
1. INTRODUCTION

The framework of LTI (Linear Time Invariant) systems

has been shown to provide good approximating models for a

lot of real-life applications. For some classes of problems,

however, the assumption of time-invariance may not always

be satisfied. Consider for instance nonlinear systems with a

time-varying setpoint. These systems can locally be approxi-

mated by LTI models, which are a function of one or more

so-called scheduling parameters (Bamieh B., Giarré L.,

2002). Examples are: a moving robot arm, flight flutter anal-

yses with the flight velocity and altitude as scheduling

parameters, structures with varying loads, etc. Other systems

that have a time-varying behavior are systems with parame-

ters that actually vary with time, e.g. the impedance of a

metal subjected to pitting corrosion. However, from a black

box identification point of view, both setpoint varying sys-

tems and systems with time-varying parameters can be seen

as belonging to the same class of systems.

A very common method for identifying time-varying sys-

tems where the time-variations are identified in a non-para-

metric fashion is recursive identification, which is thoroughly

studied in (Niedzwiecki M., 2000) and in (Ljung and Söder-

ström, 1983). This method is, of course, mostly applicable

when the time variations are random and relatively slow w.r.t.

the dynamics of the system. This paper will only consider the

parametric identification of time-variations.

Classically, setpoint varying systems could be identified

using the LTI framework, in which case multiple experiments

would be carried out on a well-defined grid of the scheduling

parameters. An interpolation algorithm could then describe

the parameters as functions of the setpoint, resulting in so-

called polytopic models. This method has the following

important disadvantages: i) the scheduling parameters must

have the ability to be “frozen” (which is not always possible,

e.g. in chemical processes), ii) multiple experiments may last

a long time, iii) the quality of the model depends on the inter-

polation method. Making use of linear time-varying models

(LTV) provides an important benefit in this case. The whole

range of the setpoints of interest is identified in only one

well-designed experiment.

In (Fujimori and Ljung, 2006) polytopic models of linear

time-varying systems are identified. In this case, measure-

ments of time-varying setpoint systems are matched with

interpolated LTI models. An interpolation method is chosen

and the parameters of the LTI models on a well-defined grid

of the scheduling parameters are identified.

This paper handles the identification of linear, SISO (Sin-

gle-Input, Single-Output), lumped, continuous time systems

which can be described by ordinary differential equations

with time dependent parameters. These parameters are

approximated by piecewise low-order polynomials in time, as

illustrated on Fig. 1. Extra constraints are applied to the poly-

nomials to ensure that the parameters are continuous and

have continuous derivative(s). Note that any time-variation

can be approximated by such piecewise polynomials. Fast

variations will, however, require the time-pieces to be short,

resulting in a low resolution and eventually prohibiting a

good identification.

As mentioned in (Bamieh and Giarré, 2002), in many pro-

cesses it is a realistic assumption that, for systems with a

varying setpoint, the scheduling parameters are measurable

as functions of time (the position of the robot arm or the

speed of the airplane in the case of flight flutter analysis,

etc.). As a consequence, when the parameters are identified

as functions of time (as will be done in this paper), they are

also known as functions of the scheduling parameters.

Contrary to most previous work (Bamieh and Giarré,

2002), (Niedzwiecki, 2000), (Poulimenos and Fassois, 2006),

the identification will be performed in the frequency domain.

This has two main advantages. The first is that a non-para-

metric model of the colored input/output noise can easily be
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Fig. 1  The parameters are approximated by low-order piecewise polynomi-

als. Between two grey vertical lines the parameter is described by one poly-

nomial. In the small black circles ‘o’ the function and its derivative(s) are

constrained to be continuous.
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used. The second is that the identification is performed in a

well-defined frequency band of interest. This band of interest

is chosen such that it contains the dynamics of the system

which are important for the intended application.

Time-domain methods on the other hand have the advan-

tage that modelling time-varying parameters as a linear com-

bination of arbitrary basis functions is more easily

implemented (chapter 6 in Niedzwiecki, 2000) and (Pouli-

menos and Fassois, 2006). For their frequency domain coun-

terparts the Laplace transforms of the system equations are

needed. These will contain the convolutions of the Laplace

transforms of the basis functions used and the derivatives of

the input and output signals. These are usually not easily

implemented. An exception to this is the use of polynomials

as basis functions, as will be illustrated in this paper.

Multisines will be used as excitation signals. These signals

have been shown to be very useful in identification. They are

designed to cover a well-defined chosen frequency band and,

for time invariant systems, they allow for a clear distinction

between system noise and nonlinear distortions (De Locht et

al., 2004), (Schoukens et al., 2005). For linear time-varying

systems they will be shown to provide an idea of the speed of

the time-variations and an approximate non-parametric

model of colored input/output noise.

The remainder of this paper is organized as follows. Sec-

tion 2 gives a formal description of the class of systems con-

sidered. Section 3 considers setting up a cost function and its

minimization for the identification. The use of multisines as

an excitation signal for time-varying systems to estimate the

speed of the time-variations and the power spectrum of the

noise is discussed in Section 4. Section 5 shows simulation

results and conclusions are drawn in Section 6.

1.1. Notational conventions

Continuous time-domain signals are designated by lower

case letters (e.g. ) and their Laplace transforms by the

respective uppercase letters ( ).  denotes the

Laplace transform and  the Laplace variable.  denotes

the -th bin of the sampled Laplace transform on the -

axis, i.e.  where  is the sampling fre-

quency and  is the number of equidistant time-samples

inside one time-record.

2. PROBLEM FORMULATION

The time-varying systems in the considered class are

described by ordinary differential equations in the time

domain with parameters varying polynomially with time, as

given by:

(1)

where  and  are the noiseless input and output sig-

nals, respectively. By using the property

(2)

equation (1) can easily be converted to the Laplace domain

(see Appendix A):

(3)

with  the transient terms,  and  the Laplace

transforms of the windowed (uniform) input and output sig-

nals, respectively:

with  replaced by  and  and:

, 

 and  in (3) are defined as:

where . Clearly,  and  are poly-

nomials in  with coefficients which are linear in  and

. Notice that setting  in (3) gives the classical

input/output equation for an LTI system. The transient terms

 are functions of the differences between the initial and

end conditions. For LTI systems excited by periodic signals

and measured in steady-state, this difference would be zero

since the output signal would also be periodic. For time-vary-

ing systems on the other hand, the response to a periodic sig-

nal will, in general, not be periodic, making the transient

terms in (3) mandatory. Note that the expression for the tran-

sient terms in (3) is only valid on the sampled frequency lines

 (as follows from the appendix).

To be of practical use when working with sampled band-

limited signals, the Laplace transform should be approxi-

mated by the Discrete Fourier Transform (DFT). The -th

bin of the DFT of the time-domain signal  will be writ-

ten as . The errors due to aliasing made during the identi-

fication can be reduced by allowing a higher order of the

transient polynomial in (3) (Pintelon and Schoukens, 1997

and 2001). Note that, due to the non periodicity of the output

signal, these aliasing errors will always be present. When

working with the DFT’s, an approximation of the derivatives

of the Laplace transforms needed in (3) are readily calculated

as

(4)

with  to be replaced by  and , and where  denotes the

normalized discrete time. Equation (4) is computed very effi-

ciently by using the Fast Fourier Transform (FFT) algorithm.

For the parameters to be piecewise polynomially varying,

the system equation (3) must be satisfied for each time-piece.

In addition, some continuity constraints on the parameters

and their derivatives w.r.t.  may be imposed at the bound-

aries of the time-pieces, as explained in Fig. 1. For instance,
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if the parameters are approximated by third order polynomi-

als, one may impose the derivatives to be continuous up to

the second order. This is equivalent to a cubic spline approxi-

mation. The practical implementation of these constraints is

discussed in section 3.4.

3. TRANSLATION TO AN IDENTIFICATION PROBLEM

3.1. Measurement and noise assumptions

The identification problem consists of estimating the

parameters ,  and  from available measurements

of the discrete Fourier transforms of the input and the output

signals. The latter are assumed to satisfy the following:

(5)

where  and  are the noise on the -th frequency

bin of, respectively, input and output signals. For this paper,

the noise is assumed to be circular complex normally distrib-

uted and uncorrelated over the frequency:

(6)

with  for  and 0 otherwise, and  denotes

an expected value. Note that coloring of the noise is allowed

(i.e. the variances and co-variances may be frequency-depen-

dent). The noise assumptions are summarized in Fig. 2.

3.2. Weighted nonlinear least squares cost function

A cost function must be set up. A good candidate is the

weighted nonlinear least squares cost function, defined as:

(7)

where the set of summation indices  is chosen such as to

cover the whole frequency band of interest. In this equation,

 is the so-called equation error calculated as the difference

between the left and the right hand side of (3) where 

and  are replaced by the input/output DFT spectra

 and .  is a vector containing all the parameters to

be estimated ( ,  and ).  is the variance of 

and will be discussed later on.

Cost functions formed like (7) as the sum of squared errors

weighted by their uncertainty have been shown to provide

“healthy” estimators. This cost function is inspired on the

Maximum Likelihood cost function for LTI systems (see

Chapter 7.11 of Pintelon R., Schoukens J., 2001) and can eas-

ily be shown to be correct. Consistency is not proven in a

straightforward fashion because longer measurements imply

more time-variations to be taken into account. This implies

more time-pieces and thus a growing number of parameters.

Intuitively, the uncertainty on the estimated parameters can

be decreased when experiments are repeatable. Note that

accurate reproduction of a measurement with time-varying

systems is not an easy job, especially when considering the

synchronization of the scheduling parameters with the excita-

tion signal.

3.3. Variance of the equation error

As mentioned earlier, the cost function (7) needs the vari-

ance of the equation error. It can be calculated as:

(8)

where  denotes the complex conjugate of . The variances

of the derivatives and covariances between derivatives of the

signals needed in this equation are easily calculated from the

variances and covariances of the signals:

(9)

with ,  replaced by  and ,  by

 and  (proof in Appendix B). The

 is obtained by replacing  by the

covariance  in (9).

In this section, ,  and  have been

assumed to be known. If this isn’t the case, section 4.2 dis-

cusses how one can obtain estimates from the measured sig-

nals.

3.4. Minimizing the cost function with the constraints

Since the cost function , given by (7) is non-quadratic

in , minimizing it will require starting values. A linear least

squares or total least squares algorithm (TLS, bootstrapped

TLS or weighted generalized TLS) can provide those values

(Pintelon R. et al., 1998).

, being a sum of squares, is well-suited to be mini-

mized by the Levenberg-Marquardt algorithm (Fletcher R.,

1987, chapter 6). This algorithm requires the so-called Jaco-

bian of the cost function to be calculated:

(10)
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Note that in , defined in (7), only the polynomials  and

 are functions of . Additionally, since they are linear in

, the derivatives of  and  have to be evaluated only

once, at the start of the iteration.

For the parameters to be identified as piecewise polynomi-

als, the cost function (7) must be minimized for each time-

piece. In addition, the constraints that ensure the continuity of

these polynomials must be integrated in this minimization.

Assume that some parameter  can be written as

.

Expressing that its -th derivative in  is continuous

implies:

.

This expression is linear and homogeneous in the coefficients

of the polynomials. As a consequence, the constraints can be

written in matrix notation: 

(11)

where  is a matrix with the number of rows equal to the

number of constraints .  is the extended vector of

parameters, obtained by vertical concatenation of the parame-

ters of all the time-pieces. Let  be the length of , the

total number of parameters. Any solution to (11) can be writ-

ten as:

(12)

where the columns of  span the null-space of the matrix

.  is now calculated using a singular value decomposi-

tion (SVD) of , which is expressed as

(13)

where  and  are unitary matrices with dimensions 

and  respectively and  is a diagonal matrix contain-

ing the singular values, padded with zeros to fulfill the

dimensions.  is easily shown to be formed by the last

 columns of  (Golub and Van Loan, 1989).

Expressing  as in (12) ensures the parameters to be

piecewise polynomials with continuous derivatives up to a

given order. Plugging (12) into the set of cost functions

(expressing (7) for all the time-pieces) and minimizing this

w.r.t.  provides estimates of the parameters, which fulfill

the constraints. Note that once the Jacobian w.r.t.  ( )

is known, the Jacobian w.r.t.  is readily calculated as (argu-

ments  and  omitted for convenience):

4. USE OF MULTISINE EXCITATIONS

Although (3) is satisfied for arbitrary excitations, random

phase multisines will be used in this paper. Random phase

multisines have the following form:

(14)

where the ’s are stochastic variables w.r.t. , uniformly

distributed in the interval [ [, such that . The

constant  is equal to the number of excited frequency lines

(as explained further), so that the root mean square (RMS)

value of the signal would be independent of the number of

excited lines.  consists of a sum of sines with frequen-

cies all multiples of the same so-called fundamental fre-

quency . Due to its periodicity, its Fourier spectrum is

discrete (as shown in Fig. 3). The excited frequency band can

be chosen arbitrarily by determining the fundamental fre-

quency and the amplitudes  of the individual lines.

Choosing  for frequency lines inside the band of

interest (so-called excited frequency lines) and 0 outside (the

non-excited frequency lines) provides a perfectly band-lim-

ited white excitation inside the chosen band as shown in Fig.

3. An arbitrary coloring can be obtained by choosing 

accordingly. When one period of this signal is sampled by 

equidistant time samples at a sampling rate of , neither

aliasing nor leakage occurs.

4.1. Estimating the speed of variations

Exciting LTI systems with multisines gives also a multi-

sine as output signal in steady-state with the same excited fre-

quencies as the input signal, but shaped by the frequency

response of the system (as represented by the black arrows on

Fig. 4, left). When exciting a (non-cyclically) time-varying

system with a multisine, the output signal will not be periodic

anymore and one can no longer talk about a steady-state.

When the time-variations are sufficiently slow, the most

important contributions will also be found at the excited fre-

quency lines of the output spectrum. But contrary to time

invariant systems, the non-excited lines will also contain con-

tributions (the grey dots on Fig. 4, right). The spectrum is

built up of peaks and valleys, which give a rough non-para-

metric idea of the speed of the time-variations. For slower

variations, the valleys are deeper and the peaks are sharper.

This is as expected since for time invariant systems, the
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peaks are actually infinitely sharp. One could say that, as for

LTI systems, the energy is concentrated on the excited fre-

quency lines; for slowly time-varying systems, the energy

from the excited lines was slightly spread out over the non-

excited lines. As a consequence, when identifying time-vary-

ing systems using multisines, one should not only consider

the excited lines but also use the non-excited ones. For slow

variations, the excited lines will mostly contain information

of a “mean” system over time, while the non-excited lines tell

a lot about the time-variations.

4.2. Noise estimation

In section 3 an estimator was presented which needed the

frequency-dependent variances and covariance of the input

and output signals. If those are a priori unknown (as is usu-

ally the case), one could try to extract them from the signal.

The use of multisines will prove to be helpful for this task.

As was mentioned in Section 4.1, when exciting a time-

invariant system with a multisine, the signal at the output is

supposed to be only present at the excited frequency lines.

Therefore, for a purely linear system, the energy on the non-

excited lines is entirely due to noise. As shown in Fig. 5 left,

a non-parametric frequency-dependent noise model is thus

easily extracted from these non-excited lines. This technique

is, however, not directly applicable to time-varying systems

because the non-excited lines are a mix of the signal and the

noise, as illustrated in Fig. 5 on the right. A similar technique

is, however, possible, since for sufficiently slow variations,

peaks and valleys are present (as discussed in Section 4). The

peaks correspond to regions with high Signal-to-Noise Ratio

(high SNR), whereas the signal in the valleys has a low SNR.

In fact, it is perfectly possible that the signal in the valleys

gets close to the noise floor (as the second valley in Fig. 5,

right, for instance) or even is submerged by the noise. If one

can assume that the power spectrum of the noise is varying

slowly w.r.t. the frequency resolution used - meaning that the

power spectrum is nearly white inside each valley - one can

estimate its variance from neighbouring points that have a

low SNR.

5. SIMULATION RESULTS

The estimator described in the previous sections has been

verified on a simulated continuous-time, linear time-varying

system. This system was of order 2 in the numerator and 4 in

the denominator and with parameters varying piecewise

polynomially with time. The polynomials were of 3rd degree

and the derivatives of the parameters w.r.t time were con-

strained to be continuous up to the second order. The system

was excited with a multisine containing 41 frequencies. The

input and output signals were distorted by colored noise. The

mean SNR was .

In Fig. 6 the resulting identified parameters (grey thick

line) are compared with the real parameters (thin black line)

as functions of time. As is clear, they coincide very well. As

shown, the time-record was split into 4 time-pieces (the

boundaries of each piece being given by the black circles).

Note that extrapolating these parameter values outside the

considered time-record is very dangerous since polynomials

diverge very quickly. When comparing the real noiseless out-

put signal with the output signal simulated using the identi-

fied parameters, the mean squared error lies  below the

RMS value of the output signal, which is an improvement of

 w.r.t. the SNR of the noisy signals. This is in accor-

dance with the rule of thumb (Ljung, 1999) that the improve-

ment should be about 

.

A total number of 56 independent parameters were identified

(taking into consideration the constraints) using 1376 fre-

quency domain data points (excited and non-excited lines).

Setting up Fig. 6 for real-life applications is of course

impossible because neither the real parameter values nor the

noiseless output signal are known. Another method for deter-

mining the quality of the identification is illustrated in Fig. 7.

After minimization of the cost function (7), the left hand side

(black dots ‘•’) and the right hand side (black circles ‘o’) of

the system equation (3) should coincide at each frequency

line. The difference between both (given by the broken grey

line) should lie around the standard deviation of the equation

error (thick black line), calculated using (8). As a conse-

quence, the residues  in (7) (given by the grey crosses ‘x’),

which are precisely the ratio of the equation error and its

standard deviation, should lie around 1 (or 0 dB). This is the

case in Fig. 7.
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Fig. 5  Frequency domain of noisy output signal: left for an LTI system,

right for an LTV system (zoomed in). In the LTI case, the non-excited lines

(grey dots) can immediately serve as a non-parametric model of the vari-

ance of the excited frequency lines (black arrows). This is less straightfor-

ward for the LTV case. Remark: one and the same noise realization was

used in both the LTI and the LTV cases.
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6. CONCLUSION

This paper presents an identification method for linear,

continuous time, time-varying dynamic systems. The identi-

fication is performed in the frequency domain, revealing the

important benefits of using multisines as excitation signals. A

non-parametric model of the colored disturbing noise was

extracted from only one measurement and a rough idea of the

speed of variation is given.
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APPENDIX A. LAPLACE TRANSFORM OF THE SYSTEM EQUATION

For windowed signals (rectangular window), one can

show (see Appendix 5.B of Pintelon and Schoukens, 2001):

(15)

where  denotes the derivative of order •. When evaluated

along the -axis at the DFT frequencies , the

sum in (15) is a polynomial of order  in . Combining

property (2) and eq. (15) gives:

(16)

where  is still a polynomial of order  when evalu-

ated at the DFT frequencies. Applying (16) to the right hand

side of (1) gives:

which can be rewritten as (by working out the derivatives and

isolating the factors in which the signal is present):

Applying the same derivation to the left hand side of (1),

combining the transient terms and evaluating the whole

expression in the DFT frequencies gives (3).

APPENDIX B. COVARIANCES OF DERIVATIVES OF SIGNALS

The inverse discrete fourier transform of  is:

with . Substituting this equation into (4)

gives:

(17)

Expression (9) is then obtained by evaluating

using (17) and by making the assumption that the noise is

uncorrelated over the frequency, as expressed by (6).
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Fig. 7  Left hand side and right hand side (given by the black dots ‘•’ and cir-

cles ‘o’, respectively) of the system equation (3) after minimization of the

cost function (7). The grey line is the difference between the left and the right

hand side while the black thick line is an estimation of the standard deviation

of the equation error. The grey crosses ‘x’ are the residues  in (7).ε
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