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Abstract: In this paper we propose a systematic methodology that integrates the three main
phases of the design of an industrial control system, namely, the identification phase, the tuning
of the (PID) controller and the design of a (noncausal) feedforward action. In particular, the
tuning of the controller is based on frequency loop shaping where the modelling uncertainty is
explicitly considered and the noncausal feedforward command input synthesis is performed by
applying a stable input-output inversion procedure. In this context, a parameter that allows to
handle the trade-off between aggressiveness and robustness (and control effort) is given to the
user. Simulation and experimental results show the effectiveness of the methodology.

1. INTRODUCTION

It is well-known that Proportional-Integral-Derivative
(PID) controllers are the most adopted controllers in in-
dustrial settings, because they are capable to provide a
satisfactory performance for a wide range of processes
despite their simplicity. Actually, many tuning rules have
been devised in the last sixty years in order to make their
application easier (O’Dwyer (2006)). Many tuning rules
are based on the assumption that a first-order-plus-dead-
time (FOPDT) model of the process is available (if the
process is self-regulating). Many techniques have been pro-
posed for estimating a FOPDT model of the process based
on a simple (open-loop or closed-loop) experiment. Each
of them has its pros and cons (Visioli (2006)) and therefore
it plays a major role in the overall control system design,
but in spite of this, the identification phase is usually not
related to the selected tuning rule (Leva (2005)). A notable
exception in this context is the methodology proposed
in (Grassi et al. (2001)), where a frequency loop-shaping
approach is exploited.
From another point of view, it is also recognized that the
performance of a PID control loop is determined also by
the suitable implementation of those functionalities that
have to (or can) be added to the basic PID control law in
order to deal with practical issues (Visioli (2006)). In this
context a particular attention has been paid by researchers
to the synthesis of a suitable feedforward control action in
order to improve the set-point following performance, es-
pecially when the tuning of the PID parameters is devoted
to the load disturbance rejection performance (see, for
example, (Wallen and Åström (2002); Visioli (2004))). In
particular, a noncausal approach has been proposed in (Pi-
azzi and Visioli (2006b)). It consists in applying a suitable
command signal to the closed-loop control system in order

⋆ This work was partially supported by MIUR scientific research

funds.

to achieve a desired transient response when the process
output is required to assume a new value. This command
signal is determined by means of a stable input-output
inversion procedure for which a closed-form solution has
been determined. The desired output transition time is em-
ployed as a parameter that handles the trade-off between
aggressiveness and robustness (and control effort), which is
desirable in practical cases in order to address the control
specifications of a given application. In any case, being a
feedforward approach, the inversion technique obviously
relies heavily on the accuracy of the estimated process
model. Although it has been shown that the noncausal ap-
proach is effective with different identification procedures
and different values of the PID parameters, in the current
literature the feedforward control design is independent
from the identification strategy and from the tuning of
the PID controller.
Thus, in this paper we present a methodology that in-
tegrates the identification technique, the design of the
PID feedback controller and the design of the non-
causal feedforward control action. In particular, a pre-
diction error/maximum likelihood method is applied to
input/output data collected by applying a generalized
binary noise (GBN) signal to the process, in order to
estimate a FOPDT model of the (self-regulating) process
and to estimate the uncertainty bound. Then, the PID
controller parameters are determined by frequency loop
shaping, where the target loop shape is determined in
order to achieve a high bandwidth of the system by guaran-
teeing at the same time the robust stability of the system.
Further, the target loop shape is selected in such a way
that the sensitivity function (namely, the effects of the
model uncertainty) is decreased as much as possible in a
wide range of (low) frequencies. Then, the command signal
to be applied to the closed-loop system is determined in
such a way that its frequency content is in that range,
thus increasing the effectiveness of its application (Devasia
(2002)).

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13324 10.3182/20080706-5-KR-1001.0528



e
d

yC P
rCommand

signal
generator

y

y
1

0

Fig. 1. The considered control scheme.

The paper is organized as follows. The overall methodology
(control architecture, identification technique, PID con-
troller tuning and feedforward control design) is explained
in Section 2. Simulation results are presented in Section 3.
Experimental results related to a level control problem are
shown in Section 4. Conclusions are given in Section 5.

2. METHODOLOGY

2.1 Control scheme

We consider the unity-feedback control loop shown in
Figure 1, where the process to be controlled (assumed to be
self-regulating) is modelled as a FOPDT transfer function,
i.e.:

P (s) =
K

Ts + 1
e−Ls. (1)

This is a typical choice in industrial practice, since this
model can describe well the dynamics of many industrial
processes. Further, a FOPDT model allows to exploit an
analytical solution of the stable input-output inversion
procedure (Piazzi and Visioli (2006b)) (see subsection 2.4).
The (output-filtered) PID feedback controller transfer
function is denoted as follows:

C(s) = Kp

(

1 +
1

Tis
+ Tds

)

1

Tfs + 1
(2)

where Kp is the proportional gain, Ti is the integral time
constant, Td is the derivative time constant and Tf is
the time constant of a first- order filter that makes the
transfer function proper. The value of Tf can be selected,
once the other parameters are determined, such that the
filter dynamics does not influence the dynamics of the PID
controller and the effects of the measurement noise are
reduced as much as possible.
The signal r(t), to be applied to the closed-loop system
when a process output transition from a previous value y0

to a new value y1 is required, is determined by a command
signal generator that implements a stable input-output
inversion procedure.

2.2 Identification

In literature, several identification procedures have been
proposed and applied (Ljung (1999)). For the purposes
of the methodology proposed in this paper, obtaining a
good FOPDT model and a good description of the model
uncertainty is essential. It is well-known that the selection
of a good test signal plays a key role in the identification.
Actually, two aspects are important in selecting the input
signal for process control: the signal-to-noise ratio and the
power spectrum. High value of signal-to-noise ratio could
be obtained using a signal with as much signal power
as possible. Unfortunately, the test signal amplitude is
constrained by the physical limitations of the actuators
and by the nonlinearity that could be excited in the
system. For this reason, for a given power, the signal with

smallest amplitude is desirable. One of the indices used to
identify the best signal with respect to this property is the
crest factor Cr (Guillaume et al. (1991)), defined as:

Cr :=
maxn u(n)

√

∑N

n=1
u(n)2

(3)

where N is the number of samples of the test signal. The
crest factor provides a measure of how well distributed
the signal values are over the input span. A good test
signal must have a small crest factor; in fact, this indicates
that the samples of the signal are close to their minimum
or to their maximum value. For this reason, the binary
signals (Cr = 1) are normally used. A GBN signal u(t)
assumes two values, namely, −a and +a, which have to
be selected, as already mentioned, in order to achieve the
maximum amplitude of the signal without exciting the
nonlinear dynamics. At each candidate switching time t,
the amplitude may switch according to the following rule:

P [u(t) = −u(t − 1)] = psw
P [u(t) = u(t − 1)] = 1 − psw

(4)

where psw is the switching probability, which is deter-
mined by psw = Tmin

ETsw
where Tmin is the minimum switch-

ing time (in samples) and ETsw is the mean switching
time. The selection of the parameters psw and ETsw

could have a deep impact on the identification results. In
this work, the minimum switching time Tmin is set to 1
(sample), while the mean switching time ETsw is defined as
ETsw = Ts

3
(Zhu (2001)) where Ts is the 2% open-loop step

response settling time. The duration of the identification
experiment has been defined as 20Ts (Zhu (2001)). The
advantage of this kind of signal is that its spectrum does
not present dips (unlike Pseudo Random Binary Signals)
and has flexible length, allowing a simple conversion of its
duration from samples to time units.
Once the input/output data are collected, a prediction er-
ror/maximum likelihood method (Ljung (1999)) is applied
to them in order to estimate a FOPDT model P (s) of the
process and a (high-order) nominal model Pn(s) of order

n =
√

N/40 (Grassi et al. (2001)).
The additive uncertainty ∆a(jw) is defined as the sum
of two contributions: the bias due to the higher order
dynamics neglected in the model, and the variance, related
to the identification dataset noise:

|∆a(jw)| =
∣

∣Pn(ejw) − P (ejw)
∣

∣ + 3

√

n

N

Φν

Φu

(5)

where Φν and Φu denote the power spectra density of the
residual (with respect to Pn) and of the input respectively.
Once the additive uncertainty is defined, the multiplicative
uncertainty can be easily obtained as:

|∆m(jw)| =
|∆a(jw)|

|P (ejw)|
(6)

The closed-loop robust stability can be evaluated by con-
sidering the small gain condition

|T (jω)| |∆m(jw)| < 1, ∀ω ∈ [0, +∞) (7)

where T (s) is the complementary sensitivity transfer func-
tion

T (s) :=
C(s)P (s)

1 + C(s)P (s)
. (8)

It is worth noting that, in principle, since the model
uncertainty is only estimated through the identification
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procedure, expression (7) represents an estimate rather
than a rigorous sufficient condition for robust stability.
Typically, for self-regulating processes, the multiplicative
uncertainty is small at low frequencies and it increases
for high frequencies. Denote as Ω the unity crossover
frequency, namely, the frequency where

|∆m(jΩ)| = 1. (9)

The value of Ω will represent an upper bound for the
achievable bandwidth of the control system, as will be
explained hereafter.

2.3 PID controller tuning

The tuning of the PID controller is performed, in addition
to achieving the robust stability, according to the following
guidelines related to both the load disturbance rejection
and the set-point following task:

(1) the bandwidth of the system should be increased
as much as possible in order to increase the load
disturbance rejection performance (Leva (2005));

(2) the sensitivity function

S(s) =
1

1 + C(s)P (s)
(10)

is decreased as much as possible in a wide range of
(low) frequencies, in order to reduce the effects of the
model uncertainty as much as possible and therefore
to increase the effectiveness of the input-output in-
version technique (Piazzi and Visioli (2006a)).

Both these specifications can be met by applying a fre-
quency loop shaping technique where the target loop shape
L̄(s) is selected as (Grassi et al. (2001))

L̄(s) =
ωc

s
(11)

where the choice of the value of the target closed-loop
bandwidth ωc is discussed below. Thus, once the target
loop shape is defined, the PID parameters can be deter-
mined so that the open-loop transfer function is as close
as possible to L(jω) in an L∞ sense, namely, by solving
the following optimization problem:

min
Kp,Ti,Td

‖C(jω)P (jω) − L̄(jω)‖∞, ω ∈ [0, 10ωc]. (12)

It is worth noting that the PID controller expression can
be appropriately rewritten so that the objective function
is convex (affine) in the design parameters (Grassi et al.
(2001)). Further, constraining the gains of the PID con-
troller to be positive naturally avoids right-half-plane can-
cellations and therefore the internal stability of the system
is ensured. The optimization problem can be therefore
solved by applying any standard optimization technique.
As already mentioned, the value of ωc has to be selected
in order to obtain a closed-loop system bandwidth as high
as possible. The easiest way to meet this requirement is to
start with a value ωc = Ω and then decrease it until the
solution of the optimization problem (12) provides a PID
controller that satisfies both the nominal stability and ro-
bust stability conditions. Note that for the determination
of a rational transfer function T (s) a Padè approximation
of the dead time L can be employed.

2.4 Determination of the command input signal

Once the feedback PID controller has been tuned, the non-
causal feedforward control action r(t) can be determined
by applying a stable input-output inversion procedure
(Piazzi and Visioli (2006b)). Roughly speaking, the proce-
dure consists in finding the bounded closed-loop command
function r(t) that causes a desired output function yd(t).
In particular, as a desired output function that defines the
transition of the process variable from a set-point value y0

to another y1 (to be performed in the time interval [0, τ ])
a third-order “transition” polynomial (Piazzi and Visioli
(2001)) can be selected, namely, a polynomial function
that satisfies boundary conditions and that is parameter-
ized by the transition time τ :

yd(t; τ) = y0 + y1

(

−
2

τ3
t3 +

3

τ2
t2

)

. (13)

Outside the interval [0, τ ] the function yd(t; τ) is equal to
y0 for t < 0 and equal to y1 for t > τ . In the following,
without loss of generality, we assume y0 = 0. It is worth
stressing that expression (13) represents a monotonic func-
tion with neither undershooting nor overshooting and its
use is therefore very appealing in the context of process
control. Further, it guarantees that a continuous command
input function results.
The closed-form expression of r(t; K, T, L, Kp, Ti, Td, Tf , τ),
defined over the interval (−∞, +∞), that causes the de-
sired output yd(t; τ), can be then determined by apply-
ing to the nominal closed-loop system the stable input-
output inversion procedure presented in (Piazzi and Vi-
sioli (2006b)). Actually, from a practical point of view,
since the synthesized function is defined over the interval
(−∞, +∞), it is necessary to adopt a truncated function
ra(t; τ), resulting therefore in an approximate generation
of the desired output yd(t; τ). In particular, a preactua-
tion time ts and a postactuation time tf can be selected
so that ra(t; τ) = 0 for t < ts and ra(t; τ) = y1 for
t > tp. By taking into account that the preactuation and
postactuation inputs (i.e. the input defined for t < 0 and
t > τ respectively) converge exponentially to zero at time
t → −∞ and to y1 at time t → +∞, an arbitrarily precise
approximation can be accomplished (Piazzi and Visioli
(2005)). Practically, the method suggested in (Perez and
Devasia (2003)) can be adopted. It consists of selecting

ts = −
10

Drhp

tp =
10

Dlhp

(14)

where Drhp and Dlhp are the minimum distance of the
right and left half plane zeros of T (s) respectively from
the imaginary axis of the complex plane.
A nice feature of the inversion-based methodology is that
the output transition time τ can be effectively employed in
order to handle the trade-off between aggressiveness and
robustness (and control effort). In this context it is worth
relating the value of τ to the value of ωc previously selected
(and therefore to relate it to the multiplicative uncertainty
∆m) (Devasia (2002)). Thus, the value of τ can be found
as the solution of the following optimization problem:

min τ (15)

such that

|R(ω; τ)| < ε|R(0; τ)|, ∀ω > ωc (16)

where R(ω) is the Fourier transform of the command
signal and ε is now the user-chosen parameter that handles
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the trade-off between aggressiveness and robustness (obvi-
ously, the robustness decreases when ε increases). From a
practical point of view this optimization problem can be
solved by means of a simple bisection algorithm.

3. SIMULATION RESULTS

In order to illustrate the overall methodology, the following
(high-order) process is simulated:

10

(s + 1)4(3s + 1)
e−2s. (17)

We selected a = 1 for the generation of the GBN signal
to be employed for identification purposes. The process
output measurement has been corrupted with white noise
whose power is 0.05. The resulting input/output data
are plotted in Figure 2. By applying the prediction er-
ror/maximum likelihood method, the estimated FOPDT
model results to be

P (s) =
10.34

5.98s + 1
e−3s. (18)

The Bode plot of the estimated model and of the mul-
tiplicative uncertainty is shown in Figure 3. It can be
seen that Ω = 1.52 rad/s. In order to achieve the robust
stability, the target loop shape is selected as L̄(s) = ωc/s
where ωc = 0.18 rad/s. The PID parameters that minimize
(12) are Kp = 0.10, Ti = 5.94, Td = 0.15. Then, Tf = 0.01
has been selected. The bode plot of the closed-loop transfer
function T (s) together with that of 1/∆m is shown in
Figure 4.
By selecting ε = 0.05 in the inversion procedure, we obtain
τ = 56.9. The resulting command input function for y1 = 1
is shown in Figure 5. The corresponding process output,
together with the resulting control variable is shown in
Figure 6 where results obtained with the application of a
step input are also shown for comparison. Note that the
presence of a time delay in the closed-loop response when
the noncausal approach is employed is due to the presence
of the preactuation time interval.
From the presented example, it turns out that, despite
the high-order dynamics of the process and the significant
dead time, the PID tuning is satisfactory. The oscillatory
set-point step response is then avoided by implementing
the inversion-based procedure, which ensures a limitation
of the overshoot. It is worth noting again that a more
aggressive response with the inversion-based approach can
be obtained by increasing the parameter ε. This fact can
be understood better by evaluating the results obtained
with ε = 0.1 and ε = 0.15 (corresponding to τ = 22.2 and
τ = 11.4 respectively) that are shown in Figure 7.

4. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the devised technique
in practical applications, a laboratory experimental setup
(made by KentRidge Instruments) has been employed.
Specifically, the apparatus consists of small perspex tower-
type tank (whose area is 40 cm2) in which a level control
is implemented by means of a PC-based controller. The
tank is filled with water by means of a pump whose speed
is set by a DC voltage (the manipulated variable), in the
range 0-5 V, through a PWM circuit. The tank is fitted
with an outlet at the base in order for the water to return
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Fig. 2. Input and output data employed for identification
in the simulation example.
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Fig. 3. Bode plot of the estimated model P (s) (solid line)
and of the multiplicative uncertainty ∆m(s) (dashed
line) for the simulation example.
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Fig. 4. Bode plot of the closed-loop system T (s) (solid
line) and of 1/∆m(s) (dashed line) for the simulation
example.

to a reservoir. The measure of the level of the water is
given by a capacitive-type probe that provides an output
signal between 0 (empty tank) and 5 V (full tank). For the
sake of simplicity, in the following the level variable will
be expressed in Volts. Note that the system has nonlinear
dynamics, because the flow rate out of the tank depends
on the square root of the level. The control task consists
in achieving a process variable transition from y0 = 2 V
to y1 = 3 V.
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Fig. 5. Command input function r for the simulation
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Fig. 6. Process output and control variable with the
determined command input (solid line) and with a
step set-point signal (dashed line) for the simulation
example.
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Fig. 7. Process output and control variable with ε = 0.1
(solid line) and with ε = 0.15 (dashed line) for the
simulation example.

The lower and upper limits of the GBN signal have been
selected as 2 V and 3 V respectively, in order to avoid too
much exciting of the nonlinearity. The resulting input and
output data for identification are shown in Figure 8. The
result of the prediction error/maximum likelihood method
is

P (s) =
1.59

26.7s + 1
e−2.96s. (19)
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Fig. 8. Input and output data employed for identification
in the level control example.
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Fig. 9. Bode plot of the estimated model P (s) (solid line)
and of the multiplicative uncertainty ∆m(s) (dashed
line) for the level control example.

The Bode plot of the estimated model and of the mul-
tiplicative uncertainty is shown in Figure 9, where Ω =
1.31 rad/s. The robust stability is achieved by selecting the
target loop shape as L̄(s) = 0.45/s. The PID parameters
that minimize (12) are found as Kp = 6.11, Ti = 19.52,
Td = 0.26 (Tf = 0.01). The Bode plot of the closed-loop
transfer function T (s) together with that of 1/∆m is shown
in Figure 10.
Two values of ε have been considered, namely, ε = 0.015,
which corresponds to τ = 10.31 s and ε = 0.016 which
corresponds to τ = 3.59 s. The obtained inversion-based
command input signals are shown in Figure 11, while the
corresponding process variables and control variables are
shown in Figures 12 and 13 respectively. The step response
has been also plotted for comparison. Note that, disregard-
ing the time delay due to the presence of a preactuation
time interval, the use of the noncausal feedforward control
action allows to decrease significantly the overshoot with
respect to the use of a step signal, without increasing the
rise time. Note also that the control variable exceed the ac-
tuator saturation limit of 5 V both for the step signal and
for the inversion-based command signal when ε = 0.016.
This does not occur when ε = 0.015, confirming that
parameter ε allows to handle the control effort effectively.

5. CONCLUSIONS

In this paper a methodology that integrates the identifi-
cation technique, the feedback PID controller tuning and
the (noncausal) feedforward action has been proposed.
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Fig. 10. Bode plot of the closed-loop system T (s) (solid
line) and of 1/∆m(s) (dashed line) for the simulation
example.
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Fig. 11. Command input functions r for the level control
example. Solid line: ε = 0.015; dashed line: ε = 0.016.
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Fig. 12. Process variable for different command input
signals for the level control example.

It has to be remarked that the overall procedure can
be automated. Further, a user-chosen parameter allows
easy handling of the trade-off between aggressiveness and
robustness, which is a very desirable feature in practical
cases. Simulation and experimental results have demon-
strated the effectiveness of the approach even in the pres-
ence of processes with a high-order dynamics or nonlinear
dynamics.
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Fig. 13. Control variable for different command input
signals for the level control example.
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