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Abstract: In this paper we consider the problem of passive fault tolerant control for nonlinear
affine systems with actuators faults. We treat two types of faults; additive and loss of
effectiveness faults. In each case we propose a Lyapunov-based feedback controller that ensures
the local uniform asymptotic (exponential) stability of the faulty system, if the safe nominal
system is locally uniformly asymptotically (exponentially) stable. We show the effectiveness of
the fault tolerant controllers on the autonomous helicopter numerical example.
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1. INTRODUCTION

Fault tolerant control (FTC) aims to achieve acceptable
performance and stability for the safe fault-free system as
well as for the faulty system. Many methods have been
proposed to deal with this problem. For survey papers
on the field of FTC, the reader may refer to Zhang and
Jiang [2003]. While the available schemes can be classified
into two types, namely passive and active FTC (Zhang
and Jiang [2003]), the work presented here falls into the
first category of passive FTC. Indeed, active FTC aims to
ensure stability and some performance, possibly degraded,
for the post-fault model, and this by reconfiguring on-line
the controller, based on the fault detection and diagnosis
(FDD) block that detects isolates and estimates the cur-
rent fault (Zhang and Jiang [2003]). Contrary to this active
solution, another solution consists in using a unique robust
controller that will deal with all the expected faults. In this
case no on-line control reconfiguration is needed and no
FDD block is required. This solution has the drawback
of being reliable only for the class of faults expected and
taken into account in the design of the passive FTC.
However, it has the advantage of avoiding the time delay
due to on-line diagnosis of the faults and reconfiguration
of the controller, required in active FTC (Zhang and Jiang
[2006]), which is very important in practical situations
where the time windows during which the system stay
stabilizable is very short, e.g. the unstable double inverted
pendulum example Nieamann and Stoustrup [2005]. Sev-
eral passive FTC methods have been proposed, mainly
based on robust theory, e.g. QFT method Wu et al. [1999],
H∞ Nieamann and Stoustrup [2005] and nonlinear regu-
lation theory Bonivento et al. [2004].
We follow here the recent work in Bonivento et al. [2004],
where actuator faults were modelled as bounded additive
periodic unknown signals that were superposed onto the
control signal. Nonlinear regulation theory was then used
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to compensate the effect of all the fault that are gener-
ated by a given internal model. We follow here the same
idea of modelling actuator faults as additive signals, and
consider here any bounded unknown time-varying additive
signals. We also consider the case of loss of actuator effec-
tiveness, modelled by a time-varying multiplicative factor
that, when multiplied to the control signal, will reduce its
effectiveness depending on the value of this factor. The
idea used here is based on Lyapunov analysis, in the sense
that if we have for the nominal plant a stabilizing closed-
loop controller with a corresponding Lyapunov function,
we can build a fault tolerant (FT) controller, based on
this nominal controller and Lyapunov function, so that it
ensures the stability of the faulty system. As this control
scheme is a passive fault tolerant control, it does not
necessitate any FDD block.

This note is organized as follows: In the second section we
introduce the systems we are dealing with here together
with the assumptions required. Next, we present the main
result in section 3, where we introduce the FT controllers
and the stability analysis. We report in section 4, the
simulation results obtained on the autonomous helicopter
example and conclude the note in section 5.

2. PROBLEM STATEMENT

We consider here nonlinear systems of the form

ẋ = f(x) + g(x)u (1)

where x ∈ R
n, u ∈ R

m represent, respectively, the state
and the input vectors. The vector fields f , columns of g are
supposed to satisfy the classical smoothness assumptions,
with f(0) = 0. We also assume the system (1) to be locally
reachable (in the sense of definition 5, in Vidyasagar [1993],
p. 400). Added to the previous classical assumptions, we
need also the following to hold:

Assumption(1): We assume the existence of a nominal
closed-loop control unom(t, x), such that the solutions of
the closed-loop system

ẋ = f(x) + g(x)unom(t, x) (2)
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satisfy 1 ||x(t)|| ≤ β(||x(t0)||, t − t0), ∀xt0 ∈ D, ∀t ≥ t0,
where D = {x ∈ R

n | ||x|| < r0}, r0 > 0 and β is a class
KL function 2 .

Assumption(2): We assume here two types of actuator
faults:
- Firstly, we consider faults that enter the system in an
additive way, i.e. the faulty model writes as

ẋ = f(x) + g(x)(u + F (t, x)) (3)

where F represents the actuators’ fault and is s.t.
||F (t, x)|| ≤ b(t, x), where b : [0,∞) × D → R is a
nonnegative continuous function.

- Secondly, we consider loss of actuator effectiveness model,
representing the actuators’ fault by a multiplicative matrix
as

ẋ = f(x) + g(x)αu (4)

where, α ∈ R
m×m is a diagonal time variant matrix, with

the diagonal elements αii(t), i = 1, ...,m s.t., 0 < ǫ1 ≤
αii(t) ≤ 1.

Remarks
- Assumption (1) means simply that the closed-loop sys-
tem (2) is locally, in D, uniformly asymptotically stable
(UAS) (Khalil [2002], p. 150, Lemma 4.5).

- Assumption (2) is not restrictive and can be satisfied in
practical applications, e.g. rotor/stator mechanical addi-
tive faults occurring in induction motors (Bonivento et al.
[2004]), and the loss of effectiveness faults for aircraft
actuators (Zhang and Jiang [2000]). �

We state now the fault tolerant control problem we want
to solve here.

Problem statement:Having a stabilizing closed-loop con-
trol for (1), s.t. Assumption 1 holds, find stabilizing closed-
loop controls, for each of the faulty systems (3), and (4).

We can now present the main results of this note.

3. PROBLEM’S SOLUTION

Firstly, we present two propositions treating separately the
stabilization of (3) and (4).

Proposition 1: The control law

u(t, x) = unom(t, x)−sgn((
∂V

∂x
g)T )(b(t, x)+ǫ), ǫ > 0 (5)

where unom(t, x) is s.t. Assumption 1 is satisfied, V is
the associated Lyapunov function, b(t, x) is defined in
Assumption 2 and sgn(v) denotes the vector sign function,
s.t. sgn(v)(i) = sgn(v(i)); ensures that the equilibrium
point x = 0 is locally UAS, in D, for the closed-loop system

1 ||v|| denotes the norm of v in its Euclidian space.
2 A continuous function α : [0, a) → [0, ∞) is said to belong to
class K if it is strictly increasing and α(0) = 0.
A continuous function β : [0, a) × [0, ∞) → [0, ∞) is said to
belong to class KL if for each fixed s the mapping β(r, s) belongs to
class K with respect to r and for each fixed r the mapping β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s → ∞ (Khalil
[2002], p.144).

(3) and (5).

Proof : Based on Assumption 1, we can ensure (Khalil
[2002], p. 167. Theorem 4.16) the existence of a Lyapunov
function V : [0,∞) × D → R, s.t.

α1(||x||) ≤ V (t, x) ≤ α2(||x||)
∂V

∂t
+

∂V

∂x
(f + gunom) ≤ −α3(||x||)

∣

∣

∣

∣

∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

∣

∣

∣

∣

≤ α4(||x||)

(6)

where α1, α2, α3, α4 are class K functions in D. We can
then evaluate the derivatives of V along the closed-loop
faulty system (3) controlled with (5) 3 :

dV

dt
=

∂V

∂x
(f + g(u + F )) +

∂V

∂t

=
∂V

∂x
f +

∂V

∂x
gu +

∂V

∂x
gF +

∂V

∂t

=
∂V

∂t
+

∂V

∂x
(f + gunom) + (

∂V

∂x
g)sgn((

∂V

∂x
g)T )(−b − ǫ) +

∂V

∂x
gF

≤ −α3(||x||) +

∣

∣

∣

∣

∣

∣

∂V

∂x
g

∣

∣

∣

∣

∣

∣

1

b(t, x) +

∣

∣

∣

∣

∣

∣

∂V

∂x
g

∣

∣

∣

∣

∣

∣

1

(−b − ǫ)

≤ −α3(||x||) −
∣

∣

∣

∣

∣

∣

∂V

∂x
g

∣

∣

∣

∣

∣

∣

1

ǫ ≤ −α3(||x||)

thus we can conclude (Khalil [2002], p. 151, Theorem 4.8
and p. 152, Theorem 4.9), that x = 0 is locally UAS, in
D, equilibrium point for (3) and (5). �

We have a similar result for the system (4) as follows.

Proposition 2: The control law

u(t, x) = unom(t, x)− sgn((
∂V

∂x
g)T )(||unom||+ ||unom||

ǫ1
β1), β1 ≥ 1

(7)

where unom(t, x) is s.t. Assumption 1 is satisfied, V is
the associated Lyapunov function, and sgn(.) denotes the
sign function; ensures that the equilibrium point x = 0 is
locally UAS, in D, for the closed-loop system (4) and (7).

Proof 4 : The proof follows the same steps, since we
compute the time derivative of the Lyapunov function
V associated with the stable nominal closed-loop (due to
Assumption 1). We can write then

dV

dt
=

∂V

∂x
(f + gαu) +

∂V

∂t

=
∂V

∂x
f +

∂V

∂x
gαu +

∂V

∂t

=
∂V

∂x
f +

∂V

∂x
g(Im×m − ξ)u +

∂V

∂t
, ξ = Im×m − α

=
∂V

∂x
f +

∂V

∂x
g(unom + ũ) −

∂V

∂x
gξ(unom + ũ) +

∂V

∂t
,

ũ = −sgn((
∂V

∂x
g)T )(||unom|| +

||unom||

ǫ1
β1)

≤ −α3(||x||) +
∂V

∂x
gαũ −

∂V

∂x
gξunom

3 ||v||1 =
∑i=n

i=1
|v(i)|, v ∈ R

n.
4 Hereafter, Im×m denotes the diagonal identity matrix, and

||A||∞ = max
i∈{1,...,m}

∑j=m

j=1
|aij |, A ∈ R

m×m is the maximum row

matrix norm Horn and Johnson [1985].
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≤ −α3(||x||) +
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∣
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1

||ξ||∞||unom||
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∂x
gα(−sgn((

∂V

∂x
g)T )(||unom|| +

||unom||

ǫ1
β1)),

0 < ǫ1 < ||ξ||∞ ≤ 1

≤ −α3(||x||) + (1 − ||α||∞)
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1
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∣
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1

||unom||β1||α||∞/ǫ1, 0 < ǫ1 < ||α||∞ ≤ 1

≤ −α3(||x||) +
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1
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∣

∣

∣

∣

∣

∣

∣

∣

∂V
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∣

∣

∣

∣

∣

∣

1

||unom||(1 − β1) ≤ −α3(||x||)

Thus the UAS of the equilibrium point of (4) and (7) holds
locally in D.�

Remarks
- If the nominal closed-loop system (2), is exponentially
asymptotically stable-EAS, locally in D, then the results
of propositions 1 and 2, hold equally, except that the
UAS is replaced with EAS. The proof is straightforward,
substituting −α3(||x||) by −c||x||2, c > 0 due to the
EAS (Khalil [2002], pp. 162-163, Theorem 4.14), and going
through the same steps in the proofs of the propositions,
we can conclude eventually on local EAS in D (Khalil
[2002], p. 154, Theorem 4.10).
- The positive term ǫ in (5), can be omitted when dealing
with a perfect model. However, in practice a nonzero term
is necessary to compensate for inevitable model uncertain-
ties.
- If the nominal closed-loop system is autonomous, i.e.
unom is a pure state feedback, then the results of Propo-
sitions 1 and 2 stay unchanged, except that the Lyapunov
functions are functions of the state vector only. (Khalil
[2002], p. 163, Theorem 4.14 and p. 124, Theorem 4.2).
- We mentioned earlier, in section 2, that the nominal
system is assumed to be locally reachable. This property
is not guarantee to hold for the faulty systems (3). The
only case where the faulty system remains reachable is for
a single input system and for a uniquely time dependent
fault F (t). The proof is easily obtained by computing the
reachability Lie bracket condition (Vidyasagar [1993], p.
409). However, the same condition shows that if the nom-
inal system is locally reachable then the faulty system (4)
remains locally reachable if αii(t) �= 0, ∀t, ∀i = 1, ...,m.
- We proved in Propositions 1 and 2 that the controllers (5)
and (7) ensure the local UAS of (3) and (4) respectively.
However, we can easily see that a combined controller

u(t, x) = unom(t, x)

−sgn((
∂V

∂x
g)T )(||unom|| + ||unom||

ǫ1
β1 + b(t, x) + ǫ), ǫ > 0, β1 > 0

(8)

will also ensure the local UAS for both systems (3) and
(4). Indeed, if we evaluate the derivative of the Lyapunov
function V along (3) and (8), we can see that the derivative
will write exactly the same as in the proof of Proposition
1, but with an extra negative term −

∣

∣

∣

∣

∂V
∂x

g
∣

∣

∣

∣

1
(||unom|| +

||unom||
ǫ1

β1), that will not change the negativeness of dV
dt

,
and thus will not change the stability result. We can have a
similar reasoning for (4) and (8), where the extra negative
term will be −

∣

∣

∣

∣

∂V
∂x

g
∣

∣

∣

∣

1
(b(t, x) + ǫ). However, the cost to

pay for having a unique controller for both types of faults,
will be the control effort needed. Indeed, if we use (8)
to compensate for additive faults in (3), the extra term

−sgn((∂V
∂x

g)T )(||unom||+ ||unom||
ǫ1

β1) will not be necessary
for the fault compensation but will still give an extra
amplitude to the control effort. The same can be seen when
applying (8) to (4). �

Now we have to consider the practical problem that may
be caused by the discontinuity of the controls (5) and
(7). This problem is well known in sliding mode control
schemes (Slotine [1984]), and is usually solved by approx-
imating the discontinuous function sgn by a continuous
function. Following this idea, we propose hereafter two
propositions showing the effect of such approximation on
the stability results obtained before with the discontinuous
controllers (5) and (7).

Proposition 3: The control law

u(t, x) = unom(t, x)−sat((
∂V

∂x
g)T )(b(t, x)+ ǫ), ǫ > 0 (9)

ensures that the solutions of the closed-loop system (3) and
(9) satisfy; ∀x(t0) s.t. ||x(t0)|| ≤ α−1

2
(α1(r0)), ∃T ≥ 0, s.t.

{

||x(t)|| ≤ β(||x(t0)||, t − t0), ∀t0 ≤ t ≤ t0 + T
||x(t)|| ≤ α−1

2
(α1(x̃)), ∀t ≥ t0 + T

,

where, for a vector v, sat(v) =

{

v(i)/ǫ̃, if |v(i)| ≤ ǫ̃
sgn(v(i)), if |v(i)| > ǫ̃

,

x̃ = α−1

3
(2mǫ̃bmax) ≤ α−1

2
(α1(r0)), b(t, x) ≤ bmax,∀t, ∀x ∈

D, and α1, α2, α3 are class K functions in D defined in
(6), β is class KL.

Proof : refer to Benosman and Lum [2007].

We can prove the same results for the faulty system (4).

Proposition 4: The control law

u(t, x) = unom(t, x) − sat((
∂V

∂x
g)T )(||unom|| + ||unom||

ǫ1
β1), β1 ≥ 1

(10)

ensures that the solutions of the closed-loop system (4) and
(10) satisfy; ∀x(t0) s.t. ||x(t0)|| ≤ α−1

2
(α1(r0)), ∃T ≥ 0, s.t.

{

||x(t)|| ≤ β(||x(t0)||, t − t0), ∀t0 ≤ t ≤ t0 + T
||x(t)|| ≤ α−1

2
(α1(x̃)), ∀t ≥ t0 + T

,

where, for a vector v, sat(v) =

{

v(i)/ǫ̃, if |v(i)| ≤ ǫ̃
sgn(v(i)), if |v(i)| > ǫ̃

,

x̃ = α−1

3
(2mǫ̃unom−max) ≤ α−1

2
(α1(r0)) , ||unom|| ≤

unom−max,∀t, and α1, α2, α3 are class K functions in
D defined in (6), β is class KL.

Proof : refer to Benosman and Lum [2007].

Remarks
- In the case of continuous controllers (9) and (10), we do
not guarantee local UAS anymore. However, we guarantee
that the closed-loop trajectories are bounded by a class
K function, and that this bound can be made as small
as desired by choosing a small ǫ̃ in the definition of the
function sat.
- Similarly as for the discontinuous combined controller
(8), we can also easily see that the continuous combined
controller
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u(t, x) = unom(t, x) − sat((
∂V

∂x
g)T )(||unom|| + ||unom||

ǫ1
β1 + b(t, x) + ǫ),

ǫ > 0, β1 > 0
(11)

implies the same solutions’ boundeness results, stated in
Proposition 3 when applied to (3) and the boundeness
results stated in Proposition 4 when applied to (4). Again
this will be at the cost of a higher control efforts.
- Finally, we can easily see from the proves of the previous
propositions that the controllers (5), (7),(8) (9), (10) and
(11) if applied to the nominal system (1), will ensure local
UAS in D. Thus in practice we do not need to detect the
fault and switch from the nominal controller to the FTC,
i.e. we can apply the FTCs directly to the safe nominal
system, and hence no FDD block is required. �

4. THE HELICOPTER EXAMPLE

In this section, we report the numerical results obtained on
a scaled model of an autonomous helicopter. We consider
here the simplified model used in Mazenc et al. [2003], and
given by the Lagrangian equations 5 :

mξ̈ = u

(

−c(ψ)s(θ)c(φ) − s(ψ)s(φ)
−c(ψ)s(θ)s(φ) + s(ψ)c(φ)

−c(ψ)c(θ)

)

+

(

0
0

mg

)

J(η)η̈ = −C(η, η̇)η̇ + τ

(12)

where J is given by equation (13),

C(η, η̇) =
Ixc(θ)

2
C1 +

(Ix − Iy)

2
C2 +

(Iy − Iz)

2
C3

C1 =





0 −ψ̇ −θ̇

ψ̇ 0 φ̇

−θ̇ −φ̇ 0



 , C2 =





−θ̇s(2ψ) −φ̇s(2θ) 0

φ̇s(2θ) 0 0
0 0 0



 ,

C3 given by equation (14), and ξ = (x, y, z)T is the vector
of the aircraft body inertial positions, in a stationary
right-hand side inertial frame (z axis pointing down),
η = (φ, θ, ψ)T , is the vector of the yaw, pitch and roll
Euler angles, u is the principle lift force due to the main
rotor, τ = (τφ, τθ, τψ)T is the vector of the generalized
forces applied to the engine, due to the combination of the
tail rotor force and the lateral components of the main
rotor lift, m, g denotes the engine mass and the gravity
field respectively, and finally 6 Ix, Iy, Iz. denote the inertial
moments of the aircraft.

In the sequel we consider a normalized model, by dividing
the first positions’ equations in (12), by mg, thus the
engine positions’ vector ξ is normalized by a factor g and
the main force u is normalized by a factor mg. The angular
equations in (12) have not been scaled and thus, hereafter
the torques τφ, τθ, τψ are given in N.m and the angles of
φ, θ, ψ in rad.
This model can be written in the form of equation (1), by
defining the state vector as
(x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇)T and the control
vector as (u, τφ, τθ, τψ)T .
We recall now the Lyapunov based stabilizing controller
presented in Mazenc et al. [2003], where it was proved that
the system (12), in closed-loop with the nominal controller
(15) is asymptotically stable for all the initial states in

D = {ξ, ξ̇, η, η̇ | |φ| < π/3, |θ| < π/3, |ψ| < π/3, |φ̇| < 1, |θ̇| < 1, |ψ̇| < 1}.
5 Hereafter we use the notations c(.) = cos(.), s(.) = sin(.).
6 For the numerical simulations we use the same values as in Koo and
Sastry [1998]: Ix = 0.142413 kg.m2, Iy = 0.271256 Kg.m2, Iz =
0.271492 kg.m2.

Furthermore the associated decreasing Lyapunov function
writes as:

V = ln(1 + V1) + 11713 W (φ̇, φ) + 294913 W (z, ż),

W (a, b) = (0.5a2 +
√

1 + b2 − 1)2 + 2(0.5a2 +
√

1 + b2 − 1)

+
b√

1 + b2
a, ∀(a, b) ∈ R

2,

V1 = 16(θ̇2 + θ̇θ + 0.5θ2 − 16ln(|c(θ)|) + 4(−ẋ +
θ + θ̇

8
)2)

+(1 + (−x − 32ẋ +
49

8
θ + θ̇/8)2)1/2

+16(ψ̇2 + ψ̇ψ + 0.5ψ2 − 16ln(|c(θ)|) + 4(ẏ − ẋ +
ψ + ψ̇

8
)2)

+(1 + (y − x + 32ẏ − 32ẋ +
49

8
ψ + ψ̇/8)2)1/2 − 2.

(16)

We stress here that we do not report the results due to
the discontinuous controllers (5) and (7) since they ex-
hibited high chattering effects which is incompatible with
this practical application. We also stress that, in all the
following tests the FT controller (9) will be tested with
the value b = ǫ = 1 and ǫ̃ = 0.01 (in the definition of the
sat function). Also, the controller (10) is tested with the
coefficients ǫ1 = 0.05, β1 = 1 and ǫ̃ = 0.01.

We report hereafter the following results: Firstly, we con-
sider the additive type of faults modelled by (3), and
simulate a fault scenario where a time-varying additive
actuators fault occurs at t = 100 sec. We show the simu-
lation results obtained with both the nominal controller
(15) and the FT controller (9). Secondly, we consider
loss-of-effectiveness faults, and simulate a fault scenario
where at t = 100 sec a loss of effectiveness occurs on all
the actuators, with periodic multiplicative coefficients. We
show again the results due to the nominal controller and
those due to the FT controller (10).
First, we have considered periodic additive fault in model
(3), with

F (t) =

{

0 × (1, 1, 1, 1)T , t < 100 sec,
(0.2 + 0.05sin(0.2πt)) × (1, 1, 1, 1)T , t ≥ 100 sec.

The application of the nominal controller (15) leads to the
positions depicted in figures (1) and (2). It is clear that the
periodic fault effect propagated to the engine attitude and
that the nominal controller, was enable to compensate for
this faults. The application of the FT controller (9) leads
to better results, as we can see in figures (3) and (4), the
FT controller, shown in figure (5), managed to compensate
for the periodic faults. Indeed, when the FT controller (9)
is applied the periodic fault is immediately rejected from
the states trajectories as we can see in figures (3), (4)
comparatively to figures (1), (2). Instead, the oscillations
appear in closed-loop faulty controller via the extra term
−sat((∂V

∂x
g)T )(b(t, x) + ǫ), and eventually the oscillations

are completely damped-out from the closed-loop control
signals after approximatively 100 sec; see figure (5).

Let’s consider now the loss of actuators effectiveness model
(4), when considering periodic multiplicative actuators
faults

α(t) =

{

I2×2, t < 100 sec,
(0.2 + 0.05sin(0.2πt)) × I2×2, t ≥ 100 sec.

We see on figure (6), that the lateral positions are still
stabilized to their origin. However, the altitude is no longer
stable. This is due to the fact that the nominal feedback
controller cannot compensate for the loss of effectiveness,
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J(η) =

(

Ix(1 + c(θ)2) + Iyc(θ)2(c(ψ)2 − 1) − Izc(θ)2c(ψ)2 (Iy − Iz)c(θ)s(ψ)c(ψ) −Ixs(θ)

(Iy − Iz)c(θ)s(ψ)c(ψ) Iy(1 + s(ψ)2) − Izs(ψ)2 0
−Ixs(θ) 0 Ix

)

(13)

C3 =







−θ̇s(2ψ)c(ψ)2 − ψ̇ − c(θ)2s(2φ)φ̇ −φ̇s(2θ)c(ψ)2 − θ̇s(2ψ)s(θ) − ψ̇c(θ)2s(2ψ) −φ̇c(θ)2s(2ψ)+

θ̇c(θ)c(2ψ)

φ̇s(2θ)c(ψ)2 + ψ̇c(θ)c(2ψ) φ̇s(2ψ)s(θ) + ψ̇s(2ψ) φ̇c(θ)c(2ψ)

φ̇c(θ)2s(2ψ) − θ̇c(θ)c(2ψ) −φ̇c(θ)c(2ψ) 0







(14)

u =
1

c(ψ)c(θ)

(

1 +
z

√

(1 + z2)
+

ż
√

(1 + ż2)

)

, τ = C(η, η̇)η̇ + J−1τ̃ , τ̃ = (τ̃φ, τ̃θ, τ̃ψ)T , τ̃φ = − φ
√

1 + φ2

− φ̇
√

1 + φ̇2

,

τ̃θ = −θ̇ − 8tan(θ) +
8ẋ − 17θ̇

(64 + (8ẋ − 17θ̇)2)1/4
+

8ẋ − 9θ − 17θ̇

(1 + (8ẋ − 9θ − 17θ̇)2)1/6
+

x + 32ẋ − 49

8
θ − 4θ̇

(1 + (8ẋ − 9θ − 17θ̇)2)1/3(1 + (x + 32ẋ − 49

8
θ − 4θ̇)2)1/2

,

τ̃ψ = −ψ̇ − 8tan(ψ) − 8ẏ − 8ẋ + 17ψ̇

(64 + (8ẏ − 8ẋ + 17ψ̇)2)1/4
− 8ẏ − 8ẋ + 9ψ + 17ψ̇

(1 + (8ẏ − 8ẋ + 9ψ + 17ψ̇)2)1/6

−
y − x + 32ẏ − 32ẋ + 49

8
ψ + 4ψ̇

(1 + (8ẏ − 8ẋ + 9ψ + 17ψ̇)2)1/3

√

1 + (y − x + 32ẏ − 32ẋ + 49

8
ψ + 4ψ̇)2

,

(15)
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Fig. 1. Linear positions of the helicopter-periodic additive
faults at t = 100 sec-nominal controller
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Fig. 2. Angular positions of the helicopter-periodic addi-
tive faults at t = 100 sec-nominal controller

since the static value of u is not big enough to cancel the
loss of effectiveness.
We report now the results due to the FT controller (10).
As expected, as seen clearly on figures (7) and (8), that
the FT controller managed to compensate for the loss
of effectiveness and that all the attitude of the engine is
stabilized to the origin. The corresponding faulty controls
are given in figure (9), where we can see that the FT
controller (10) compensates for the loss of effectiveness by
augmenting the static effort of the main lift force u.
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Fig. 3. Linear positions of the helicopter-periodic additive
faults at t = 100 sec-FTC (9)
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Fig. 4. Angular positions of the helicopter-periodic addi-
tive faults at t = 100 sec-FTC (9)

5. CONCLUSION

In this work we have modelled actuator’s fault as additive
unknown bounded time-varying signals that are super-
posed onto the actuator signals. We have also considered
a multiplicative actuator faults model, by multiplying the
actuators signal by a positive time-varying coefficient less
then one, which is well known as loss of actuator effec-
tiveness fault model. In both cases, we have used Lya-
punov based controllers to ensure local uniform asymptotic
stability of the equilibrium point in the faulty case, if
the controlled nominal fault free system is already locally
UAS. The advantage of the FTC presented is that no
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Fig. 5. FT controller (9)-periodic additive faults at t =
100 sec
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Fig. 6. Linear positions of the helicopter-periodic multi-
plicative faults at t = 100 sec-nominal controller

fault detection is needed. The efficiency of the controllers
have been shown on the helicopter numerical example.
However, a drawback of the scheme remains its depen-
dency on the availability of an explicit Lyapunov-function
based stabilizing controller for the safe system. Future
work will investigate the extension of this stabilization
results to output trajectory tracking for a particular class
of nonlinear systems.
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