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Abstract: In this paper we consider the problem of graceful performance degradation, for affine
non-minimum phase nonlinear systems. The method is an optimization based scheme, that
gives a constructive way to re-shape on-line the output reference for the post-fault system, and
explicitly take into account the actuators and states saturations. The on-line output reference
reshaping is associated with an on-line, MPC-based, controller reconfiguration, that forces the
post-fault system to track the new output reference. The effect of FDD uncertainties on the on-
line controller reconfiguration stability are studied, to ensure at least boundeness of the closed-
loop system’s states. The reshaping and reconfiguration schemes are applied to the Caltech
ducted fan numerical example, which is described by a non-minimum phase nonlinear model.
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1. INTRODUCTION

In this paper we present a simple idea to control a system
in which component or actuator fault has occurred and is
isolated/estimated. The idea is an extension of the paper
by Jiang and Zhang [2006], where the authors proposed a
fault tolerant control scheme for linear systems. There,
the authors proposed a bank of reference models that
the system should track, each of which corresponding
to a particular faulty system. The references are chosen
in such a way to be ‘feasible’ by the faulty system; i.e.
output/state reference trajectories that can be tracked by
the faulty system without saturation of the actuators. A
controller, ensuring the closed-loop stability and reference
model tracking, is computed off-line for each reference
model. A reconfiguration mechanism is used on-line to
switch between the different reference models and the cor-
responding controllers, depending on the fault detection
and diagnosis (FDD) module. The ‘faulty’ reference model
are designed by shifting the eigenvalues of the nominal-
reference model towards the imaginary axis, using a state
space realization scheme, and by adjusting the steady-state
of the input commands. However, the selection of these
faulty eigenvalues is not constructive. Moreover oneneeds
certain engineering insights into system performance limi-
tations under different fault conditions’ (Jiang and Zhang
[2006], page 286). Another, limitation of the scheme, is
the fact that both the faulty reference models and their
corresponding controllers are designed off-line, stored in a
reference and controller bank and selected on-line through
a switching module. The limitation comes from the fact
that the number of reference-models/controllers will be
directly proportional to the number of expected faults,
which can rapidly lead to a cumbersome bank of models
and controllers. Actually, the same authors stressed in
Zhang and Jiang [2003], that a constructive way of dealing
with what they call graceful performance degradation is
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still missing. To our knowledge this problem is still open,
and we try here to extend the idea proposed in Jiang
and Zhang [2006] to the nonlinear models case, through
an optimization-based approach that gives a systematic
and constructive way to design on-line a feasible out-
put reference for the faulty system, explicitly taking into
account the actuators and states saturations. When the
output-reference trajectory has been reshaped on-line, the
controller that tracks this trajectory is computed on-line as
well, based on a nonlinear re-allocation scheme or pseudo-
inverse. We present in this paper the reshaping scheme
as well as the on-line control reconfiguration. First, we
present in section 2 the models that we are studying here
together with the adequate assumptions. In section 3, we
present the reshaping method and the control reconfigura-
tion scheme. We further discuss the stability of the closed-
loop system. Then, in section 4, we apply the reshaping
and the reconfiguration methods to a non-minimum phase
flight system. Finally, we conclude with a discussion of the
results obtained and some future research directions.

2. PRELIMINARIES

2.1 Class of systems under study

We consider here affine nonlinear systems of the form:

ẋ = f(x) + g(x)u
y = h(x)

(1)

where x ∈ R
n, u ∈ R

na , y ∈ R
m represent respectively the

state, the input and the controlled output vectors. The
vector fields f , columns of g and function h are supposed
to satisfy the following classical assumptions.
Assumption(1): f : R

n → R
n and the columns of g :

R
n → R

n×na are smooth vector fields on a compact
set X of R

n and h(x) is a smooth function on X with
f(0) = 0, h(0) = 0.
Assumption(2): System (1) has a well-defined (vector)
relative degree {r1, . . . , rm} at each point x0 ∈ X (see
e.g. Isidori [1989]).
Assumption(3): The system is fully or over-actuated, in
the sense that the number of actuators is at least equal to
the number of controlled outputs, i.e. na ≥ m.
Assumption(4): The system is non-minimum phase, in the
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Fig. 1. Closed-loop system configuration

sense that it has internal dynamics, i.e. |r|
△
=

∑i=m
i=1 ri < n,

and these dynamics are unstable in Lyapunov sense.
Assumption(5): We assume that assumptions 2-4 above
are preserved after the occurrence of a fault in the system.

2.2 Control objectives

Find a controller u s.t. the nominal as well as the faulty
system’s output vector y tracks asymptotically a desired
smooth feasible trajectory yd(t), while satisfying the actu-
ators and states constraints:

u ∈ Ω
△
=

{

u = (u1, u2, · · · , una )T | u−

i ≤ ui ≤ u+
i , i = 1, 2, · · · , na

}

x ∈ X
△
=

{

x = (x1, x2, · · · , xn)T | x−

i ≤ xi ≤ x+
i , i = 1, 2, · · · , n

}

(2)

where u− = (u−
1 , u−

2 , · · · , u−
na

)T , u+ = (u+
1 , u+

2 , · · · , u+
na

)T

and x− = (x−
1 , x−

2 , · · · , x−
n )T , x+ = (x+

1 , x+
2 , · · · , x+

n )T

are vectors of lower/upper actuators and states limits,
respectively.
Assumption(6): We assume that the desired nominal tra-
jectory is feasible by the nominal safe system, within its
input/state limits.

3. NONLINEAR TRAJECTORY RESHAPING AND
CONTROL RECONFIGURATION

The closed-loop configuration considered here consists
of three main modules, as depicted on figure 1. The
first one is the fault detection and diagnosis module
(FDD) that detects and provides in real time a model
of the actual post-fault system. The second one,which
is the main contribution of this work, namely the on-
line trajectory reshaping (OTR) module based on the
post-fault model provided by the FDD, will generate on-
line a suitable reference trajectory for the faulty system,
within its actuator and state limits. Eventually, the on-
line controller reconfiguration (OCR) block will use the
new output reference provided by the OTR module and
the actual system’s model provided by the FDD block to
reconfigure the controller on-line in such a way to track the
new output reference, while ensuring closed-loop stability,
i.e. at least boundeness of the states, subject to FDD
uncertainties.

3.1 On-line trajectory reshaping

We present in this section the on-line OTR scheme. The
idea is, whenever a fault is detected and estimated by the
FDD block, the output trajectory will be reshaped on-line
in such a way to be as close as possible to the nominal
trajectory and to be feasible by the faulty system.
To do so, let’s consider time output trajectories written in
the canonical polynomial basis

ydj(t) =

i=l+1
∑

i=1

aij(
t − t1
t2 − t1

)(i−1), j ∈ {1, ...,m} (3)

where l is the order of the polynomial, aij i ∈ {1, ..., l +
1} are the interpolation coefficients, and t1, t2 are the
initial and the final interpolation times, respectively. The
trajectory planner works as follows:
Assume that a fault (in the actuators or the components)
occurs at t = t1F and that the FDD block detects this
fault and identifies the equations of the faulty system as 1

ẋ = fF (x) + gF (x)u
y = h(x)

(4)

where fF , gF hold for the modified vector field f and
matrix g after the occurrence of the fault (see e.g.(Jiang
and Zhang [2006], Zhang and Jiang [1999]) for some fault
models). We stress that, regardless of the nature and the
intensity of the components/actuators faults, we assume
here that Assumption 5 still holds.
Trajectory generation consists in solving on-line the opti-
mal problem

min
(a,t2F )

J = min
(a,t2F )

∫ t2F

t1F

(ynom(t) − yd(t))T Q1(ynom(t) − yd(t))dt

+

∫ t2F

t1F

u(t)T Q2u(t)dt

(5)

under the constraints
ẋ = fF (x) + gF (x)u
yd(t, b, t2F ) = h(x)

u− ≤ u ≤ u+

x− ≤ x ≤ x+

y(k)(t1F )
△
= (y

(k)
1 (t1F ), ..., y

(k)
m (t1F ))T = y

(k)
nom(t1F )

△
= (y

(k)
nom1

(t1F ), ..., y
(k)
nomm

(t1F ))T ,

y(k)(t2F )
△
= (y

(k)
1 (t2F ), ..., y

(k)
m (t2F ))T = y

(k)
nom(t2nom)

△
= (y

(k)
nom1

(t2nom), ..., y
(k)
nomm

(t2nom))T , k = 0, ..., s
t2F ≥ t2nom

(6)

where

yd = (
i=l+1
∑

i=1

ai1(
t−t1F

t2F −t1F
)(i−1), ...,

i=l+1
∑

i=1

aim( t−t1F

t2F −t1F
)(i−1))T

s ∈ N
+, Q1 ∈ R

m×m, Q2 ∈ R
na×na are positive definite

weight matrices, a = (a(1)1, .., a(l+1)1, .., a(1)m, ..., a(l+1)m)T

∈ R
m(l+1) is the vector of the polynomials coefficients, t2F

is the final time motion for the optimal trajectory vector
yd(t), and t2nom is the final time motion for the nominal

trajectory vector ynom(t)
△
= (ynom1

(t), ..., ynomm
(t))T .

Let’s consider now the optimization problem (5),(6), we
can simplify its formulation by removing the m(2s + 2)
equality constraints in (6), as follows:
Rewrite the planned trajectories ydj(t) as

ydj(t) =

i=2s+2
∑

i=1

aij(
t − t1

t2 − t1
)(i−1) +

i=l+1
∑

i=2s+3

aij(
t − t1

t2 − t1
)(i−1) (7)

∀ j ∈ {1, ...,m} and define the new vector

bj = (a2s+3j , ..., al+1j)
T .

Then (7) writes as

ydj(t) =

i=2s+2
∑

i=1

aij(
t − t1

t2 − t1
)(i−1) +

i=l−2s−1
△
=l̃

∑

i=1

bij(
t − t1

t2 − t1
)(i+2s+2).

(8)
The trajectory ydj(t) can be expressed as functions of the
vector bj ’s components by using the ydj(t) given by (8) in

1 We assume at the time being that the FDD block provides an
exact model of the faulty system. However, later in sec. 3.2. we
will study the effect of mismatches between the real system and the
mathematical model due to FDD uncertainties, on the reconfigured
systems’s stability and performances.
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the last m(2s + 2) equality constraints in (6), and solving
for the coefficients aij , i ∈ {1, ..., 2s + 2}, j ∈ {1, ...,m}.
The trajectory reshaping problem writes now as

min
(b,t2F )

J(b, t2F , u), b ∈ R
m(l−2s−1) (9)

under the constraints
ẋ = fF (x) + gF (x)u
yd(t, b, t2F ) = h(x)

u− ≤ u ≤ u+

x− ≤ x ≤ x+

t2F ≥ t2nom

(10)

Solution computation
To solve the optimization problem (9),(10), we first rewrite
it as a problem depending directly on (b, t2F ). To do so, we
write the control vector u as function of the optimization
variables (b, t2F ) or equivalently, u as function of the
planned output vector yd.
Let’s consider again the faulty system equations (4).
Under Assumptions 1,2,4 and 5, a diffeomorphism Φ(x) =
(ξ, η) exists in a neighborhood of x0, such that equations
(4) can be transformed into

{

y(r)(t) = bF (ξ(t), η(t)) + AF (ξ(t), η(t))u(t)
η̇(t) = qF (ξ(t), η(t)) + pF (ξ(t), η(t))u(t)

(11)

where

y(r)(t) � (y
(r1)
1 (t), . . . , y(rm)

m (t))T

ξ(t) = (ξ1(t), . . . , ξm(t))T

ξj(t) = (yj(t), . . . , y
(rj−1)
j (t)), 1 ≤ j ≤ m

(12)

and bF , qF , pF write as functions of fF , gF , h andAF (x)
is the nonsingular decoupling matrix (Isidori [1989], pp.
234-288). Next, computing the vector u from the first set
of equations in (11) and substituting it into the internal
dynamics equations associated with the desired references
ydj , yields

η̇ = qF (ξd, η) + pF (ξd, η)A−1
F (ξd, η)(y

(r)
d

− bF (ξd, η)) (13)

It is well known (Isidori [1989]) that, to analyze the
behavior of the solutions of (13) associated with a given
initial condition, we can analyze the behavior of the
associated zero dynamics

η̇ = qF (0, η) − pF (0, η)A−1
F (0, η)bF (0, η) (14)

If the equilibrium point η = 0 of (14) is asymptotically
stable, the solutions of the initial-conditions problem (13)
can be bounded by a decreasing function (Khalil [1996],
p. 219, lemma 5.4), in which case the system is said to be
minimum phase. In all other cases, the system is said to
be non-minimum phase and no guarantee exists regarding
the behavior of its internal dynamics, which is the case
considered in this work.
Thus, u can be obtained directly from (11), and writes as

u(t) = A−1
F (ξd(t), η(t))(y

(r)
d (t) − bF (ξd(t), η(t))) (15)

where η(t) is a bounded time solution of the internal
dynamics (13). However, particular care should be taken in
obtaining bounded η(t). Actually, the problem of finding
a bounded solution to the internal dynamics for non-
minimum phase systems is known as the stable inversion
problem, and many solutions exists for the linear (Hunt
and Meyer [1997], Benosman and Le Vey [2003]), and the
nonlinear cases (Devasia et al. [1996], Benosman and Le
Vey [2001]). By stable inversion, a bounded solution to
(13) can be obtained, leading to bounded control (15).
Now, the optimal problem (9),(10) can be written directly
as a function of the optimization vector (b, t2F )

min
(b,t2F )

J(b, t2F )

u− ≤ u(b, t2F ) ≤ u+

x− ≤ x(b, t2F ) ≤ x+

t2F ≥ t2nom,

(16)

which can be solved using available nonlinear constrained
optimization codes.

3.2 On-line controller reconfiguration

We present here the approach for OCR. We first construct
a nominal virtual control for the safe system. Next, assum-
ing a fault occurs at t = tF and is instantly identified by
FDD 2 , the virtual control is re-allocated online according
to the post-fault model given by FDD, to the surviving
actuators while minimizing tracking errors and satisfying
actuator/state limits.
Based on equation (11), we can define a virtual input as 3

bN (ξ(t), η(t)) + AN (ξ(t), η(t))uN (t) = v(t). (17)

Combining (11) and (17), we obtain the linear (virtual)
input-output mapping

y(r)(t) = v(t). (18)

Based on the linear system (18), we propose the stabilizing
output feedback

vs(t, ξ) = y
(r)
nom − Kr(y(r−1) − y

(r−1)
nom (t)) − ... − K1(y − ynom(t))

Ki > 0, i = 1, ..., r.

(19)
Defining the tracking error vector as e(t) = y(t)−ynom(t),
we obtain the tracking error dynamic

e(r)(t) + Kre
(r−1)(t) + ... + K1e(t) = 0. (20)

By tuning the gain matrices Ki, i = 1, ..., r such that all
the polynomials 4

e
(r)
i (t) + Kr(i, i)e

(r−1)
i (t) + ... + K1(i, i)ei(t), i = 1, ...,m

are Hurwitz, we obtain asymptotic convergence of e(t)
to zero. We then re-allocate on-line the virtual controller
vs(t, ξ(t)), to the actuators of the nominal system by
solving the receding horizon optimal problem 5 (21) , where
tH is a finite integration time horizon, Q3 ∈ R

m×m is
a positive definite weight matrix, and Q4 ∈ R

n−|r|×n−|r|

is a positive definite weight matrix introduced with the
internal dynamics tracking-error eη = η − ηd. Indeed,
we saw in section 3.1 that the internal dynamics are
unstable in Lyapunov sense, and that a stable inversion
technique should be used in this case to complete the
output trajectory generation presented in section 3.1. This
stable inversion will then provide us with the desired
internal dynamics trajectories ηd when solving equation
(13) in the output planning problem, as described in
section 3.1.
Next, we consider a fault in the system at the instant
t = tF , from which point onward, the system will be
described by equation (4). We assume that the FDD

provides an estimate of the fault value noted f̃ , i.e. either

2 We stress here, that we do not consider in this note explicitly
the FDD block synthesis for nonlinear systems, that can be found
for example in Garcia and Frank [1997]. Instead we assume the
availability of FDD module and we study both cases; first when the
FDD provides us with a precise post-fault model and, the realistic
case; when the FDD gives with some delay an imprecise post-fault
model Zhang and Jiang [2006].
3 Where the subscripts N indicate that we are dealing with the
nominal safe system.
4 Below Kj(i, i) denotes the element (.)(i, i) of the matrix Kj .
5 Hereafter ||.|| denotes the euclidian norm and ||x||P = (xT Px)1/2.
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P1(tk, ξk, ηk)







































min
uN

∫ tk+tH

tk

((bN (ξ, η) + AN (ξ, η)uN (t) − vs(t, ξ))
T Q3(bN (ξ, η) + AN (ξ, η)uN (t) − vs(t, ξ)) + (η − ηd)T Q4(η − ηd))dt

y(r)(t) = bN (ξ, η) + AN (ξ, η)uN (t)
η̇(t) = qN (ξ, η) + pN (ξ, η)uN (t)
u− ≤ uN (t) ≤ u+

(ξ−, η−) = Φ(x−) ≤ (ξ, η) ≤ (ξ+, η+) = Φ(x+)
||e(tk+1)||Pξ

≤ αξ||e(tk)||Pξ
, αξ ∈ [0, 1], Pξ > 0

||eη(tk+1)||Pη
≤ αη ||eη(tk)||Pη

, αη ∈ [0, 1], Pη > 0, k = 0, 1, ...

(21)

P2(tk, ξk, ηk)







































min
uF

max
f̃∈F̃

∫ tk+tH

tk

((bF (ξ, η) + AF (ξ, η)uF (t) − vs(t, ξ))
T Q3(bF (ξ, η) + AF (ξ, η)uF (t) − vs(t, ξ)) + (η − ηd)T Q4(η − ηd))dt

y(r)(t) = bF (ξ, η) + AF (ξ, η)uF (t)
η̇(t) = qF (ξ, η) + pF (ξ, η)uF (t)
u− ≤ uF (t) ≤ u+

(ξ−, η−) = Φ(x−) ≤ (ξ, η) ≤ (ξ+, η+) = Φ(x+)
||e(tk+1)||Pξ

≤ αξ||e(tk)||Pξ
, αξ ∈ [0, 1], Pξ > 0

||eη(tk+1)||Pη
≤ αη ||eη(tk)||Pη

, αη ∈ [0, 1], Pη > 0, k = 0, 1, ...

(22)

parameter or actuator fault. We then re-allocate on-line
the virtual controller vs(t, ξ(t)), to the actual actuators by
solving the min-max optimal problem (22) where vs writes
in this case as

vs(t, ξ) = y
(r)
d

(t) − Kr(y(r−1)(t) − y
(r−1)
d

(t)) − ... − K1(y(t) − yd(t))
Ki > 0, i = 1, ..., r

(23)

yd(t) is the on-line re-shaped trajectory vector, F̃ = [f̃ −

△f̃ , f̃ + △f̃ ] ⊂ R where △f̃ > 0 represents the tolerable
fault value excursion, Q3, Q4, ηd(t) defined as before.

Remark 1: The virtual controllers used for the nominal
and for the faulty case differ only by the desired output
trajectories, i.e. ynom(t) in (19) and yd(t) in (23). However,
both controls lead to the same error dynamics (20), which
means that we are imposing the same transient behavior
for both systems. In this sense this controller can be con-
sidered as an extension of the well known pseudo-inverse
control, e.g. Gao and Antsaklis [1991]. �
We can write now the reconfiguration algorithm.

Reconfiguration Algorithm The algorithm holds as
follows:
1- Initialization:
- Initial conditions: (ξ0, η0) at t0.
- Controller parameters: K1,K2, ...,Kr in (19), weight
matrices Q3, Q4, Pξ, Pη in P1, P2 optimization problems,
the optimization horizon tH and the sampling time T ,
the fault value excursion △f̃ , the input/states bounds
u−, u+, ξ−, ξ+, η−, η+, the contractive parameters αξ, αη.
2- Control
- Step 1: set k = 0.
- Step 2: solve P1(tk, ξk, ηk), this gives the solution
u(t), t ∈ [tk, tk + tH ] .
- Step 3: apply u for t ∈ [tk, tk+1] and measure ξtk+1

, ηtk+1

at tk+1 = tk + T
- Step 4: test the FDD block, if system safe put k = k + 1
and go to step 2.
- Step 5: if fault f̃ detected solve P2(tk, ξk, ηk) , this gives
the solution u(t), t ∈ [tk, tk + tH ], go to Step 3.

Remark 2: In real applications, we expect that the FDD
block reacts with a time delay, due for example to fault
estimation delay (Zhang and Jiang [2000]), or that the
post-fault model is imprecise. In these situations the algo-
rithm can still ensure the boundeness of the system’s states
and inputs, due to the robustness of the optimal receding

horizon reconfiguration, as we will see below (Lemma 2).�

Stability analysis The stability analysis is straightfor-
ward, and is mainly due to the contractive constraints on
the tracking errors, present in the optimization problems
Pi, i = 1, 2. Firstly, let’s introduce some assumptions,
necessary for the analysis that will follow.
Assumption(7): The system is controllable along the de-
sired output trajectories.
Assumption(8): We assume that there exists a ρ ∈]0,∞[

such that for all xt0 ∈ Bρ
△
= {xt0 ∈ R

n| ||e(xt0)||Pξ
=

||h(xt0) − yd(t0)||Pξ
≤ ρ and ||eη(xt0)||Pη

= ||η(xt0) −
ηd(t0)||Pη

≤ ρ}, the optimal problems Pi, i = 1, 2 have a
solution.
Assumption(9): There exists constants βξ, βη ∈]0,∞[
such that ||e(t)||Pξ

≤ βξ||e(tk)||Pξ
, and ||eη(t)||Pη

≤
βη||eη(tk)||Pη

∀t ∈ [tk, tk+1], k = 0, 1, ...

- Stability in the nominal case: We can state now a Lemma
summarizing the stability results for the control reconfig-
uration algorithm.

Lemma 1. Under Assumption 1 to 9, choosing αξ, αη ∈
]0, 1[ and ρ, β > 0, the reconfiguration algorithm implies
an exponential convergence of eξ, eη to zero.

Proof: refer to Benosman and Lum [2007].

Up to now, we have considered that the nominal as well
as the faulty models were ‘exact’. However, in real ap-
plications, we should expect some errors in the nominal
model and the faulty models (Zhang and Jiang [2000]),
due for instance to delays in the fault detection/estimation
(Garcia and Frank [1997]) and fault estimation uncertain-
ties (Zhang and Jiang [2006]). Thus we analyze hereafter
the effect of mismatches between the system’s model used
in the reconfiguration algorithms and the actual system’s
plant.

- Stability in the uncertain case: Here we will use the
subscript R to describe the real plant contrary to the
mathematical model, which will be denoted by the sub-
script M . Note that the mathematical model will be either
the nominal one or the post-fault model. Let’s first rewrite
the model equations in a more compact form. Let’s define
the vector x̃ = (ξ, η)T . Then, the equations of the model
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used in the definitions of the optimal problems Pi, i = 1, 2
can be rewritten as:

˙̃x = lM (x̃) + HM (x̃)u (24)

where, lM , hM write as function of 6 bN orF , AN orF ,
qN orF , pN orF . Let’s denote by x̃M the solution of (24)
with the initial condition x̃R(t0) the actual measured plant
state.
The actual real plant will be described by

˙̃x = lR(x̃) + HR(x̃)u (25)

and the real state value will be denoted by x̃R which are
the solutions of (25) associated with the real-plant initial
conditions x̃R(t0).
The goal of this analysis is to evaluate the distance
between the states trajectories obtained when applying the
reconfiguration control algorithm to the model (24) and
the states trajectories obtained when applying the same
control algorithm to the real system described by (25). To
do so we need the following assumption.
Assumption(10): The mathematical model and the real
system’s model satisfy the Lipshitz-like inequalities

||lR(x̃1) + hR(x̃1)u1 − lR(x̃2) − hR(x̃2)u2|| ≤ LR||x̃1 − x̃2||
+LR||u1 − u2||, LR > 0

||lM (x̃) + hM (x̃)u − lR(x̃) − hR(x̃)u|| ≤ K||x̃|| + K||u||, K > 0
(26)

We then have the following Lemma:

Lemma 2. Under Assumption 10, for given LR, K > 0,
the reconfiguration algorithm implies that

||x̃R(t) − x̃M (t)|| ≤ KTδeLRT , ∀t > 0 (27)

where δ = max
Φ(x−)≤x̃M≤Φ(x+)

||x̃M ||+ max
u−≤u≤u−

||u||, and T is

the sampling time; i.e. T = tk+1 − tk, ∀k.

Proof: refer to Benosman and Lum [2007].

4. NUMERICAL EXAMPLE

In this section we present simulation results obtained on
a fast dynamic system, namely the Caltech ducted fan,
which is an experimental test-bed that replicates qualities
of actual flight UAVs (Dunbar et al. [2002]). We use here
the planar model of these test-bed, as described in Dunbar
et al. [2002].The dynamical model is given by

mẍ − Fxbcos(θ) − Fzbsin(θ) = 0
mz̈ + Fxbsin(θ) − Fzbcos(θ) = mgeff

Jθ̈ − FzbIτ = 0
(28)

where x and z represent horizontal and vertical inertial
translations respectively, as depicted in figure 2. θ is the
rotation of the ducted fan about the boom axis. Fxb, Fzb

are the thrust vectoring body forces. m = 12.5 kg is the
mass of the engine, J = 0.25 kg.m2 its moment of inertia
about the boom, Iτ = 0.35 m is the distance from the
centre of mass along the Xb axis to the effective application
point of the thrust vectoring force and mgeff = 7 is
the effective gravity. We define the state vector x =
(x, ẋ, z, ż, θ, θ̇)T and the control vector u = (Fxb, Fzb)

T .
The control objective is to track a desired time trajectory
for the output y = x and to satisfy the state constraint
−1 m ≤ z ≤ 1 m and the input constraints 0 N ≤ Fxb ≤
13 N, −6 N ≤ Fxb ≤ 6 N .
The relative degree with respect to this output is clearly
2. We then have internal dynamics of dimension 4, which
are basically the second and third ODE in equation (28).
Several solutions may exist for these ODEs; we chose to fix

6 N or F depending on if the mathematical model is the nominal or
the faulty model.

X

Z

zb

�

T

�

I

Xb

Fig. 2. Ducted fan frames

the vertical displacement and velocity z, ż to zero and then
study the behavior of the remaining internal dynamics
θ, θ̇. In this case, the zero dynamics are a ‘pendulum-like’
dynamics that have hyperbolic saddle points at θ = (4k +

1)π/2 rad, θ̇ = 0 rad/sec, k ∈ N , implying a non-
minimum phase behavior.
Let’s consider now the ‘nominal’ control problem, i.e.
without faults. Our goal is to force the output y = x to
track the desired polynomial time trajectory

xd =







xf (6(
t − t0

tf
)5 − 15(

t − t0

tf
)4 + 10(

t − t0

tf
)3), t0 ≤ t ≤ tf ,

xf = 10 m,
t0 = 0, tf = 20 sec.

(29)
To solve the tracking problem in this case we will use
the MPC formulation in equation (21). To formulate this
problem we need first to solve a stable inversion problem to
obtain the desired internal dynamics trajectories ηd(t). As
mentioned before, we chose here to force the first internal
dynamics z, ż to zero, i.e. the aircraft should stay at the
constant zero altitude, and apply a stable inversion to the
corresponding θ internal dynamics. We use here the stable
inversion approach proposed in Benosman and Le Vey
[2001] for Lagrangian systems, where the authors showed
that stable internal dynamics trajectories can be obtained
by formulating the problem as a two points boundary value
problem. We chose here to solve the two points boundary
value problem

{

Jθ̈ − Iτmsin(θ)ẍd + Iτ cos(θ)mgeff = 0,
θ(t0) = θ(tf ) = π/2 rad .

(30)

Next, the problem P1(tk, ξk, ηk) in equation (21), has
been solved with the following parameters: K1 = 2500,

K2 = 0.3, Q3 = 1, Q4 =







3000 0 0 0
0 0.3 0 0
0 0 4000 0
0 0 0 0.3






, αξ = 0.9,

αη = 0.9 .
To solve the receding horizon optimization problem, we
have used the solver ‘fmincon’ of Matlab. To do so, we have
first discretized the functional optimization problem into
a finite-dimension optimization problem, by writing the
states trajectories x, z, θ as polynomials of degrees 6, 4, 4
respectively and solving the optimization problem with
respect to the coefficients of these polynomials. It is worth
noting that the first two coefficients of each polynomial
were used to ensure continuity of the trajectories and their
first derivatives, i.e. x(tk−1) = x(tk), ẋ(tk−1) = ẋ(tk).
Similarly for z and θ. Then effectively the optimization
space dimension is 8, the number of the remaining coeffi-
cients. The receding horizon chosen is tH = T = 0.5 sec.
Fault scenario: We consider now a scenario where an ac-
tuator fault occurs at time tF = 10 sec, the fault being
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Fig. 3. Desired trajectory (dashed line) and the actual
altitude (continuous line)- Faulty case without OTR

a loss of effectiveness in the body force Fxb, modelled by
introducing the multiplicative coefficient α in the ducted
fan model as follows:

mẍ − αFxbcos(θ) − Fzbsin(θ) = 0
mz̈ + αFxbsin(θ) − Fzbcos(θ) = mgeff

Jθ̈ − FzbIτ = 0.
(31)

We have chosen to test fault α = 0.544, which implies
that the force Fxb will have to be almost double of the
nominal one to achieve the same tracking quality of the
nominal trajectory xd. This means that if nothing is done,
this actuator will saturate, and this may lead to the loss
of the tracking or worse to the loss of the aircraft stability,
as we will see below.
1-With model switching and without trajectory reshaping:
We consider here the case where we assume that FDD
module provides the exact value of the fault, after a delay
of 2 sec (refer to Benosman and Lum [2007] for the
case with an imprecise estimation). The MPC controller
switches then to the faulty model 7 at the instant ts =
12 sec. However, we do not use the OTR module here, and
the MPC based on the post-fault model keeps trying to
track the nominal desired output trajectory. The obtained
results are presented in figure 3. We can see that the
obtained internal dynamics are not acceptable, i.e. θ
reaches the maximal value of 4 rad! and the altitude
reaches its limit of 1 m.
2-With model switching and with trajectory reshaping: In
addition to the setting of the previous case here The
OTR module starts at ts = 12 sec computing the best
trajectory for the faulty system and the MPC based
on the faulty model switches from tracking the nominal
trajectory to tracking the optimal trajectory. We first
start by presenting the results of the OTR block. We
applied the reshaping scheme presented in section 3.1.
Again to keep the optimization time acceptable for real
time application, we used small values for the dimension
of the vector b in equation (9). Figure 4 shows the obtained
optimal trajectories for dim(b) = 1 and dim(b) = 2.
The optimal trajectories are very close to the nominal
trajectory, due to the first term in the optimization cost
(5). However, the control forces necessary to track this
optimal trajectories, computed by direct model inversion
(equations (15) with the internal dynamics stable inversion
of (13)), are all very close to the actuator limit of 13N ,

7 We stress here that for computation time reason we did not use
here the min-max MPC formulation of equation (22), we used instead
a min formulation for equation (22), i.e. we do not take into account

the excursion over f̃ , but this does not affect the stability results
that are solely due to the contractive constraints and not to the
optimization cost.
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Fig. 5. Optimal control forces for the faulty model:
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with dim(b) = 1 (dashed thick line), optimal with
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as we can see in figure 5, whereas the nominal trajectory
necessitates control forces which clearly violate this limit.
We can expect then that the controller will be more able
to reproduce these trajectories than the nominal one. The
optimal value obtained are:
- for dim(b) = 1: t2F = 20.49 sec, b = 7e− 6, computation
time= 1.54 sec.
- for dim(b) = 2: t2F = 20.79 sec, b = (0.47e − 4, −38e −
8)T , computation time= 2.025 sec.
For the tests we used dim(b) = 2, which means that the
MPC based on the faulty model switches to the optimal
faulty trajectory at ts = 14.025 sec. The simulation results
are reported in figures 6and 7. We clearly see that the
tracking is achieved, since the ducted fan switches to the
optimal faulty trajectory which is still very close to the
nominal one, and thus reaches the same final point without
exceeding the actuators limits, as we can see from figure
8, while keeping the system stable, as we can see from the
internal dynamics plot 7.

5. CONCLUSION

The goal of this work was to extend previous results
on acceptable performance degradation obtained in the
linear case (Jiang and Zhang [2006]), to the class of non-
minimum phase nonlinear systems affine in the control.
We formulated the performance degradation problem as
a nonlinear optimization problem, permitting to generate
on-line output trajectories that are feasible by the faulty
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Fig. 6. Desired trajectory (dashed line) and the actual
output (continuous line)- Faulty case with FDD delay
and with OTR
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system within its control and state limits. We showed how
this on-line optimization can be solved for non-minimum
phase models via stable inversion to ensure that the inter-
nal dynamics are feasible by the system. This on-line tra-
jectory reshaping has been implemented with a contractive
MPC algorithm to ensure the tracking of the generated
trajectories. We proved that the contractive MPC can
be used for trajectory tracking purposes and not just for
regulation as is more common in the literature. We showed
in a numerical example that both the trajectory generation
and the MPC tracking-algorithm can be used for on-
line application on fast dynamic systems, like aircrafts.
Although the numerical tests were satisfactory, we expect
better results when using faster solvers for the on-line op-
timization problems, thus we think that these algorithms

can effectively be used for practical applications if some
available fast optimization software like NPSOL (Dunbar
et al. [2002]), are used together with more powerful com-
puters. We also pointed out that the goal of this work was
the performance degradation problem, thus we did not ex-
plicitly use an FDD block in this study. However, we have
considered explicitly in the stability analysis the effect of
a real FDD, namely the post-fault models uncertainties
due to fault estimation delays and imprecisions. Future
work concerns the explicit integration of FDDs for affine
nonlinear systems, e.g. Garcia and Frank [1997], with the
on-line reshaping and reconfiguration method proposed
here.
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