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Abstract: The basic least squares method for identifying linear systems has been extensively
studied. Conditions for convergence involve issues about noise assumptions and behavior of
the sample covariance matrix of the regressors. Lai and Wei proved in 1982 convergence for
essentially minimal conditions on the regression matrix: All eigenvalues must tend to infinity,
and the logarithm of the largest eigenvalue must not tend to infinity faster than the smallest
eigenvalue. In this contribution we revisit this classical result with respect to assumptions on the
noise: How much unstructured disturbances can be allowed without affecting the convergence?
The answer is that the norm of these disturbances must tend to infinity slower than the smallest
eigenvalue of the regression matrix.

1. INTRODUCTION

The least squares method for identifying simple dynamical
models like

yn + a1yn−1 + . . .+ apyn−p = b1un−1 + . . .+ bqun−q + w̄n

(1)

is probably the most used, and most extensively analyzed
identification method. Its origin in this application is the
classical paper by Mann & Wald (1943). There have been
many efforts to establish minimal conditions under which
the estimates of a and b converge to their true values.
Since (1) is the archetypal model for adaptive control
applications, such convergence results are also tied to the
asymptotic behavior of adaptive regulators.

The convergence of the estimates will depend on two
factors:

• The nature of the disturbance w̄.
• The properties of the regression vector

ϕ(t) = [−yn . . . −yn−p un−1 . . . un−q]
T

(2)

associated with (1)

Let

Rn =
n
∑

t=1

ϕ(t)ϕ(t)T (3)

Classical convergence results were obtained for the case
where w̄ is white noise and Rn/n converges to a non-
singular matrix. See, e.g. Åström & Eykhoff (1971). In
Ljung (1976) it was shown that it is sufficient that w̄n is
a martingale difference and that λmin(Rn) → ∞,( where
λmin(A) denotes the smallest eigenvalue of the matrix A)
in case the estimation is done for a finite collection of
parameter values. In the 70’s it was generally believed
that these conditions would also suffice for continuous
parameterizations, and several attempts were made to
prove that. Such a result would have been very welcome

for the analysis of adaptive controllers. However, in 1982,
Lai & Wei (1982) proved that, in addition, it is necessary
that the logarithm of the largest eigenvalue of Rn does not
grow faster than the smallest eigenvalue. Later, important
related results have been obtained by e.g. Chen & Guo
(1991), Guo (1995).

It is the purpose of the current paper to revisit the
celebrated results of Lai and Wei, by examining how to
relax the first condition, that e is a martingale difference.
We shall work with the assumption that

w̄n = wn + δn (4)

where wn is a martingale difference and δ is an arbitrary,
not necessarily stochastic disturbance.

2. MOTIVATION AND NUMERICAL EXAMPLES

Let us do some numerical experiments of LS estimation of
the parameters for the following SISO linear system

yn+1 + ayn = bun + δn + wn+1, (5)

where a = 0.5, b = 1, with white noise wn ∈ N (0, 0.52),
and δn is a deterministic or random disturbance, that does
not necessarily tend to 0.

From Fig. 1, we can see that although there are non-
decaying disturbances, the LS algorithm may still work
nicely. Thus, we may ask that whether zero mean of the
noise is necessary for the convergence of LS algorithm.
Clearly in the example, although the disturbance tend
to zero it appear more and more seldom, so it impact is
limited.

From Fig. 2 we can see that the LS-estimate may still
work even with a disturbance with unbounded norm. How
to explain the convergence in this case? Clearly, in the
example, the growing disturbance is compensated for by
an input of increasing amplitude.
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Fig. 1. The estimate of a (left) and b (right) when u is
white noise with variance 1 and the disturbance is

δn =

{

1, if n = k2, k = 1, 2, . . . ,

0, otherwise.

0 200 400 600 800 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 2. The estimate of a (left) and b (right) when un is
white noise with variance (1+n/100)2 and δn = 1 for
all n.

3. BASIC ANALYSIS OF LEAST SQUARE
ALGORITHM

The model is describled as

A(z)yn+1 = B(z)un + w̄n+1, (6a)

w̄n+1 = δn + wn+1 (6b)

A(z) = 1 + a1z + · · · + apz
p (6c)

B(z) = b1 + · · · + bqz
q−1 (6d)

where {uk}, {yk}, {wk}, {δk} are input, output, noise,
and disturbance resp., and z is the backshift operator. A
concise form of the model (6) is

yn+1 = θTϕn + w̄n+1, (7a)

where

θT = [a1 · · · ap b1 · · · bq], (7b)

ϕn = [−yn · · · − yn−p+1 un · · · un−q+1]
T . (7c)

The well known Least square estimate (LSE) is

Pn =

(

n−1
∑

i=0

ϕiϕ
T
i +

1

α0
I

)−1

, (8a)

θn = Pn

n−1
∑

i=0

ϕiy
T
i+1 + PnP

−1
0 θ0. (8b)

where θ0 is some prior estimate and α0 reflects its relia-
bilty. The estimate is written in recursive form as

θn+1 = θn + anPnϕn(yn+1 − ϕT
n θn), (9a)

Pn+1 = Pn − anPnϕnϕ
T
nPn, an = (1 + ϕT

nPnϕn)−1,
(9b)

with θ0 and P0 = α0I, α0 > 0 as starting values. See, e.g.
Åström & Eykhoff (1971).

The following two conditions will be used to establish
convergence results.

H1. {wn,Fn} is martingale difference squence, where
{Fn} are σ-algebras, satisfying

sup
n≥0

E[‖wn+1‖β|Fn]
∆
= σ <∞ a.s., β ≥ 2;

H2. un is Fn-measurable, and δn is a deterministic signal
or Fn-measurable random variable.

For convenience, by Mk = O(ε) (ordo) we mean that there
is a constant C ≥ 0 such that

|Mk| ≤ Cε, ∀k ≥ 0.

Also by fn = o(gn), n→ ∞ (small ordo) we mean

fn

gn
→ 0 as n→ ∞

Denote λmax(n) and λmin(n) as the maximum and min-
mum eigenvalue of the matrix

P−1
n+1 =

n
∑

i=0

ϕiϕ
T
i +

1

α0
I. (10)

For simplicity, denote

ρβ(x)
∆
=

{

1, β > 2,

(log log x)c, β = 2,
(11)

with arbitrary c > 1.

Then we have the following basic result:

Theorem 3.1. Assume that conditions H1 and H2 are
satisfied. Let θn be the LSE (9) and let θ be the true
value (7). Then the error has the following bound with
probability one:

‖θn+1 − θ‖2 = O

(

logλmax(n) · ρβ(λmax(n)) +
∑n

i=0 δ
2
i

λmin(n)

)

(12)

where ρβ is defined by (11).

If δn = 0 for each n, Theorem 3.1 turns out to be
Theorem 4.1 in Chen & Guo (1991) for the white noise
case. It is also worth pointing out that the bound (or

convergence) rate log λmax(n)
λmin(n) for estimation error was first

shown in the breakthrough paper Lai & Wei (1982). The
extended LS identification scheme for ARMA model with
errors δn has been discussed in Chen & Deniau (1994),
where a similar (somewhat special) result is established.
Also, the proof of Theorem 3.1 that follows, uses some
techniques and ideas in Chen & Deniau (1994); Chen &
Guo (1991); Lai & Wei (1982).

With tr(A) denoting the trace of a matrix, we have from
(10)

tr(P−1
n+1) = α0 +

n
∑

i=0

ϕT
i ϕi

∆
= rn. (13)

Together with the non-negativeness of P−1
n+1, then we get

a corollary of Theorem 3.1 as follows.

Corollary 3.1. Under the same conditions of Theorem 3.1,
we have the following bound on the estimation error:

‖θn+1 − θ‖2 = O

(

log rn · ρβ(rn) +
∑n

i=0 δ
2
i

λmin(n)

)

a.s.,

(14)

where rn is defined by (13).
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We list Theorem 2.8 of Chen & Guo (1991) as a lemma
here.

Lemma 3.1. Let {xn,Fn} be a martingale difference se-
quence and {Mn,Fn} an adapted sequence of random
variables |Mn| <∞ a.s., ∀n ≥ 0. If

sup
n
E[|xn|α|Fn] <∞ a.s.

for some α ∈ (0, 2], then as n→ ∞
n
∑

i=0

Mixi = O
(

sn(α) · log
1
α

+η(sα
n(α))

)

a.s., ∀ η > 0,

(15)

where

sn(α) =

(

n
∑

i=0

|Mi|α
)

1
α

.

Remark. For simple notation we use here and in the rest
of the paper the convention log x = max{logx, 1}
Lemma 3.2. Let {wn,Fn} be a martingale difference se-
quence satisfing H1, then

n+1
∑

i=0

ϕT
i Piϕi = O (logλmax(n)) , (16)

n+1
∑

i=0

ϕT
i Piϕiw

2
i+1 = O (logλmax(n) · ρβ) , (17)

where Pi and δ(β) are defined by (8a) and (11) respec-
tively.

Proof. We first note a basic fact (see Lai & Wei (1982)):

|I + αβT | = 1 + βTα, (18)

where I is an n×n identity matrix, α and β are two n× 1
vectors, and | · | is the operator norm. Obviously, if α = 0,
i.e., a zero vector, (18) holds. When α 6= 0, we have

(I + αβT )α = (1 + βTα)α,

which means that 1 + βTα is an eigenvalue of the matrix
I + αβT . Notice that all the other eigenvalues are all 1.
Thus, (18) holds.

Hence, we have

|P−1
i | = |P−1

i+1 − ϕiϕ
T
i | = |P−1

i+1| · |I − Pi+1ϕiϕ
T
i |

= |P−1
i+1|(1 − ϕT

i Pi+1ϕi),

where α = Piϕi and β = ϕi by using (18). Thus,

ϕT
i Piϕi =

|P−1
i+1| − |P−1

i |
|P−1

i+1|
. (19)

Therefore,
n+1
∑

i=0

ϕT
i Piϕi =

n+1
∑

i=0

|P−1
i+1| − |P−1

i |
|P−1

i+1|
=

n+1
∑

i=0

∫ P−1

i+1

P−1

i

dx

|P−1
i+1|

≤
∫ P−1

n+1

P−1

0

dx

x
= log |P−1

i+1| + α0 logα0.

Hence, (16) follows.

The proof of (17) is similar to the counterpart of the
proof of Theorem 4.1 in Chen & Guo (1991). Taking
α ∈ [1,min(β/2, 2)] and applying Lemma 3.1 with Mi =
aiϕ

T
i Piϕi, xi = w2

i+1 − E[w2
i+1|Fi], we obtain

n+1
∑

i=0

ϕT
i Piϕiw

2
i+1 =

n+1
∑

i=0

Mixi+1 +

n+1
∑

i=0

ϕT
i PiϕiE[w2

i+1|Fi]

= O





[

n+1
∑

i=0

Mα
i

]1/α

log1/α+η

(

n+1
∑

i=0

Mα
i

)





+O (logλmax(n))

= O
(

[logλmax(n)]
1/α

log1/α+η (logλmin(n))
)

+O (logλmax(n))
(20)

for all η > 0. If β = 2 in H1, then α = 1; while if β > 2, α
can be taken as α > 1. Hence (17) follows by (20).

Proof of Theorem 3.1. Denote θ̃n = θ − θn. Obviously,
(9a) can be written

θ̃n+1 = θ̃n + anPnϕn(w̄n+1 − θ̃T
nϕn), (21)

Noticing P−1
n+1 ≥ λmin(n)I, we see that

‖θ̃n+1‖2 ≤ 1

λmin(n)
θ̃T

n+1P
−1
n+1θ̃n+1. (22)

Hence, it is sufficent to analyse θ̃T
n+1P

−1
n+1θ̃n+1.

By (21), we have

(θ̃T
n+1ϕn)2 = (θ̃T

nϕn)2 + 2an(w̄n+1 − θ̃T
nϕn)ϕT

nPnϕnθ̃
T
nϕn

+ a2
n(w̄n+1 − θ̃T

nϕn)2(ϕT
nPnϕn)2. (23)

Thus,

θ̃T
n+1P

−1
n+1θ̃n+1 = θ̃T

n+1ϕnϕ
T
n θ̃n+1 + θ̃T

n+1P
−1
n θ̃n+1

= (θ̃T
n+1ϕn)2 + [θ̃n + anPnϕn(w̄n+1 − θ̃T

nϕn)]T

· P−1
n · [θ̃n + anPnϕn(w̄n+1 − θ̃T

nϕn)]

= (θ̃T
n+1ϕn)2 + θ̃T

nP
−1
n θ̃n + 2an(w̄n+1 − θ̃T

nϕn)θ̃T
nϕn

+ a2
n(w̄n+1 − θ̃T

nϕn)2ϕT
nPnϕn

= (θ̃T
nϕn)2 + θ̃T

nP
−1
n θ̃n + 2(w̄n+1 − θ̃T

nϕn)θ̃T
nϕn

+ an(w̄n+1 − θ̃T
nϕn)2ϕT

nPnϕn

= θ̃T
nP

−1
n θ̃n + anϕ

T
nPnϕnw̄

2
n+1 − an(θ̃T

nϕn)2

+ 2anθ̃
T
nϕnw̄n+1. (24)

Notice that (23) and the fact an(1+ϕT
nPnϕn) = 1 are used

in the fourth step of (24), and the fact 1−anϕ
T
nPnϕn = an

is used in the last step of (24). By iteration, we obtain
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θ̃T
n+1P

−1
n+1θ̃n+1 = θ̃T

0 P
−1
0 θ̃0 +

n
∑

i=0

[

aiϕ
T
i Piϕiw̄

2
i+1−

ai(θ̃
T
i ϕi)

2 + 2aiθ̃
T
i ϕiw̄i+1

]

= O(1) +O

(

n
∑

i=0

aiϕ
T
i Piϕiw̄

2
i+1

)

− 1

2

n
∑

i=0

ai(θ̃
T
i ϕi)

2

+ 2

n
∑

i=0

aiθ̃
T
i ϕiwi+1 +

n
∑

i=0

[

−ai

2
(θ̃T

i ϕi)
2 + 2aiθ̃

T
i ϕiδi

]

≤ O(1) +O

(

n
∑

i=0

aiϕ
T
i Piϕiw̄

2
i+1

)

− 1

2

n
∑

i=0

ai(θ̃
T
i ϕi)

2

+ o

(

n
∑

i=0

ai(θ̃
T
i ϕi)

2

)

+ 2

n
∑

i=0

aiδ
2
i

= O(1) +O

(

n
∑

i=0

aiϕ
T
i Piϕiw̄

2
i+1

)

+O

(

n
∑

i=0

aiδ
2
i

)

.

(25)

It is worth pointing out that we use Lemma 3.1 and the
fact

−1

2
t2 + 2δit ≤ 2δ2i

in the third step of (25). Notice the fact 0 ≤ ai ≤ 1 and
0 ≤ ϕT

i Piϕi < 1 (by (19)),
n
∑

i=0

aiϕ
T
i Piϕiw̄

2
i+1 ≤ 2

n
∑

i=0

aiϕ
T
i Piϕi(w

2
i+1 + δ2i )

≤ 2

n
∑

i=0

aiϕ
T
i Piϕiw

2
i+1 + 2

n
∑

i=0

δ2i . (26)

Hence, (12) follows from (22), (25), (26) and Lemma 3.2
directly.

4. CONVERGENCE OF LEAST SQUARES
ALGORITHM

In the previous section some upper bounds were estab-
lished for the estimate error. We shall now apply these
results more specifically to the identification case (6).
Notice that the inputs of the model may be chosen freely in
a pure identification case. Thus, we establish upper bound
of estimate error expressed by {uk}, {δk} and {wk} in the
following. So, the result here may be more applicable to
open loop case. And then, the convergence of Figures 1
and 2 are explained.

Some ideas and techniques of Chen & Guo (1991); Guo
(1994, 1995) are used in the proof for the result. Especially
two key lemmas of Guo (1994) are presented.

Denote the minmum and maxmum eigenvalue of a matrix
A as λmin(A) and λmax(A) respectively and introduce the
further assumptions

H3. A(z) is stable, and A(z) and B(z) are coprime;

H4: ui is weakly persistently exciting of order p+ q:

λmin

(

n
∑

i=0

UiU
T
i

)

≥ cnγ for some c > 0, γ > 0, (27)

where Ui = [ui · · · ui−p−q+1]
T ;

This condition is similar to Definition 3.4.B of Goodwin &
Sin (1984).

H5: For the same γ as in H3,
n
∑

i=0

uiw̄j = o(nγ); for |i− j| ≤ p+ q (28)

Note that this condition means that the noise and the
input must not be strongly correlated, thus essentially
ruling out closed loop operation.

H6:
n
∑

i=0

δ2i = O(nγ1),

n
∑

i=0

u2
i = O(nγ2 ) for some γ1,2 > 0.

(29)

We are now ready to forumlate the main result:

Theorem 4.1. Assume that conditions H1 – H6 hold. Then
the LS algorithm (9) for model (6) has the following
estimation error bound:

‖θn+1 − θ‖2 = O

(

logn · ρβ(n) +
∑n

i=0 δ
2
i

nγ

)

a.s., (30)

where γ is given in H3 and H4 and ρβ(·) is defined by (11)
for a β for which H1 holds.

Obviously, θn
a.s.−−−−→

n→∞
θ if

∑n
i=0 δ

2
i = o(nγ).

We list Theorem 34.1.1 (Schur’s inequality) of Prasolov
(1994) as a lemma as follows.

Lemma 4.1. Let λ1, . . . , λn be eigenvalues ofA = (aij)n×n.
Then

n
∑

i=1

|λi|2 ≤
n
∑

i,j=1

|aij |2

and the equality is attained if and only if A is a normal
matrix.

The following two lemmas are similar to Lemma 2.3 and
2.2 in Guo (1994), respectively. We omit the proofs here.
See Hu & Ljung (2007) for some variants of the proofs,
that perhaps are simpler.

Lemma 4.2. Let {Xk ∈ Rd, k = 0, 1, . . .} be a vector
sequence where d > 0, and

F (z) = f0 + f1z + · · · + fnf
znf

be a polynomial with MF
∆
=
(
∑nf

i=0 |fi|
)2
> 0. Set X̄k =

F (z)Xk. Then,

λmin

(

n
∑

k=0

XkX
T
k

)

≥ 1

MF
λmin

(

n
∑

k=0

X̄kX̄
T
k

)

∀n ≥ 0.

(31)

Lemma 4.3. Let

G(z) = g0 +g1z+ · · ·+gng
zng , H(z) = h0 + · · ·+hnh

znh

be two coprime polynomials. For any integers m ≥ 0,
n ≥ 0, and any sequence {ξk}, define

Yk = [G(z), zG(z), · · · , zmG(z),

H(z), zH(z), · · · , znH(z)]Txk

where m < nh and n < ng. Then,

λmin

(

k
∑

i=0

YiY
T
i

)

≥MΓλmin

(

k
∑

i=0

XiX
T
i

)

∀k ≥ 1,

(32)
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where

Xk = [xk, xk−1, · · · , xk−s]
T , s

∆
= max{m+ ∂G, n+ ∂H},

(33)

and MΓ = λmin(ΓΓT ) > 0 with (m + n + 2) × max{m +
1 + ng, n+ 1 + nh} matrix

Γ(G(z), H(z);m,n)
∆
=





















g0 g1 · · · · · · gng

g0 g1 · · · · · · gng

· · · · · · · · · · · · · · ·
g0 g1 · · · · · · gng

h0 h1 · · · · · · hnh

h0 h1 · · · · · · hnh

· · · · · · · · · · · · · · ·
h0 h1 · · · · · · hnh





















.

(34)

Lemma 4.4. Let A(z) be a stable polynomial. Assume that

A(z)ζk = ξk,

with ξi = 0 for i < 0, then
n
∑

k=0

ζ2
k = O

(

n
∑

k=0

ξ2k

)

. (35)

Proof. Since A(z) is stable, i.e., |A(z)| 6= 0, ∀z : |z| ≤ 1,
we assume

A−1(z) =

∞
∑

i=0

āiz
i, |āi| = O

(

e−τi
)

, τ > 0.

Thus,
∑∞

k=0(k + 1)2ā2
k <∞.We need to show that

n
∑

k=0

(

A−1(z)ξk
)2

= O

(

n
∑

k=0

ξ2k

)

.

This can be proved as follows:
n
∑

k=0

(

A−1(z)ξk
)2

=

n
∑

k=0

(

k
∑

i=0

āiξk−i

)2

=

n
∑

k=0

(

k
∑

i=0

(i+ 1)āi ·
1

(i+ 1)
ξk−i

)2

≤
n
∑

k=0

k
∑

i=0

[(i+ 1)āi]
2

k
∑

i=0

1

(i+ 1)2
ξ2k−i

= O

(

n
∑

k=0

k
∑

i=0

1

(i+ 1)2
ξ2k−i

)

= O





n
∑

k=0

k
∑

j=0

1

(k − j + 1)2
ξ2j





= O





n
∑

j=0

ξ2j

n
∑

k=j

1

(k − j + 1)2



 = O

(

n
∑

k=0

ξ2k

)

.

Hence, the assertion follows.

Proof of Theorem 4.1.

In view of Corollary 3.1, we need only analyse

λmin

(

∑k
i=0 ϕiϕ

T
i

)

and rn respectively.

By the definition of ϕi and (6), it is clear that

ψi
∆
= A(z)ϕi = Γ(zB(z), A(z); p− 1, q − 1)Ui + W̄i

∆
= ψu

i + W̄i, (36)

where Γ is defined by (34) and the (p + q) × 1-vector

W̄i
∆
= [w̄i · · · w̄i−p+1 0 · · · 0]T . By Lemma 4.2 we have

λmin

(

n
∑

i=0

ϕiϕ
T
i

)

≥ 1

MA
λmin

(

n
∑

i=0

ψiψ
T
i

)

. (37)

Since A(z) has no zero root, by assumption zB(z) and
A(z) are also coprime. Hence, by Lemma 4.3 we have

λmin

(

n
∑

i=0

ψu
i ψ

uT
i

)

≥MΓλmin

(

n
∑

i=0

UiU
T
i

)

. (38)

On the other side, by (36) and (38), clearly,

n
∑

i=0

ψiψ
T
i =

n
∑

i=0

(

ψu
i ψ

uT
i + ψu

i W̄
T
i + W̄iψ

uT
i + W̄iW̄

T
i

)

≥
n
∑

i=0

(

ψu
i ψ

uT
i + ψu

i W̄
T
i + W̄iψ

uT
i

)

≥ cMΓn
γI +

n
∑

i=0

(

ψu
i W̄

T
i + W̄iψ

uT
i

)

. (39)

In view of (28), clearly, each element of the matrix

n
∑

i=0

(

ψu
i W̄

T
i + W̄iψ

uT
i

)

is o(nγ) as n tends to infinity. By Schur’s inequality
(Lemma 4.1), we have

λmax

(

n
∑

i=0

(

ψu
i W̄

T
i + W̄iψ

uT
i

)

)

= o(nγ). (40)

Hence, (39) turns to be

λmin

(

n
∑

i=0

ψiψ
T
i

)

≥ c1n
γ (41)

with certain c1 > 0 for sufficient large n. Hence, by (37)
and (41) we have

λmin

(

n
∑

i=0

ϕiϕ
T
i

)

≥ c1
MA

nγ . (42)

Taking α = 1, applying Lemma 3.1 with Mi = E[w2
i |Fi−1]

and xi =
w2

i −E[w2
i |Fi−1]

E[w2
i
|Fi−1]

, we have

n
∑

i=0

w2
i =

n
∑

i=0

Mixi +

n
∑

i=0

E[w2
i |Fi−1]

= O

(

n
∑

i=0

E[w2
i |Fi−1] · log

(

n
∑

i=0

E[w2
i |Fi−1]

))

= O (n logn) . (43)

Thus, by (6) (29) (43) and Lemma 4.4, we have

n
∑

i=0

y2
i = O (nγ2) +O (nγ1) +O (n logn) (44)

Hence, by (13), we have
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rn = α0 +
n
∑

i=0

p−1
∑

j=0

y2
i−j +

n
∑

i=0

q−1
∑

j=0

u2
i−j

≤ α0 + p

n
∑

i=0

y2
i + q

n
∑

i=0

u2
i−j

= O (nγ2) +O (nγ1) +O (n logn) . (45)

Therefore, by (42) (45) and Corollary 3.1, the assertion
(30) holds.

We are now in a position to verify the convergence in
Figures 1 and 2. For convenience, we list a Central Limit
Theorem result for martingale difference sequence (Corol-
lary 2.6 of Chen & Guo (1991)) as a lemma here.

Lemma 4.5. Let {xi,Fi} be a martingale difference se-
quence. If either supi E[|xi|p|Fi−1] <∞ a.s. or supiE|xi|p <
∞ for some p ∈ [1, 2], then as n→ ∞ for any q > 1

1

nq/p

n
∑

i=1

xi → 0 a.s. (46)

Remark 4.1. Consider a special case p = q > 1 in
Lemma 4.5, we have 1

n

∑n
i=1 xi → 0 under assumption

supi E[|xi|1+ν |Fi−1] < ∞ or supiE|xi|1+ν < ∞ with
ν > 0.

For an adaptive sequence {xi,Fi} satisfying

sup
i
E[|xi|1+ν |Fi−1] <∞

or supiE|xi|1+ν <∞ with ν > 0, we have
n
∑

i=1

xi = O

(

n
∑

i=1

E[xi|Fi−1]

)

+ o(n).

Clearly, for both cases in figures 1 and 2, the conditions
H3 and H6 of Theorem 4.1 are satisfied.

In Figure 1, by the help of Remark 4.1 we have

λmin

(

n
∑

i=0

UiU
T
i

)

≥ cn for some c > 0,

and
n
∑

i=0

uiw̄j = o(n)

in view of the fact
∑n

i=1 δ
2
i = O(

√
n) and the independence

of {ui} and {wj} (open loop). Thus,

‖θn+1 − θ‖2 = O

(

1√
n

)

a.s.

In Figure 2, by the help of Remark 4.1 we have

λmin

(

n
∑

i=0

UiU
T
i

)

≥ cn2 for some c > 0,

and
n
∑

i=0

uiw̄j = o(n2)

by the help of the fact
∑n

i=1 δ
2
i = n and the independence

of {ui} and {wj} (open loop). Thus,

‖θn+1 − θ‖2 = O

(

1

n

)

a.s.

5. CONCLUSIONS

Some new convergence issues of LS with more general noise
or disturbance compared to existing references have been
studied in this paper. First, a general result, Theorem 3.1
including some existing classic results as special cases is
established. Next, a useful variant (especially for open
loop) is given as Theorem 4.1. The results make it possible
to find out how much unstructured disturbances can be
present without affecting the limit estimates. The essential
answer is that the norm of the unstructured disturbance
must grow slower than the smallest eigenvalue of the
regression matrix. The results can also be used to analyze
the properties of the LSE when applied to time-varying
systems, that vary “around” a constant system, see Hu &
Ljung (2007).

Some techniques and ideas of Chen & Deniau (1994); Chen
& Guo (1991); Guo (1994, 1995); Lai & Wei (1982) were of
key importance for the proof. The extensions compared to
Chen & Deniau (1994) are essentially that an input signal
is introduced, thus it becomes important to address the
growth of the smallest eigenvalue of the regression matrix.

For further study, it is desirable to generalize the results
to the closed loop case and the colored noise case.
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