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Abstract: In this paper, the Autocovariance Least Squares (ALS) technique is proposed for
detecting the Global Positioning System (GPS) measurements’ interference or jamming. The
interference is modeled by a moderate increase in the measurements noise covariance matrix
while jamming is modeled by a larger increase in the measurements noise covariance matrix.
The method makes use of the dynamics of the system measured by an inertial measurement
unit (IMU) and the propagated residual of an ultra-tightly coupled GPS/IMU Extended Kalman
filter (EKF) to form a bank of statistics used to estimate the GPS measurement-noise covariance.
Simulated scenarios of different levels of noise magnitude are applied and the proposed method
is used to estimate the GPS pseudorange noise covariance matrix. Results are presented at the
end of the paper to show the accuracy of the proposed algorithm. The algorithm presented in
this paper is vital for high-integrity operation of autonomous navigation systems.

Keywords: Estimation and filtering; Statistical data analysis; Fault detection and
identification.

1. INTRODUCTION

With the increase in the number of integrated sensors used
in current engineering applications, sensor fusion research
is ongoing to increase the accuracy of obtaining high-
accuracy estimates from sensors’ measurements. Systems
that are expected to work autonomously need to be de-
signed carefully to ensure accurate operation under chang-
ing operational environments. Also, sensors might degrade
in performance over time. Sensors’ quality becomes an
important issue for such systems. The designer has the
option of selecting sophisticated and accurate sensors on
the expense of cost. Alternatively, he can adapt less ex-
pensive sensors and design his fusion algorithm to account
for the less-accurate measurements [1].

One of the widely used sensors for autonomous appli-
cations is the GPS and IMU sensors, [2, 3, 4]. In this
paper, the problem of detecting interference or jamming
on the GPS pseudorange measurements is addressed. In-
terference is modeled by a medium increase in the GPS
measurements-noise covariance matrix. Similarly, GPS
measurements jamming is modeled by a large increase
in the measurements-noise covariance matrix. Therefore,
the problem of detecting signal interference/jamming and
correcting for it is addressed through estimating the
GPS measurements-noise covariance matrix and using the
estimate in the GPS/IMU fusion algorithm. An adap-
tive algorithm will be presented to estimate the GPS
measurements-noise covariance matrix. The algorithm is
based on the autocovariance least squares technique [5, 6].
This algorithm will take account for the time varying
system dynamics and measurement matrices. The in-
trinsic feature of this algorithm is that it accounts for

the time correlation between measurement residuals. This
correlation exists because of the initial use of incorrect
measurements-noise covariance matrix, which is not known
a priori.

In reference [7], the authors approach the detection of in-
terference/jamming and spoofing in a DGPS-aided inertial
system. Interference and jamming are modeled as increase
in GPS noise covariance. Spoofing is modeled as a bias in
the GPS measurement. A multiple model adaptive estima-
tor (MMAE) is used to detect the covariance of the GPS
measurements from a set of assumed failure hypotheses.
On the other hand, a moving-bank pseudoresidual MMAE
is used to detect and identify spoofing. While their work
gave good results for the simulated failures, the need to
hypothesize measurement faults requires some knowledge
on the expected level of noise magnitude. If non of the
chosen hypotheses is close to the true measurement noise
covariance, then the needed time to converge on the true
covariance will be considerable. Added to that is the com-
putational burden in having enough hypotheses to cover
satisfactory range of possible measurement degradation
levels.

In this study, a baseband ultra-tightly coupled GPS/IMU
filter structure is implemented to check the performance
of the proposed algorithm in detecting and estimating
different Interference/Jamming levels, Figure 1. In the
figure, hΔ() is the discriminator function acting on the
timing error between the received code signal and its
locally generated replica, Δ is the time spacing between
early and late paths in number of chips, Tc is the chip
period, td is the true time, t̂d is the estimated time, k
is the filter gain, p is the signal amplitude, and n′ is
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the additive white Gaussian noise. The output of the
navigation filter is used to control a voltage controlled
oscillator (VCO) or a numerically controlled oscillator
(NCO), which in turn controls the local Pseudo Noise
(PN) code generator. In the ultra-tight filter structure, the
IMU measures the receiver motion and helps isolate the
GPS measurement noise from the true measurement. To
estimate the state of the receiver accurately, there is a need
to know the covariance matrix of the GPS measurements
that may be caused by interference, jamming, spoofing,
or signal multipath. The estimated GPS measurements’
noise covariance matrix is used to tune the bandwidth of
the baseband tracking loop. This motivated the need for
estimation methods applied to GPS measurements-noise
statistics estimation.

Fig. 1. Ultra-Tightly Coupled GPS/IMU fusion Structure

The GPS/IMU measurements are described next.

2. GPS/IMU MEASUREMENTS

The GPS measurements include the C/A code measure-
ments, the carrier phase measurements, and the range rate
measurements. These measurements can be acquired on
two wave frequencies L1 and L2. The proposed algorithm
can be used to estimate the measurement noise statistics
of any of these measurements. Nevertheless, in this study,
the C/A pseudorange measurements are used and their
measurement noise statistics are estimated.

The IMU measures the angular velocity, ωB
EB, and the lin-

ear acceleration, fB, of the platform in three perpendicular
directions. The IMU is used to construct the dynamics
equation that defines the time propagation of the platform
state. By measuring the dynamics of the vehicle, the IMU
assist the code-tracking loop in keeping track of the GPS
code signal.

The state of the vehicle at any time is defined in terms
of its position, velocity, and attitude. The position, PE ,
and velocity, V E , are represented in terms of the Earth
Centered, Earth Fixed (ECEF) coordinate system while
the attitude, QE

B is represented in quaternion format
and describes the body frame orientation relative to the
ECEF frame. The dynamics of this state is obtained by
differentiating the state variables and is represented as:

ṖE = V E (1)

V̇ E = CE
B fB − 2ωE

IE × V E + GE (2)

Q̇E
B =

1
2
ΩB

EBQE
B (3)

where, CE
B is the cosine rotation matrix from the body

frame to the ECEF frame, ωE
IE is the angular velocity

of earth relative to the inertial frame represented in the
ECEF frame, and GE is the gravity vector in the ECEF
frame. fB is the specific force of the vehicle represented
in the body frame and ωB

EB is the angular velocity of the
body frame relative to the ECEF frame represented in the
body frame. These two vectors define the evolution of the
state of the vehicle. ΩB

EB is defined as:

ΩB
EB =

⎡
⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤
⎥⎦

where: ωB
EB = [ ωx ωy ωz ]

Equations 1 to 3 are linearized to obtain the dynamic
equation of the vehicle [8, 9, 10].

3. ADAPTIVE NOISE ESTIMATION

In this section, the Autocovariance Least Squares tech-
nique is proposed for estimating the GPS pseudorange
measurements-noise covariance matrix. The formulation
of the method for the time-varying GPS/IMU system is
described. Given that the GPS/IMU system is represented
in the time-varying system model [8, 9, 10]:

xk+1 = φkxk + Bkwk (4)

zk = Hkxk + vk (5)
The linear state estimator is given as:

x̄k+1 = φkx̂k

x̂k = x̄k + Kk [zk − h(x̄k)]
where x̄k+1 denotes the estimate of the error state given all
the measurements up to time k, x̂k is the posteriori error
state estimate given all the measurements up to time k,
Kk is the filter gain, h(x̄k) = ||P̄E − PK ||. Defining the
estimation error as: εk = xk − x̄k, the evolution process of
this error can be shown to be:

εk+1 = (φk − φkKkHk)︸ ︷︷ ︸
φ̄k

εk + [ Bk −φkKk ]︸ ︷︷ ︸
B̄k

[
ωk

vk

]
︸ ︷︷ ︸

ω̄k

(6)

Or: εk+1 = φ̄kεk + B̄kω̄k. And the residual is defined as:

rk = zk − Hkx̄k = Hkεk + vk (7)

It is assumed that (φk, Hk) is detectable and that φ̄k is
stable. This is valid for our application as will be discussed
in the next section. It can be seen that the dynamics noise
and the GPS measurements noise are correlated.

E[ω̄kω̄T
k ] = Q̄ω =

[
Qω 0
0 Rv

]
E[ω̄kvT

k ] = [ 0 Rv ]T

Any initial estimation error will damp out because of the
assumption that φ̄k is stable. The initial error covariance,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8991



cov(εk) = P−
0 will converge to a steady state error value

satisfying the equation:

P− = φ̄jP
−φ̄

T
j + B̄jQ̄ωB̄

T
j , j = 1, . . . , k (8)

To account for the correlation between the state and
measurements noise error, the autocovariance defined as
lk,k+j = E[rkrT

k+j ] is exploited. It can be seen that:

E(rkrT
k ) = lk,k = HkP−HT

k + Rv

Also,

E[rk+1r
T
k ] = lk+1,k = Hk+1φ̄kP−HT

k − Hk+1φkKkRv

Furthermore,

E[rk+2r
T
k ] = lk+2,k = Hk+2φ̄k+1φ̄kP−HT

k

−Hk+2φ̄k+1φkKkRv

And in general for j ≥ 2

E[rk+jrk] = lk+j,k = Hk+j

k+j−1∏
n=k

φ̄nP−HT
k

−Hk+j

k+j−1∏
n=k+1

φ̄nφkKkRv (9)

where
∏k+j−1

n=k φ̄n = φ̄k+j−1φ̄k+j−2 . . . φ̄k.

The autocovariance matrix (ACM) is defined as:

R(N) =

⎡
⎢⎣

lk,k . . . lk+N−1,k

...
lTk+N−1,k . . . lk+N−1,k+N−1

⎤
⎥⎦ (10)

The off-diagonal autocovariances are not assumed zero
because we do not process the data with the optimal
filter, which is not known. The number of lags, N , needed
depends on the desired accuracy of the estimate and on
the computational power of the system.

The autocovariance matrix of innovations can be written
as:

R(N) = OP−OT + Γ(
N⊕

i=1

B̄iQ̄ωB̄
T
i )ΓT

+ Ψ(
N⊕

i=1

Rv) + (
N⊕

i=1

Rv)ΨT +
N⊕

i=1

Rv (11)

where:

O =

⎡
⎢⎢⎢⎢⎢⎣

Hk

Hk+1φ̄k

Hk+2φ̄k+1φ̄k
...

Hk+N−1

∏k+N−2
i=k φ̄i

⎤
⎥⎥⎥⎥⎥⎦ ,

Γ =

⎡
⎢⎢⎢⎣

0 0 . . . 0 0
Hk+1 0 . . . 0 0

...
Hk+N−1

∏k+N−3
i=k φ̄i . . . Hk+1 0

⎤
⎥⎥⎥⎦ ,

Ψ = Γ

⎡
⎣ N⊕

j=1

(−φkKk)

⎤
⎦ ,

and
⊕N

j=1 denotes the matrix direct sum. Utilizing the
vector operation defined as

vec(A) = As =
[
aT

1 . . . aT
k

]T

where ak is the kth column of the A matrix. The vector
operator is applied to equations 8 and 11 to get the
following:

P−
s = (φ̄j ⊗ φ̄j)P

−
s + (B̄jQ̄ωB̄

T
j )s, j = 1, . . . , k(12)

which yields:

[R(N)]s = [(O ⊗ O)(In2 − φ̄N−1 ⊗ φ̄N−1)
−1

+(Γ ⊗ Γ)jn,N ](BN−1 ⊗ BN−1)(Qω)s

+
[[

(O ⊗ O)(In2 − φ̄N−1 ⊗ φ̄N−1)
−1

+(Γ ⊗ Γ)jn,N

]
(φN−1KN−1 ⊗ φN−1KN−1)

+ [Ψ
⊕

Ψ + Ip2N2 ]jp,N

]
(Rv)s (13)

in which jp,N is a permutation matrix used to convert the
direct sum to a vector, i.e. jp,N is a (pN)2 × p2 matrix of
zeros and ones satisfying:[

N⊕
i=1

Rv

]
s

= jp,N (Rv)s (14)

The autocovariance is estimated assuming ergodic process
and using the sampling theory as:

l̂k,k+j =
1

Nd − j

Nd−j∑
i=1

rir
T
i+j (15)

These estimates are used to construct the autocovariance
matrix, R̂(N). The least squares technique can now be
used to estimate the measurements covariance matrix, Rv.
Equation 13 can be rewritten as:

[R(N)]s − [(O ⊗ O)(In2 − φ̄N−1 ⊗ φ̄N−1)
−1

+(Γ ⊗ Γ)jn,N ](BN−1 ⊗ BN−1)(Qω)s =[[
(O ⊗ O)(In2 − φ̄N−1 ⊗ φ̄N−1)

−1

+(Γ ⊗ Γ)jn,N

]
(φN−1KN−1 ⊗ φN−1KN−1)

+ [Ψ
⊕

Ψ + Ip2N2 ]jp,N

]
(Rv)s (16)

The left hand side of this equation is now known and the
unknown is Rv. This problem can be formulated as a least
squares problem in the following manner:

q̂ = A†b̂, A† = (AT A)−1AT (17)

where

q̂ = (R̂v)s, b̂ = R̂(N)s − D(BN−1 ⊗ BN−1)(Qω)s

and A and b are defined so that equation 16 can be written
as: Aq = b. Therefore,
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A = D(φN−1KN−1 ⊗ φN−1KN−1)

+[Ψ
⊕

Ψ + Ip2N2 ]jp,N ,

D = [(O ⊗ O)(In2 − φ̄N−1 ⊗ φ̄N−1)
−1 + (Γ ⊗ Γ)jn,N ]

q = (Rv)s, b = R(N)s − D(BN−1 ⊗ BN−1)(Qω)s

This algorithm is used to estimate the GPS pseudorange
measurement-noise covariance matrix. The GPS/IMU
EKF is given enough time to allow the state covariance
matrix to converge; in this application this time is 10 sec-
onds. After that, the algorithm stores a set of measurement
residuals, Nd. The correlation matrix is estimated from the
stored residual bank. This allows for an estimate of the
measurement covariance matrix through a least squares
estimator as in Equation 17. Once the GPS measurement-
noise covariance is estimated, the acquired measurement-
noise covariance is used in the EKF to obtain a high-
integrity state estimate. The algorithm should be repeated
periodically to account for any change in the GPS receiver
environment or the instruments performance.

4. SIMULATION RESULTS

A simulation environment was built to test the algorithms
presented in this paper, see Figure 1. The trajectory of the
vehicle was set to begin at a certain position, then input
linear acceleration and angular velocity were integrated
to obtain the true vehicle position, velocity, and attitude.
Based on the position of the vehicle, GPS satellites’ C/A
code measurements were simulated. These measurements
where used as input to our noise-estimation algorithm. The
input linear acceleration is shown in Figure 2. As seen
in the figure, the vehicle was given high acceleration to
simulate a harsh environment. The vehicle was simulated
to have small angular velocity. This trajectory profile guar-
antees an observable GPS/IMU system, references [9, 11].
The ultra-tightly coupled GPS/IMU filter structure should
be able to operate in this high-dynamics environment since
the dynamics of the system are fed back to the code-
tracking loop. By estimating the GPS measurement noise,
the band width of the code-tracking filter will be adjusted
to aid in traking the C/A code signal.
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Fig. 2. Vehicle Acceleration Profile

The algorithm proposed was tested for two GPS pseudor-
ange measurements degradation levels. The first test was

associated with a simulated pseudorange measurements-
noise standard deviation of 10 meters on each satel-
lite measurement, Figures 3 to 6. There is no correla-
tion between satellite measurements, and therefore, the
measurement-noise covariance matrix is a diagonal matrix.
This testing scenario simulates a GPS receiver signal in an
interference environment.

The second test was associated with a simulated pseudor-
ange measurements-noise standard deviation of 30 meters
on each satellite measurement, Figures 7 to 10. Again the
true measurement-noise covariance matrix is a diagonal
matrix. This testing scenario simulates a GPS receiver
signal in a jamming environment. The EKF starts with the
use of the ideal pseudorange measurement-noise standard
deviation of 1 m on each satellite.

Figures 3 and 4 show the estimation results for the 10
m standard deviation case with N = 1. By choosing
N = 1, the filter takes no account for the correlation
between the measurement residuals due to the incorrect
choice of the initial measurements-noise covariance matrix.
7 satellites are in view. Figure 3 shows the square root
of the estimate of the diagonal elements of the estimated
covariance matrix. It can be seen that the estimate is very
close to the true standard deviation, with a small offset.
Figure 4 shows the estimates of some off-diagonal elements
of the pseudorange measurements-noise covariance matrix.
It can be seen that the estimates are close to zero in mean.
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Fig. 3. Covariance Noise Estimate, 10m-std, N = 1

Figures 5 and 6 show the estimation results for the 10
m pseudorange measurement noise case but with N = 2.
This case takes into account the correlation between the
measurement residuals at time k and time k − 1 due
to the use of an incorrect measurement-noise covariance
matrix. Figure 5 shows the square root of the estimates
of the diagonal terms of the covariance matrix. It can be
seen that the estimates are right on the true simulated
standard deviation. Figure 6 shows the off-diagonal terms
of the estimated covariance matrix. It can be seen that the
estimates are much closer to being zero in mean than for
the case with N = 1.

Figures 7 and 8 show the estimation results of the pseudo-
range measurements covariance matrix for the 30 meters
standard deviation measurements-noise case. N was set to
1 in this case. Thus, there the filter does not account for
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Fig. 4. Off-Diagonal Noise Estimate, 10m-std, N = 1
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Fig. 5. Covariance Noise Estimate, 10m-std, N = 2
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Fig. 6. Off-Diagonal Noise Estimate, 10m-std, N = 2

the time correlation between the measurement residuals.
Figure 7 shows the estimates of the standard deviation of
satellites pseudorange measurements-noise. It can be seen
that the estimates are very close to the true simulated
standard deviation but with a little offset. Figure 8 shows
the estimates of some of the estimated off-diagonal covari-
ance matrix elements. It can be seen that these estimates
are close to zero in mean.
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Fig. 7. Covariance Noise Estimate, 30m-std, N = 1
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Fig. 8. Off-Diagonal Noise Estimate, 30m-std, N = 1

Figures 9 and 10 show the estimation results of the
pseudorange covariance matrix for the 30 meter true
measurement noise covariance with N = 2. Therefore,
the time correlation between the residuals due to the use
of an inaccurate measurements-noise covariance matrix
is accounted for. Figure 9 shows the estimates of the
standard deviation of the pseudorange measurements-
noise. It can be seen that the estimates, in mean, are
much closer to the true simulated standard deviation than
in the N = 1 case. Figure 10 shows some of the off-
diagonal covariance matrix estimates. It can be seen that
the estimates are closer to being zero, in mean, than in the
N = 1 case.

5. CONCLUSIONS

In this paper, an algorithm for estimating GPS mea-
surements noise covariance matrix is proposed. The al-
gorithm is based on the Autocovariance Least Squares
Technique. The formulation of the method for the time-
varying GPS/IMU problem is described. The method was
used along with an ultra-tightly coupled GPS/IMU fusion
structure to estimate the possible degradation in the GPS
pseudorange measurements which may be due to signal
interference or jamming. The measurements-noise covari-
ance is estimated and used in the EKF to allow for a
high-integrity estimate of the state of the vehicle. Sim-
ulation results of measurements-noise standard deviation
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of 10 meters and 30 meters were presented. Estimation
results of the pseudorange measurements-noise covariance
matrix were presented. The two case of no compensation
for the time-correlation between measurement residuals
and the compensation for the time correlation were shown
and compared. It is seen that when time-correlation is
taken into account, the estimated measurements-noise co-
variance matrix is closer to the true measurements-noise
covariance matrix than for the case of no account for time-
correlation. The presented work is important to insure
high-integrity and high-accuracy operation of GPS/IMU
systems in hostile environments.
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Fig. 9. Covariance Noise Estimate, 30m-std, N = 2
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Fig. 10. Off-Diagonal Noise Estimate, 30m-std, N = 2
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