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Abstract: This paper studies discrete impulsive hybrid systems. The comparison principle
and uniform stability are established for such hybrid systems. Moreover, the attraction region
is estimated. As applications, the comparison principle is used to study the robust stability
problem for linear interval discrete impulsive hybrid systems and a class of nonlinear uncertain
discrete impulsive hybrid systems.

1. INTRODUCTION

It is now recognized that the theory of impulsive hybrid
systems provides a natural framework for mathematical
modelling of many real world phenomena. Impulses can
not only lead to the failure of stability for a stable con-
tinuous system, but also be used to stabilize an unstable
system. It is, therefore, very important to investigate the
stability problem for impulsive hybrid systems.

In recent years, significant progress has been made in the
stability and robust stability theory of impulsive hybrid
systems, in which the impulses occur in a continuous
systems at some instances, see Lakshmikantham et al.
(1989), Michel (1999), Michel et al. (1995), Ye et al. (1998),
Li et al. (2000), Li et al. (2001a) and (2001b), Li et al.
(2002), Liu et al. (1994), Liu et al. (2001), Liu et al. (2006),
Li et al. (2003), Guan et al. (2005), Zhang et al. (2005),
and Liu et al. (2003)-(2006). However, the corresponding
theory for discrete impulsive hybrid systems, in which the
impulses occur in a discrete system at some instances,
has not been fully developed. More recently, in Liu et
al. (2007a)-(2007b), the robust stability and ISS (input-
to-state stability) property for discrete impulsive hybrid
systems has been investigated. In this paper, we will
analyze the stability property for this kind of systems via
comparison approach.

Among the methods contributed to the study of the stabil-
ity problem for dynamical systems, the comparison princi-
ple is an interesting and efficient method. The stability
of the original system can be derived by comparing to
a simpler system, with known stability properties. The
comparison principle method has been applied successfully
to study of stability for continuous systems, impulsive
systems and switched systems, see Lakshmikantham et al.
(1989), Isidori (1999), Phat (2005), Zhang et al. (2001),
Liao (2001), Yang et al. (1997), and Chatterjee et al.
(2006).

⋆ This work was supported by the Australian Research Council
Discovery Project Scheme (No. FF0455875 and No. DP0881391).

In this paper, we shall establish the comparison principle
for discrete impulsive hybrid systems. Then, the compar-
ison principle is used to investigate the uniform stability
properties of discrete impulsive systems. As applications,
the comparison principle is used to study the robust sta-
bility problem for linear interval discrete impulsive hybrid
systems and a class of nonlinear uncertain discrete impul-
sive hybrid systems.

2. PRELIMINARIES

Let Rn denote the n-dimensional real vector space and
||A|| the norm of a matrix A induced by the Euclidean

norm, i.e., ||A|| = [λmax(A
T A)]

1
2 . Let N denote the

set of nonnegative integers, i.e., N = {0, 1, 2, · · · }, and
R+ = [0,+∞). Let λmax(X) (respectively, λmin(X))
the maximum (respectively, minimum) eigenvalue of the
matrix X.

For A = (aij)n×m, denote: |A| = (|aij |)n×m, and A ≥ 0 if
and only if aij ≥ 0 for all i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Let x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)T ∈ Rn,
x ≤ y if and only if xi ≤ yi, i = 1, 2, · · · , n.

A function γ : R+ → R+ is of class-K (γ ∈ K) if it is
continuous, zero at zero and strictly increasing. A vector
function l(r) = (l1(r), · · · , lm(r))T : R+ → Rm

+ is of class-
KmR (l ∈ KmR) if l(r) ∈ C[R+, Rm

+ ], li(0) = 0, li(r) > 0,
r > 0, and li(r) → ∞, when r → +∞, i = 1, 2, · · · ,m.

Consider the following discrete impulsive hybrid systems:

S1 :

{

x(k + 1) = fc(k, x(k)), k 6= Ni,
∆x(k + 1) = fd(k, x(k)), k = Ni,
x(k0) = x0, k ∈ N, k ≥ k0,

(1)

S2 :

{

w(k + 1) = gc(k,w(k)), k 6= Ni,
∆w(k + 1) = gd(k,w(k)), k = Ni,
w(k0) = w0, k ∈ N, k ≥ k0,

(2)

S3 :

{

r(k + 1) = hc(k, r(k)), k 6= Ni,
∆r(k + 1) = hd(k, r(k)), k = Ni,
r(k0) = r0, k ∈ N, k ≥ k0,

(3)
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where x ∈ Rn, w ∈ Rm
+ , r ∈ R+; ∆x(k + 1) = x(k + 1) −

x(k), ∆w(k + 1) = w(k + 1) − w(k), ∆r(k + 1) = r(k +
1) − r(k); and the following assumptions are satisfied:

(A1): The sequence {Ni} satisfies: Ni ∈ N and k0 ≤ N0 <
N1 < · · · < Ni < · · · , with Ni+1 − Ni > 1, i ∈ N .

(A2): fc, fd ∈ C[N+ × Rn, Rn], gc, gd ∈ C[N+ × Rm
+ , Rm

+ ],
hc, hd ∈ C[N+ × R+, R+];

(A3): Every solution of systems S1−S3 exists globally and
uniquely on N , respectively.

Let x(k) , x(k, k0, x0), w(k) , w(k, k0, w0), r(k) ,

r(k, k0, r0) be the solution of systems S1 − S3 with initial
condition x(k0) = x0. We give the following standard
definitions.

Definition 2.1. System S1 is said to be uniformly stable
(US) if for any ǫ > 0, there exists a δ = δ(ǫ), such that
when ‖x0‖ ≤ δ, the following inequality holds:

‖x(k, k0, x0)‖ < ǫ, k ≥ k0, k ∈ N. (4)

Definition 2.2. System S1 is said to be uniformly asymp-
totically stable (UAS) if it is US, and moreover the follow-
ing equality holds:

lim
k→∞

‖x(k, k0, x0)‖ = 0. (5)

Definition 2.3. System S1 is said to be uniformly ex-
ponentially stable (UES) if there exist positive constants
α > 0,K ≥ 1 such that

‖x(k)‖ ≤ K‖x0‖e
−α(k−k0), k ≥ k0, k ∈ N. (6)

Definition 2.4. A set D(x) ⊆ Rn is called an attractive
region of system S1 if, for any x0 ∈ D(x), the solution
x(k, k0, x0) of system S1 satisfies (5).

Lemma 2.1. (Liu et al. (2004)) Let X ∈ Rn×n be
a positive definite matrix and Q ∈ Rn×n a symmetric
matrix. Then for any x ∈ Rn, the following inequality
holds

λmin(X−1Q) ·xT Xx ≤ xT Qx ≤ λmax(X
−1Q) ·xT Xx (7)

Lemma 2.2. (Liu et al. (2004)) For any A ∈ N [P,Q],
where N [P,Q] =

{

A = (aij) ∈ Rn×n : pij ≤ aij ≤

qij , i, j = 1, 2, · · · , n.
}

, then A can be formulated as
follows:

A = A0 + EΣF, (8)

where A0 = 1
2 (P + Q),H = (hij) = 1

2 (Q − P ), Σ ∈ Σ∗ =

{Σ ∈ Rn2×n2

: Σ = diag(ǫ11, · · · , ǫnn), |ǫij | ≤ 1; i, j =
1, 2, · · · , n.}, EET = diag{

∑n
j=1 h1j , · · · ,

∑n
j=1 hnj}, and

FT F = diag{
∑n

j=1 hj1, · · · ,
∑n

j=1 hjn}.

3. COMPARISON PRINCIPLE AND STABILITY

In this section, we shall establish the comparison principle
and stability criteria for discrete impulsive hybrid systems.

Theorem 3.1. Assume that functions gc(k, υ), gd(k, υ)
are nondecreasing with respect to υ for any k ∈ N , and
furthermore suppose that there are functions V (k, x) ∈
C[N ×Rn, Rm

+ ] and l(r) ∈ KmR, with l(a+b) ≥ l(a)+ l(b)
for any a, b ∈ R+, such that the following conditions hold:

(i) for any k 6= Ni, then

V (k + 1, x(k + 1)) ≤ gc(k, V (k, x(k))); (9)

(ii) for k = Ni, then

∆V (k + 1, x(k + 1)) ≤ gd(k, V (k, x(k))), (10)

where ∆V (k+1, x(k+1)) = V (k+1, x(k+1))−V (k, x(k));

(iii) for any k 6= Ni, then

gc(k, l(r)) ≤ l(hc(k, r)), r ∈ [0, r∗], (11)

where r∗ is some positive constant or r∗ = +∞;

(iv) for any k = Ni, then

gd(k, l(r)) ≤ l(hd(k, r)), r ∈ [0, r∗], (12)

(v) for any (k0, r0) ∈ N × [0, r∗], then

r(k, k0, r0) ∈ [0, r∗], k ∈ N. (13)

Then, V (k0, x0) ≤ w0 ≤ l(r0) implies that

V (k, x(k)) ≤ w(k) ≤ l(r(k)), k ≥ k0, k ∈ N. (14)

Proof. We prove (14) by using induction on k:

When k = 0, then (14) holds obviously. Now we assume
that (14) holds for the case of k. We show (14) also holds
for the case of k + 1.

For k 6= Ni, by conditions (i), (iii), (v), and the induction
assumption, we get that

V (k + 1, x(k + 1)) ≤ gc(k, V (k, x(k)))

≤ gc(k,w(k)) = w(k + 1)

≤ gc(k, l(r(k)))

≤ l(hc(k, r(k))) = l(r(k + 1)), k 6= Ni, (15)

which means that (14) holds for k + 1 and k 6= Ni.

For k = Ni, by conditions (ii) and (iv)-(v) and induction
assumption, we have

V (k + 1, x(k + 1)) ≤ V (k, x(k)) + gd(k, V (k, x(k)))

≤ w(k) + gd(k,w(k)) = w(k + 1)

≤ l(r(k)) + gd(k, l(r(k)))

≤ l(r(k)) + l(hd(k, r(k))). (16)

It follows from (16) and the fact that l(a)+ l(b) ≤ l(a+ b)
for any a, b ∈ R+, that

V (k +1, x(k +1)) ≤ w(k +1) ≤ l(r(k +1)), k 6= Ni, (17)

which means that (14) holds for k + 1 and k = Ni.

Thus, by (15) and (17), we obtain that (14) holds for the
case k +1 and by the induction principle (14) holds for all
k ∈ N . 2

Corollary 3.1. Assume that functions gc(k, υ), gd(k, υ)
are nondecreasing with respect to υ for any k ∈ N , and
furthermore suppose that there exists a function V (k, x) ∈
C[N×Rn, Rm

+ ] such that the conditions (i)-(ii) of Theorem
3.1 hold, then V (k0, x0) ≤ w0 implies that

V (k, x(k)) ≤ w(k), k ≥ k0, k ∈ N. (18)

Proof. It is a direct consequence of Theorem 3.1. 2

Corollary 3.2. Assume that all assumptions except that
for function l(r) in Theorem 3.1 are satisfied. If l(r) is a
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smooth vector function satisfying l′′(r) ≥ 0 for all r ∈ R+,
then the result of Theorem 3.1 still holds.

Proof. By Theorem 3.1, we only need to prove that

l(a) + l(b) ≤ l(a + b), a, b ∈ R+. (19)

For any fixed a ∈ R+, let F (b) = l(a + b) − l(a) − l(b),
b ∈ R+, then F (b) is a smooth vector function. Moreover,
F (0) = 0, and F ′(b) = l′(a + b) − l′(b). By l′′(r) ≥ 0, we
get that function l′(r) is nondecreasing and hence l′(a +
b) ≥ l′(b). Thus, we get that F ′(b) ≥ 0 which means that
function F (b) is nondecreasing. Hence, F (b) ≥ F (0) = 0,
for any b ∈ R+. Thus, (19) holds and hence the proof is
complete. 2

In the following, in order to investigate the stability of
systems S1−S3, we assume that fc(k, 0) ≡ 0, fd(k, 0) ≡ 0,
gc(k, 0) ≡ 0, gd(k, 0) ≡ 0, hc(k, 0) ≡ 0, and hd(k, 0) ≡ 0.
Hence, systems S1 − S3 all admit the trivial solution.

Theorem 3.2. Assume that systems S1 − S3 satisfy all
conditions of Theorem 3.1 and also assume that there exist
functions ϕ1, ϕ2 ∈ K such that

ϕ1(‖x‖) ≤ ‖V (k, x)‖ ≤ ϕ2(‖x‖), (20)

then, the US (UAS) properties of system S3 imply that the
same US (UAS) properties hold for system S1. Moreover,
D(x) is an attractive region of system S1, where

D(x) =
{

x ∈ Rn : V (k, x) < sup
0≤r<r∗

{l(r)}, k ∈ N
}

.

Proof. Firstly, if system S3 is US, we show that system
S1 is also US.

Since vector function l(·) is continuous and li(0) = 0,
li(r) > 0 (r > 0), i = 1, 2, · · · ,m, for any positive number
ǫ > 0, there exists a ǫ1(ǫ) with ǫ1(ǫ) < r∗ such that when
0 ≤ r < ǫ1(ǫ), we have

‖l(r)‖ ≤ ϕ1(ǫ). (21)

From the uniform stability of system S3, for ǫ1(ǫ) > 0,
there exists a δ1(ǫ) > 0 such that when 0 ≤ r0 < δ1(ǫ), we
get that

r(k, k0, r0) < ǫ1(ǫ), k ∈ N. (22)

Let δ̄i(ǫ) , sup0≤r<ǫ1(ǫ)

{

li(r)
}

, δ2(ǫ) , 1
2 min1≤i≤m

{

δ̄i(ǫ)
}

, δ(ǫ) , ϕ−1
2 (δ2(ǫ)).

By the continuity of function l(r), we obtain that there
exists a r0 with 0 < r0 < δ1(ǫ) such that

δ2(ǫ) ≤ li(r0) ≤ δ̄i(ǫ), i = 1, 2, · · · ,m. (23)

Let V (k0, x0) = w0, then when ‖x0‖ ≤ δ(ǫ), we get that

‖w0‖ ≤ ϕ2(‖x0‖) ≤ δ2(ǫ), (24)

which implies that

V (k0, x0) = w0 < l(r0). (25)

Thus, by Theorem 3.1, we get

‖x(k, k0, x0)‖ ≤ ϕ−1
1 (‖V (k, x(k))‖)

≤ ϕ−1
1 (‖w(k, k0, w0)‖)

≤ ϕ−1
1 (‖l(r(k, k0, r0))‖)

< ǫ, k ≥ k0, k ∈ N. (26)

Hence, systems S1 is US.

In the following, we show that system S1 is UAS if system
S3 is UAS. From the above proof, we only need to prove
that limk→∞ ‖x(k, k0, x0)‖ = 0 holds uniformly for k0 ∈
N .

By the UAS of system S3, we get that limk→∞ r(k, k0, x0) =
0 holds uniformly for k0 ∈ N . From the continuity of
function l(r), it leads to limk→∞ ‖l(r(k, k0, x0))‖ = 0 holds
uniformly for k0 ∈ N . Thus, by Theorem 3.1, we obtain
that

lim
k→∞

‖x(k, k0, x0)‖ ≤ lim
k→∞

ϕ−1
1 (‖V (k, x(k, x(k)))‖)

≤ lim
k→∞

ϕ−1
1 (‖w(k, k0, w0)‖)

≤ lim
k→∞

ϕ−1
1 (‖l(r(k, k0, r0))‖) = 0, (27)

holds uniformly for k0 ∈ N .

Hence, system S1 is UAS.

Moreover, for any x0 ∈ D(x), there exists a r0 with
0 ≤ r0 < r∗ such that V (k0, x0) ≤ l(r0). Hence, we can
choose that w0 = V (k0, x0) and hence by Theorem 3.1, we
get (27) holds. Therefore, D(x) is an attractive region of
system S1. The proof is complete. 2

Theorem 3.3. Assume that systems S1 − S3 satisfy
all conditions of Theorem 3.1 and also assume that the
following conditions hold:

(i) there exist constants λ1 > 0, λ2 > 0, p > 0 such that

λ1‖x‖
p ≤ ‖V (k, x)‖ ≤ λ2‖x‖

p, k ∈ N ; (28)

(ii) there exist a constant q ≥ 1 and Θ1,Θ2 ∈ Rm
+ ,

where Θ1 = (c1 c2 · · · cm)
T
, Θ2 = (d1 d2 · · · dm)

T
, with

ci > 0, di > 0, i = 1, 2, · · · ,m, such that

rqΘ1 ≤ l(r) ≤ rqΘ2, r ∈ [0, r∗]. (29)

Then, the UES of system S3 implies that the UES of
system S1. Moreover, E(x) is an attractive region of
system S1, where

E(x) ,
{

x ∈ Rn : Vi(k, x) < cir
∗, k ∈ N, i = 1, 2, · · · ,m

}

,

where V = (V1, V2, · · · , Vm)T .

Proof. Suppose that system S3 is UES, then there exist
positive constants K ≥ 1, α > 0 such that

r(k, k0, r0) ≤ Kr0e
−α(k−k0), k ≥ k0, k ∈ N. (30)

For any x0 ∈ E(x), let w0 = V (k0, x0), and r0 =

max1≤i≤m

{

Vi(k0,x0)
ci

}
1
q

, then, by condition (ii), we get

that 0 ≤ r0 < r∗ and 0 ≤ V (k0, x0) = w0 ≤ l(r0). Thus,
by Theorem 3.1, we get, for any k ≥ k0, k ∈ N ,

‖V (k, x(k))‖ ≤ ‖l(r(k))‖ ≤
(

m
∑

j=1

d2
j

)
1
2

Kqr
q
0e

−αq(k−k0).

(31)

It follows from (31) and condition (i), we have
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‖x(k)‖ ≤

(

(

∑m
j=1 d2

j

)
1
2

Kqr
q
0

λ1

)
1
p

e−
αq

p
(k−k0)

≤

(

Kqλ2

(

∑m
j=1 d2

j

)
1
2

λ1 min1≤i≤m{ci}

)
1
p

‖x0‖e
−

αq

p
(k−k0). (32)

Hence, system S1 is UES and E(x) is an attractive region
of system S1. 2

In the following, we investigate the stability properties of
system S1 by using the stability properties of system S2.
Let Ω(w) be an attractive region of system S2.

Theorem 3.4. Assume that systems S1 − S2 satisfy
all conditions of Corollary 3.1 and (20) holds for some
functions ϕ1, ϕ2 ∈ K, then, the US (UAS) properties of
system S2 implies that the same US (UAS) properties
of system S1. Moreover, D(x) is an attractive region of
system S1, where D(x) =

{

x ∈ Rn : V (k, x) ∈ Ω(w), k ∈

N
}

.

Proof. If system S2 is US, then for any ǫ > 0, there exists
δ1(ǫ) > 0 such that for any w0 satisfying ‖w0‖ ≤ δ1(ǫ), we
have

‖w(k, k0, w0)‖ ≤ ϕ1(ǫ), k ≥ k0, k ∈ N. (33)

Let δ(ǫ) , ϕ−1
2 (δ1(ǫ)). For any x0 satisfying ‖x0‖ ≤ δ(ǫ),

we let w0 = V (k0, x0), then, by (20), we have

‖w0‖ = ‖V (k0, x0)‖ ≤ ϕ2(‖x0‖) ≤ δ1(ǫ), (34)

which implies (33) holds for all k ∈ N . Thus, by Corollary
3.1, we get that

‖x(k, k0, x0)‖ ≤ ϕ−1
1 (‖V (k, x(k))‖)

≤ ϕ−1
1 (‖w(k, k0, w0)‖) < ǫ, k ≥ k0, k ∈ N. (35)

Hence, system S1 is US. Moreover, if system S2 is UAS
with attractive region Ω(w), then, by similar proof of
Theorem 3.2, we obtain that system S1 is UAS with
attractive region D(x). 2

Theorem 3.5. Assume that systems S1 − S2 satisfy all
conditions of Corollary 3.1 and also assume that the
condition (i) in Theorem 3.3 holds, then, the UES of
system S2 implies that the UES of system S1. Moreover,
D(x) is an attractive region of system S1, where D(x) =
{

x ∈ Rn : V (k, x) ∈ Ω(w), k ∈ N
}

.

Proof. Suppose that system S2 is UES, then there exist
positive constants K ≥ 1, α > 0 such that

‖w(k, k0, r0)‖ ≤ K‖w0‖e
−α(k−k0), k ≥ k0, k ∈ N. (36)

For any x0 ∈ D(x), let w0 = V (k0, x0), then by Corollary
3.1, we get V (k, x(k)) ≤ w(k) for all k ≥ k0, k ∈ N . Using
condition (i) in Theorem 3.3, we get

‖x(k)‖ ≤
(Kλ2

λ1

)
1
p

‖x0‖e
−α

p
(k−k0), k ≥ k0, k ∈ N. (37)

Hence, system S1 is UES and D(x) is an attractive region
of system S1. 2

4. APPLICATIONS TO ROBUST STABILITY.

In this section, we apply the comparison principle The-
orems 3.1-3.5 established in Section 3 to robust stability
analysis of linear and nonlinear uncertain discrete impul-
sive hybrid systems.

Case 1. Consider the linear interval discrete impulsive
hybrid system:

{

x(k + 1) = Ax(k), k 6= Ni,
∆x(k + 1) = Bkx(k), k = Ni, i ∈ N,
x(k0) = x0,

(38)

where A ∈ N [P,Q] and Bk ∈ N [Pk, Qk], k ∈ N , with
B0 = 0, and P = (pij), Q = (qij), Pk = (pijk

), Qk = (qijk
)

are n × n known matrices.

By Lemma 2.2, (38) can be rewritten as
{

x(k + 1) = A0x(k) + EΣFx(k), k 6= Ni,
∆x(k + 1) = Bk0

x(k) + EkΣkFkx(k), k = Ni, i ∈ N,
x(k0) = x0,

(39)
where A = A0 + EΣF,Bk = Bk0

+ EkΣkFk, k ∈ N.

Theorem 4.1. Suppose Assumption (A1) holds. Then,
the system (38) is robust UAS if there exists a constant
α > 0 such that for any k ∈ (Ni, Ni+1], k, i ∈ N ,

ln
(

‖A0‖ + ‖E‖‖F‖
)

+

∑i
j=1 ln

(

‖I + BNj0
‖ + ‖ENj

‖‖FNj
‖
)

k − i
≤ −α. (40)

Moreover, if there exists a positive constant 0 < β < 1
2

such that

inf
k∈(Ni,Ni+1]

{ i

k − k0

}

≥ β > 0, i ∈ N, (41)

then, the system (38) is robust UES.

Proof. Let V (k, x) = ‖x‖, then V (k, x) ∈ C[N × Rn, R+]
and V (k, x) ≥ 0. For any w, r ∈ R+, let: gc(k,w) = ‖A‖w,
gd(k,w) =

(

‖I +Bk‖−1
)

w, hc(k, r) = (‖A0‖+‖E‖‖F‖)r,
hd(k, r) = (‖I + Bk0

‖ + ‖Ek‖‖Fk‖ − 1)r, and l(r) = r,
then, we get

V (k + 1, x(k + 1)) ≤ gc(k, V (k, x(k))), k 6= Ni,

∆V (k + 1, x(k + 1)) ≤ gd(k, V (k, x(k))), k = Ni.

gc(k, l(r)) ≤ l(hc(k, r)), k 6= Ni, r ∈ R+,

gd(k, l(r)) ≤ l(hd(k, r)), k = Ni, r ∈ R+,

which implies that all conditions of Theorem 3.1 hold.

For any x0 ∈ Rn, let r0 = w0 = V (k0, x0) = ‖x0‖, then by
Theorem 3.1, we have that

‖x(k)‖ = V (k, x(k)) ≤ w(k) ≤ r(k), k ∈ N, (42)

where w(k) and r(k) are the solutions to following systems,
respectively:

{

w(k + 1) = ‖A‖w(k), k 6= Ni,
∆w(k + 1) = (‖I + Bk‖ − 1)w(k), k = Ni,
w(k0) = w0 = ‖x0‖, k ∈ N, , k ≥ k0,

(43)

and
{

r(k + 1) = (‖A0‖ + ‖E‖‖F‖)r(k), k 6= Ni,
∆r(k + 1) = (‖I + Bk0

‖ + ‖Ek‖‖Fk‖ − 1)r(k), k = Ni,
r(k0) = r0 = ‖x0‖, k ∈ N, k ≥ k0.

(44)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11523



Thus, by Theorem 3.2 that the US (UAS) properties of
system (44) implies that the same US (UAS) properties of
system (38). Hence, in the following, we only need to prove
that the system (44) is UAS under the condition (40).

Denote a , ‖A0‖ + ‖E‖‖F‖, bk , ‖I + Bk0
‖ + ‖Ek‖‖Fk‖.

For any k ∈ (Ni, Ni+1], k, i ∈ N , by (44), we get

r(k) = ar(k − 1) = ak−(Ni+1)r(Ni + 1)

= ak−Ni−1bNi
r(Ni), (45)

which implies

r(Ni+1) = aNi+1−Ni−1bNi
r(Ni), i ∈ N. (46)

It follows from (45)-(46) that

r(k) = ak−Ni−1bNi
r(Ni),

= ak−Ni−1bNi
aNi−Ni−1−1bNi−1

r(Ni−1)

= ak−Ni−1bNi

1
∏

j=i

aNj−Nj−1−1bNj−1
r0

= ak−i

i
∏

j=1

bNj
r0 = e

(k−i) ln a+
∑

i

j=1
ln bNj r0. (47)

On the other hand, it follows from Assumption (A1) that

Ni ≥ Ni−1 + 2 ≥ Ni−2 + 4 ≥ · · · ≥ N0 + 2i ≥ 2i. (48)

Hence, for any k ∈ (Ni, Ni+1], we get

k > Ni ≥ 2i. (49)

Therefore, by (40), (47) and (49), for any k ∈ (Ni, Ni+1],
we obtain that

0 ≤ r(k) ≤ e−α(k−i)r0 < e−αir0. (50)

Obviously, 0 ≤ r(k) < r0, which implies that the system
(44) is US. Moreover, from (50) and the fact that k → ∞
if and only if i → ∞, we obtain the system (44) is UAS.
Hence, by Theorem 3.2, system (38) is robust UAS.

Moreover, if (41) holds, then, it follows from (50) that

0 ≤ r(k) < e−αir0 ≤ e−αβ(k−k0)r0, k ≥ k0, (51)

which means that system (44) is UES. Thus, by Theorem
3.3, system (38) is robust UES. The proof is complete. 2

Case 2. Consider a class of nonlinear uncertain discrete
impulsive hybrid system in form of (1):

{

x(k + 1) = f(k, x(k)) + ϕ(k, x(k)), k 6= Ni,
∆x(k + 1) = Bkx(k), k = Ni,
x(k0) = x0, k ≥ k0, k ∈ N,

(52)

under the following assumptions:

(B1): for any k ∈ N and x, y ∈ Rn, there exist matrices
Ak ∈ Rn×n such that

∣

∣f(k, x) − f(k, y)
∣

∣ ≤ Ak

∣

∣x − y
∣

∣ (53)

(B2): The functions ϕ represent structural uncertainty or
uncertain perturbation characterized by: there exist some
matrix Ck ∈ Rn×n, such that

|ϕ(k, x)| ≤ Ck|x|, k ∈ N. (54)

Theorem 4.2. Suppose that Assumptions (A1)-(A3) and
(B1)-(B2) hold. Furthermore, assume that there exists a
positive definite matrix P ∈ Rn×n such that

∞
∑

k=0

ln γk = −∞, (55)

where γk =

{

αk, if k 6= Ni,
βk, if k = Ni, k, i ∈ N,

where

αk = λmax

(

P−1(|Ak + Ck|)
T P (|Ak + Ck|)

)

, and βk =

λmax

(

P−1(|I + Bk|)
T P (|I + Bk|)

)

.
Then, system (52) is robust UAS.

Moreover, if there exist k1 ∈ N with k1 ≥ k0 and a positive
constant α > 0 such that

sup
k≥k1,k∈N

{

∑k−1
j=0 ln γj

k − k0

}

≤ −α, (56)

then, the system (52) is robust UES.

Proof. Let V (k, x) = |x|, then V (k, x) ∈ C[N × Rn, Rn
+]

and V (k, x) ≥ 0. For any w ∈ Rn with w ≥ 0, denote:

gc(k,w) , (Ak + Ck)w, and gd(k,w) ,
(

|I + Bk| − I
)

w,
then, by Assumptions (B1)-(B2), we get

V (k + 1, x(k + 1)) ≤ gc(k, V (k, x(k))), k 6= Ni,

∆V (k + 1, x(k + 1)) ≤ gd(k, V (k, x(k))), k = Ni.

Thus, under Assumptions (B1)-(B2) and by using |.|, we
can linearize the system (52) into the following linear
comparing system:

{

w(k + 1) = (Ak + Ck)w(k), k 6= Ni,
∆w(k + 1) = (|I + Bk| − I)w(k), k = Ni,
w(k0) = w0 = |x0|, k ∈ N.

(57)

It follows from V (k0, x0) = |x0| ≤ w0 and Corollary 3.1
that

|x(k)| = V (k, x(k)) ≤ w(k), k ∈ N. (58)

Thus, by Theorem 3.4 that the US (UAS) properties of
system (57) implies that the same US (UAS) properties of
system (52). Hence, in the following, we only need to prove
that the system (57) is UAS under the condition (55).

Let Lyapunov function be W (x) = wT Pw, then by Lemma
2.1 and Assumptions (B1)-(B2), for any k 6= Ni, we get

W (w(k + 1)) = w(k)T
[

Ak + Ck

]T
P
[

Ak + Ck

]

w(k)

≤ λmax

(

P−1(|Ak + Ck|)
T P (|Ak + Ck|)

)

W (w(k))

= αkW (w(k)); (59)

and for k = Ni, by Lemma 2.1, we get

W (w(k + 1)) =
[

|I + Bk|w(k)
]T

P
[

|I + Bk|w(k)
]

≤ λmax

(

P−1(|I + Bk|)
T P (|I + Bk|)

)

W (w(k))

≤ βkW (w(k)), (60)

that is,
W (w(Nk + 1)) ≤ βNk

W (w(Nk)). (61)

From (59)-(61), for any k ∈ (Ni, Ni+1], we obtain that

W (w(k)) ≤
(

k−1
∏

j=0

γj

)

W (w0) = e

∑

k−1

j=0
ln γj

W (w0), (62)
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which implies that

‖w(k)‖ ≤

√

λmax(P )

λmin(P )
e

1
2

∑

k−1

j=0
ln γj‖w0‖, k ≥ k0, k ∈ N.

(63)
Hence, if

∑∞

j=0 ln γj = −∞, then by (63), there ex-

ists a positive constant K > 0 such that ‖w(k)‖ ≤
K‖w0‖, which leads to the US of system (57). Moreover,
limk→∞ ‖w(k)‖ = 0. Thus, system (57) is UAS. Hence, by
Theorem 3.4, system (52) is robust UAS.

Moreover, if (56) holds, then, by (63), there exists a
positive constant K1 > 0 such that

‖w(k)‖ < K1

√

λmax(P )

λmin(P )
e−

α
2
(k−k0)‖w0‖, k ≥ k0, (64)

which means that system (57) is UES. Thus, by Theorem
3.5, system (52) is robust UES. The proof is complete. 2

Remark 4.1. Obviously, if the conditions of Theorems
4.1-4.2 hold, then, the attractive region of systems (38)
and (52) is Rn.

5. CONCLUSIONS

In this paper, we have established the comparison principle
for discrete impulsive hybrid systems. Based on the com-
parison principle, we derived uniform stability (US, UAS
and UES) criteria and the region of attraction for this
kind of systems. As applications, the comparison principle
has been used to investigate robust stability for linear
interval discrete impulsive hybrid systems and a class of
nonlinear uncertain discrete impulsive hybrid systems. The
robust stability criteria obtained are verifiable via solving
algebraic inequalities.
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