.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

Fe
ed

 r
at

e 
[k

g/
h]

Time [h]

 

 

Fref
Fpred

 

Fig. 7. Feed rate and reference feed rate, zoom over one hour. 
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Fig. 8. Growth rates evolution over one hour. 

Figures 9 to 12 show the impact of a change of acetate 
concentration setpoint, occurring at time h10=t , over 
20 hours running with a zoom between 8 and 12 hours.  

Even if the change of acetate reference value is not realistic 
since the aim of the regulation is to track a value very close to 
zero, in fact this scenario shows the adequate tracking 
behaviour of the developed control strategy. According to 
equations (24) and (25), Figure 12 illustrates the fact that a 
unique pair of acetate and substrate define the optimal feed 
rate. Indeed, after the change of the acetate setpoint, the 
glucose concentration stabilizes at a lower value, inducing 
another exponential profile for the feed rate. 
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Fig. 9. Acetate concentration evolution over 20 hours. 
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Fig. 10. Substrate concentration evolution over 20 hours. 
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Fig. 11. Feed rate and reference feed rate evolutions over 20 
hours. 
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Fig. 12. Feed rate and reference feed rate, zoom between 8 h 
and 12 h. 
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5. CONCLUSIONS 

This paper proposes a model reference NMPC strategy to 
control the fed-batch E. Coli bioreactor main state variables 
and achieve regulation of the acetate concentration in order to 
maximize the biomass productivity. This structure introduces 
an optimal reference feed rate to be tracked by the bioreactor 
feed rate, forcing the system to remain at the edge between 
the two operating regimes. To avoid problems linked with the 
application of NMPC algorithms, on-line optimization is 
moved into a nonlinear programming problem through CVP, 
with only discretizing the control signal. One major 
advantage of the developed structure is that it can be 
extended to other types of cultures modelled under the 
general macroscopic mass-balance model. 

Further studies will consider robustness aspects of this 
control structure with respect to modelling errors or 
parameters uncertainties, and influence of NMPC tuning 
parameters. For that purpose, sensitivity functions will be 
analysed to highlight the most influential parameters. 
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Appendix A. PARAMETER VALUES 

Parameters Values Units 
1k  3.164 g/kg 

2k  25.22 g/kg 

3k  10.9 g/kg 

4k  6.382 g/kg 

maxSq  1.832 g/(kg.h) 

SK  0.1428 g/(kg.h) 

OSk  2.02 - 

maxOq  0.7218 g/(kg.h) 

OiK ,  6.952 g/(kg.h) 

maxACq  0.0967 g/(kg.h) 

AK  0.5236 g/(kg.h) 

AiK ,  5.85 g/(kg.h) 

Appendix B. INITIAL STATE VARIABLES VALUES 

Variables X S A W 
Values 5 0.03 0.55 3.17 
Units g/kg g/kg g/kg kg 
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