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Abstract: The paper deals with an advanced networking scenario involving a noisy linear

plant with multiple actuators and sensors connected via a complex communication net-

work with varying topology. The network contains a large number of spatially distributed

nodes equipped with CPU’s that process and transmit data. Processing algorithms need to

be designed for some nodes, whereas they are fixed for other nodes. During transmission,

data may incur delays, be lost or corrupted. The objective is to stabilize the plant. A

necessary and sufficient condition for stabilizability is given in terms of the so-called

rate (capacity) domain of a communication network. It is shown that the problem of

networked stabilization of noisy plants is ultimately reduced to a hard long-standing one

of the information theory: calculating the capacity domains of communication networks.
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1. INTRODUCTION

The field of control under communication constraints

has attracted much attention due to the emergence of

numerous applications where bandwidth communica-

tion constraints become a real concern. This motivates

the development of a new chapter of control theory

that deals with networked control systems and com-

bines together the control and communication issues,

taking into account all the limitations on communica-

tion between sensors, controllers, and actuators.

In determining the minimum data rates required for

stabilization, fundamental advances have been made

for simplest networks with single “sensor-controller”

and “controller-actuator” channels (see e.g., (Baillieul,

1999), (Wong and Brockett, 1999), (Nair and Evans,

1 Partially supported by the Australian Research Council and the

Russian Foundation for Basic Research grant 06-08-01386.

2004) and the literature therein). Other references

on this subject include (Petersen and Savkin, 2001),

(Savkin, 2006), (Matveev and Savkin, 2007). However

many modern control systems are implemented in a

decentralized fashion, which results in a less trivial

topology with multiple spatially distributed sensors,

controllers, and actuators communicating over a serial

digital network. This paper attempts to extend the

above fundamental results on this situation.

The case of multiple sensors and controllers, where

each sensor is linked with every controller by a perfect

channel with time-varying finite data rate, was studied

in (Nair et al., 2004) for real-diagonalizable systems.

Separate necessary and sufficient conditions for stabi-

lizability were obtained. In general, they are not tight

and become tight if the system is stabilizable by every

actuator and detectable by every sensor. In (Matveev

and Savkin, 2005b), tight conditions for stabilizability

of noise-less linear multiple sensor systems were ob-
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tained in the case of delayed and lossy channels and

not necessarily diagonalizable systems. In (LaScala

and Evans, 2005), minimum data rates required for

reconstruction of the track estimates of the state of

a Gauss-Markov process to a given level of accuracy

are presented. The paper (Matveev and Savkin, 2005a)

describes the stabilizability region for linear noise-less

plants with multiple sensors and controllers connected

via a general topology network.

This paper extends these results on the case of noisy

sensors, uncertain plants with bounded additive dis-

turbance, and networks with after-effects. We also im-

prove the result of (Matveev and Savkin, 2005a) by

showing that not a novel concept of capacity domain

introduced there but one closer to the classic concept

underlies the description of the stabilizability domain.

We consider a general finite-capacity network with

spatially distributed communicating elements. Every

element has a computing capability and converts the

incoming information steams into outgoing data flows.

Some elements (sensors) can also partially observe an

outer unstable process. Some other elements (actua-

tors) are able to directly affect the process. The re-

maining elements act as intermediate controllers tak-

ing part in converting the sensor data into controls

in a decentralized and distributed fashion. The data

processing algorithms (DPA) at the elements should

be designed to make the closed-loop system stable.

The network is given: it is indicated between which

elements data can be communicated, at which rates,

and in which way. Transmitted messages may incur

delays, be lost and corrupted, interfere, and collide.

So the transmission result may depend on the packets

dispatched from many elements. The network topol-

ogy is arbitrary and may be dynamically altered by

authorized elements. A simple example is a switch of

a communication channel from service (connection)

of one pair of elements to service of another pair.

Arbitrary restrictions are imposed on DPA of the con-

trollers. They may be due to limitations on the mem-

ory size, variety of executable operations, CPU speed

etc. Not excluded is the case of a single feasible DPA.

An example is a data storage and channel dynamically

served and switched, respectively, in accordance with

given protocols. We yet assume that any causal DPA

can be implemented at the sensors and actuators.

The outer discrete-time linear process is affected by

a bounded additive disturbance; there are bounded

noises in the sensors. The objective is to find condi-

tions under which the elements can be equipped with

feasible DPA so that the closed-loop system is stable.

We give an evidence that this problem is reduced to the

standard problem of the information sciences: finding

the capacity domain. This domain describes the rates

at which data can be sent from an element (network

node) or set of nodes to another node or set of nodes.

It is shown that stabiizability holds if and only if

a certain vector characterizing the rate of instability

of the outer process belongs to the interior of the

above domain and its closure, respectively. Design

of the stabilizing algorithm is ultimately reduced to

invention of the block code transmitting data at the

rates matching the entries of this vector.

The capacity domain of the primal network cannot

be put in use here, and an imaginary network should

be employed. It results from the original one by in-

cluding artificial nodes and infinite capacity channels.

First, included are channels from every actuator to all

sensors influenced by it. These channels express the

view of the control loop as a communication facility.

The channels of the second kind broadcast messages

from artificial nodes, each associated with an unstable

mode of the process, to all sensors detecting the mode.

Third, included are additive interference channels de-

livering data to another set of artificial nodes, each

associated with an unstable mode: the channel collects

data from all actuators that affect the mode. For these

artificial nodes, DPA are limited to projecting the re-

ceived real signal onto the integer grid. The employed

capacity domain answers the question: How much

data can be transmitted between every two artificial

nodes associated with a common unstable mode?

The body of the paper is organized as follows. Sec-

tions 2 and 3 present the network model and the prob-

lem statement, respectively. Section 4 describes the

auxiliary network. Section 5 recalls the notion of the

network capacity domain. In Sections 6 and 7, we state

the assumptions about the network and the main result,

respectively. Section 8 offers illustrative examples.

2. GENERAL MODEL OF THE NETWORK

We consider a network with the set of nodes (ele-

ments) H partitioned into subsets Hs, Ha, and Hc of

sensors, actuators, and controllers, respectively. The

element h receives signals from some other elements

and if h ∈ Hs, has an access to a measurement yh ∈
R

ny,h of an outer process. These signals constitute the

inner input ih ∈ Ih; the entire input îh := ih if

h 6∈ Hs and îh = [ih, yh] otherwise. The element h
also emits signals to some other elements, these sig-

nals constitute its inner output oh ∈ Oh. Any actuator

h ∈ Ha also produces a control uh ∈ R
nu,h . The

entire output ôh := oh if h 6∈ Ha and ôh = [oh, uh]
otherwise. The alphabets Ih and Oh are given. For

example, if ih arrives over a perfect channel with ca-

pacity c, then Ih is the channel alphabet of the size 2c.

If data oh are emitted into k channels with respective

alphabets C1, . . . ,Ck, then Oh = C1 × · · · × Ck.

Now we introduce four united ensembles of the outer

and inner inputs and outputs, respectively:

Y := {yh}h∈Hs
, U := {uh}h∈Ha

, S := {sh}h∈H
,

S = O, I . The roles of the network and control

strategy (endowing every h with a DPA) are as follows
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O
network
−−−−→ I, [I, Y ]

control strategy
−−−−−−−−→ [O, U ]. (1)

The first transformation is governed the network state

N from a given alphabet N. The computing capability

of any element h is specified by 1) the given mem-

ory alphabet Mh with elements mh representing the

memory content and 2) the set Ah of admissible DPA:

Ah ≡ [Oh(·), Mh(·), m0
h] ∈ Ah. (2)

Here m0
h is the initial memory content and

oh(t) = Oh[mh(t), îh(t), t],

mh(t + 1) = Mh[mh(t), îh(t), t].

By putting M := {mh}h∈H
and

(control strategy) ∼ A := {Ah}h∈H
,

relations (1) can be specified as follows:

O
network
−−−−→

N

I, [I, Y ]
A
−−→
M

[O, U ],

O
network
−−−−→

N

N
+, [I, Y ]

A
−−→
M

M
+,

where + denotes the value at the next time instant. For

deterministic networks, these relations take the form

I
+ = I[O(t), N(t)], N+ = N[O(t), N (t)],

I(0) = I0, N(0) = N 0, M(0) = M
0
A

,

O(t) = O[I(t), Y (t), M (t), A, t],
U(t) = U[I(t), Y (t), M (t), A, t],

M
+ = M[I(t), Y (t), M (t), A, t], A ∈ A,

(3)

where the fifth equation results from (2).

Formally, the network is a facility transforming the

time sequence of outer inputs Y (0), Y (1), Y (2), . . .
into the sequence of outer outputs U(0), U(1), U(2), . . .
in accordance with (3), where the data processing

strategy (DPS) A ∈ A is a control parameter. All

functions denoted by capital script letters, the set A,

the network initial state N 0 and I0, and the sets within

which the variables from (3) range are given.

Examples The state N may represent the memories

of the channels and the network mode. For instance,

the memory of the d-delayed channel n(t) := [e(t −
1), . . . , e(t − d + 1)] and the messages r and e at its

receiving and transmitting ends are related by

r(t + 1) = R[n(t), e(t)] (:= e[t − d + 1]),

n(t+1) = N[n(t), e(t)] (:= [e(t), . . . , e(t−d+2)]).

The mode may determine the current topology of the

network (e.g., which elements are linked by switch-

ing channels) and parameters of the communication

medium (e.g., capacity, level of data distortion, etc.).

For example, there may be a choice between larger

channel alphabets with more message corruption and

smaller alphabets with lesser corruption.

For the element h with b-bit memory, Mh has the size

2b. For CPU with limited computational power,

(
Oh[m, î, t], Mh[m, î, t]

)
∈ Rh(m, î) ∀m, î, t, where

R(m, î) is the known set of all possible results that

may be obtained by means of this CPU for the unit

time from m and î. In the case of unlimited memory

and the computational power, Mh is the set of all finite

sequences of inputs S = [̂i0, î1, . . . , îk] including the

”empty” one ⊛. The set Ah consists of Ah for which

⊛ is the initial state and the function Mh(·) of S, î acts

by adding î to S from the right (and possible dropout

of several entries of S). If any entry outside the group

of k concluding ones should be dropped necessarily,

we deal with an element with the memory of length k.

For more detailed discussion and further examples,

we refer the reader to the forthcoming monograph

(Matveev and Savkin, 2008, Ch.9).

3. STATEMENT OF THE STABILIZATION

PROBLEM

We consider linear discrete-time multiple sensor and

actuator systems of the form:

x+ = Ax(t) +

l∑

i=1

Biui(t) + ξ(t); x(0) = x0; (4)

yj(t) = Cjx(t) + χj(t), j = 1, . . . , k. (5)

Here x ∈ R
nx is the state, ui ∈ R

nu,i is the output

of the ith actuator, yj ∈ R
ny,j is the observation

performed by the jth sensor, and ξ(t), χj(t), x
0 are

bounded

‖ξ(t)‖ ≤ D, ‖χj(t)‖ ≤ Dy
j ∀t, j, ‖x0‖ ≤ Dx (6)

exogenous disturbance, noise in the jth sensor, and

initial state, respectively. The system is unstable: there

is an eigenvalue λ of A with |λ| ≥ 1.

The objective is to stabilize the plant by means of mul-

tiple decentralized controllers. Along with sensors and

actuators, they are spatially distributed and constitute

the set of nodes of a given network NW described in

the previous section. So DPS A, sequences of noises

{ξ(t)}, {χj(t)}, and initial state x0 uniquely deter-

mine a process in the closed-loop system.

Definition 1. A DPS A is said to stabilize the system

if it keeps the stabilization error bounded:

sup
t

sup
{ξ(θ)},{χj(θ)} , x0

‖x(t)‖ < ∞, (7)

and to regularly stabilize it, if (7) also holds with ui(t)
substituted in place of x(t) for any i. In (7) the second

sup is over noises and initial states satisfying (6).

Which networks fit to stabilize a given unstable linear

plant under a proper design of the control strategy?

The main result of the paper is that this question is

reducible to the following standard question studied

in the traditional information sciences.
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Q) How much data may be communicated from the

input to output nodes across the network that results

from a certain extension of the original one?

All limitations on communication and DPA are inher-

ited by this extension. So Q) concerns communication

under the restrictions and with the features (e.g., chan-

nel switching) inherent in the primal network.

4. EXTENDED NETWORK

This network is introduced via three steps.

Control Based Extension (CBE). As is shown in e.g.,

(Matveev and Savkin, 2006), as much information as

desired may be communicated via the plant from every

actuator to any sensor capable of detecting its actions.

We first explicitly express this possibility by formal

adding several new channels to the network. After this,

the network is studied out of connection with the plant.

Let L+c
i and L−o

j be the subspaces of states that are

controllable and non-observable by the ith actuator

and jth sensor, respectively. The set of actuator-sensor

pairs communicating via the plant is

CVP :=
{
(i, j) : L+c

i 6⊂ L−o
j

}
.

For every such pair, let us link the ith actuator to the

jth sensor by the noise-less channel with the infinite

alphabet (R for the definiteness). Since control ui

influences yj with the delay di→j := min{d ≥ 0 :
CjA

dBi 6= 0} + 1, this channel is taken to be di→j -

delayed. Insertion of all these channels gives rise to

the control based extension CBE(NW) of NW.

To simplify the matters, we assume that the unstable

|λ| ≥ 1 eigenvalues of A are distinct. A proper linear

change of the variables shapes the state x into

x =
(

x−s, . . . , x0︸ ︷︷ ︸
∼Mst(A)

, x1, . . . , xg1︸ ︷︷ ︸
∼M1

, . . .︸︷︷︸
∼M2

, . . . , . . . xn+︸ ︷︷ ︸
∼Mg

)
,

(8)

where Mst(A) is the stable subspace of A and Mν is

the invariant subspace related to either a real unsta-

ble eigenvalue λν or a couple of conjugate complex

ones λν 6= λν . With a slight abuse of terminology,

xα, α ≥ 1 are called unstable modes. Any such mode

is associated with unique Mα = Mν and |λα| := |λν |.

We assume that unlike the controllers, any causal DPA

can be implemented at the sensors and actuators (see

Assumption 1 further). Then the network can accept

exterior inputs yh at the sensor nodes and produce

exterior outputs uh at the actuator ones in any form.

Mode-wise Prefix. Now we change the scheme of

data injection into CBE(NW). We introduce new outer

data sources, each associated with a particular unsta-

ble mode xα and hosted by a new artificial input node

N in
α . This node accepts any causal DPA and instanta-

neously broadcasts data via a perfect infinite alphabet

channel to all sensors j that observe this mode Mα ∩

L−o
j = {0}. The ensemble of these new channels and

nodes PREFmw is called the mode-wise prefix; the re-

sultant network is denoted by PREFmw ⊞ CBE(NW).

Mode-wise Suffix is used to change the scheme of

data emission. The new output nodes N out
α are still

associated with unstable modes xα and attached to

PREFmw ⊞ CBE(NW) via real additive interference

channels. The channel to N out
α collects real signals

from all actuators i that control the mode Mα ⊂ L+c
i

and instantaneously delivers the sum of signals to

N out
α . DPA at N out

α is limited to the projection of the

received real signal into the nearest integer (i+1/2 7→
i for integer i). The mode-wise suffix with quantization

SUFFq
mw is the ensemble of all these channels and

nodes. The resultant network is denoted by

PREFmw ⊞ CBE(NW) ⊞ SUFFq
mw. (9)

We stress that N in
α 6= N out

α . This is motivated by the

double role of every unstable mode: it is simultane-

ously an object of observation and control.

5. NETWORK CAPACITY DOMAIN

Answers to the question Q) are traditionally given in

terms of the so-called capacity domain. Now we recall

this notion with respect to the network (9).

Let every node N in
α host an informant Iα producing a

message yα, which serves as the outer input for N in
α .

This message should be transmitted to N out
α , where it

appears in the form of the outer output uα of this node.

The transmission is arranged by choosing a DPS for

the network. It includes a DPS A ∈ A for the original

network and DPA at the artificial nodes.

A networked block code with block length T is a DPS

that acts during the time interval [0 : T ], serves infor-

mants producing constant message sequences yα(t) ≡
yα ∈ [1 : Fα] ∀t and generates the outputs in the

matching form uα(t) ∈ [1 : Fα] ∪ {⊛} (⊛ means “no

decision”.) The rate vector of this code is

rcode :=

(
log2 F1

T + 1
, . . . ,

log2 Fn+

T + 1

)
. (10)

A networked block code is errorless if at the terminal

time it correctly recognizes the messages from all

informants uα(T ) = yα ∀α irrespective of which

messages yα ∈ [1 : Fα] were dispatched. A vector

r ∈ R
n+

is called the achievable rate vector if for

arbitrarily large T and small ǫ > 0, there exists an

errorless networked block code with block length T ≥
T whose rate vector (10) approaches r with accuracy

ǫ, i.e., ‖rcode − r‖ < ǫ. The capacity (rate) domain

CD is the set of all achievable rate vectors.

6. FORMAL ASSUMPTIONS

To get substantial results, we need more assumptions

about the network. By the first of them, we restrict at-
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tention to sensors and actuators with unlimited mem-

ories and computational powers, whereas arbitrary re-

strictions may be imposed on the controllers.

Let Oc, Ic, M c stand for the ensembles of outputs,

inputs, and memories of all controllers, respectively.

Assumption 1. The following statements hold:

A) DPA part of equations (3) disintegrate into sepa-

rate equations concerning each sensor, each actu-

ator and the rest of the network, respectively:

ôh(t) = Oh [̂ih(t), mh(t), A, t],

m+
h = Mh[̂ih(t), mh(t), A, t],

mh(0) = M
0
h(A) ∀h ∈ Hs ∪ Ha; (11)

Oc(t) = Oc[Ic(t), M c(t), A, t]
M

+
c = Mc[Ic(t), M c(t), A, t]

∣∣∣∣
M c(0) =
= M

c
0(A)

.

(12)

B) The right hand sides in (11) independently range

over all functions (of the arguments from (11)

except for A) as A runs over A even if the run of

A is such that equations (12) are kept unchanged.

C) For any h ∈ Hs ∪Ha, the memory alphabet Mh is

infinite (Mh = R for the definiteness).

The next assumption means that the network is sta-

tionary and can be reset to the initial state.

Assumption 2. For any A ∈ A and time T , there

exists a DPS Ares ∈ A that is identical to A until

t = T and resets the network to the initial state

N(T∗) = N0, I(T∗) = I0, M(T∗) = M0(A) at a

time T∗ > T such that T∗−T ≤ δTmax, where δTmax

does not depend on A. Moreover, the memory content

M can be driven to the state M0(A1) initial for any

other strategy A1 ∈ A that is equivalent to A modulo

a given finite partition (i.e., ∃ν : A1, A ∈ Mν ) of the

memory alphabet {M} = M = M1 ∪ . . . ∪ MQ.

Finally, DPS can be concatenated and periodically

extended from a finite time interval.

Assumption 3. For any Ai ∈ A, i = 1, 2 and time

T = 0, 1, . . . such that the network driven by A1

arrives at time T at the state initial for A2, there exists

a DPS A ∈ A that is identical to A1 and A2 on the

time interval [0 : T − 1] and afterwards, respectively.

Assumption 4. For any A ∈ A and time τ = 1, 2, . . .
such that the network returns to the initial state at time

τ , there exists a τ -periodic (in time) DPS Aper ∈ A

that is identical to A on the time interval [0 : τ − 1].

7. CRITERION FOR STABILIZABILITY

The symbol intB stands for the interior of the set B.

Theorem 1. We consider the capacity domain CD of

the extended network (9) and the representation (8),

associate any unstable mode xα, α ≥ 1 with the

related eigenvalue modulus |λα|, and denote Λ :=

col
(

log2 |λ1|, . . . , log2 |λn+ |
)

. Then

a) Λ ∈ int CD

⇓
b) The primal network NW hosts a time-periodic

DPS that regularly stabilizes the plant.

⇓
c) NW hosts a DPS that stabilizes the plant.

⇓
d) Λ ∈ CD

The proof and the description of a stabilizing DPS will

be given in (Matveev and Savkin, 2008, Ch.9).

Theorem 1 is true not only if the unstable eigenval-

ues are distinct. It remains valid under more general

assumptions adopted in (Matveev and Savkin, 2005b).

The basic inclusion Λ ∈ CD can often be simplified

by passing to vector and domain of a lesser dimen-

sion. Some general facts underlying this operation are

presented in (Matveev and Savkin, 2008, Ch.9).

8. TWO SENSORS AND ACTUATORS

Now we offer examples illustrating a possible final

form of the criterion obtained by means of Theorem 1.

In these examples, the rate domains were calculated

via showing that the communication network at hand

can be interpreted as a fluid transportation facility.

We consider the linear plant (4), (5) with two sensors

S1, S2 and actuators A1, A2 (l = k = 2), which are

directly linked by noise-less channels with given finite

capacities. The absence of the channel from Sj to Ai

is modeled by annihilating its capacity cji := 0. The

plant is detectable and stabilizable by the entire sets of

the sensors and actuators, respectively.

Actuators with Non-Intersecting Zones of Influ-

ence. We first assume that the actuators affect no com-

mon unstable mode. Then the unstable subspace

Munst(A) = M11⊕Mb1⊕M21⊕M12⊕Mb2⊕M22,

• where Mji, j 6=b is the subspace of states con-

trollable by Ai, observable by the jth sensor, and

non-observable by the companion sensor;

• Mbi is the subspace of states controllable by the

ith actuator and observable by both sensors.

We denote det A|{0} := 1 and eνi := log2 | detA|Mνi
|,

where ν = 1, 2, b, i = 1, 2.
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For 2 × 2-matrices M = (mij), we put:

• [M ]↔ := m11 + m12;

• [M ]↔ := m21 + m22;

• l[M ] := m11 + m21;

• [M ]l := m12 + m22;

• Σ−
ij (M) :=

∑
(i′,j′) 6=(i,j) mi′,j′ .

Finally, we introduce the matrices

E :=

(
e11 e12

e21 e22

)
, C :=

(
c11 c12

c21 c22

)
.

Proposition 1. Suppose that any sensor is able to de-

tect the actions of every actuator: L+c
i 6⊂ L−o

j ∀i, j =
1, 2. If the plant is stabilizable, then

[E]
↔

≤ [C]
↔

, [E]↔ ≤ [C]↔

l[E + diag(eb1, eb2)] ≤l [C] ,

[E + diag(eb1, eb2)]l ≤ [C]l

Σ−
ij(E) + ebj′ ≤ Σ−

ij(C) ∀i, j = 1, 2, (13)

where j′ := 1 if j = 2 and j′ = 2 if j = 1.

Conversely, if relations (13) hold with the strict in-

equality signs, the plant is regularly stabilizable.

Two Independent Agents. The zones of influence

of the actuators are still disjoint but unlike Propo-

sition 1, every sensor is affected by a single actua-

tor. By changing enumeration of the sensors, one can

assume that Si detects the actions of only Ai. Then

Munst(A) = M1 ⊕ M2, where Mi is the subspace of

states controllable by Ai, observable by Si, and non-

observable by Si′. The situation can be interpreted

as if there are two independent agents with the state

spaces M1 and M2, respectively, each equipped with

its own actuator and sensor measuring the state of the

owner. It may seem that then the cross channels S1 7→
A2 and S2 7→ A1 are useless, and the conditions for

stabilizability come to log2 | detA|Mi
| ≤ cii∀i. The

next proposition shows that this is not the case, and

the system can be stabilized even if c11 = c22 = 0.

Proposition 2. If the plant is stabilizable, then

log2 | detA|Mi
| ≤ cii + min{c12, c21} i = 1, 2,

log2 | detA|Munst(A)| ≤ c11+c22+min{c12, c21}.

Conversely, if these relations hold with the strict in-

equality signs, the plant is regularly stabilizable.

Actuators with Identical Zones of Influence, i.e., the

plant is stabilizable by any actuator. Then

Munst(A) = M1 ⊕ Mb ⊕ M2,

where Mj, j 6= b is the subspace of states observable

by Sj and non-observable by Sj′, and Mb is the set of

states observable by both sensors.

Proposition 3. If the plant is stabilizable, then

log2 | detA|Mi
| ≤ ci1 + ci2 i = 1, 2,

log2 | detA|Munst(A)| ≤ c11 + c22 + c12 + c21.

Conversely, if these relations hold with the strict in-

equality signs, the plant is regularly stabilizable.

REFERENCES

Baillieul, J. (1999). Feedback designs for controlling

device arrays with communication channel band-

width constraints. In: Proc. of ARO Workshop on

Smart Structures. Penns. Uni., Univ. Park, P.A.

LaScala, B. F. and R. J. Evans (2005). Minimum

necessary data rates for accurate track fusion. In:

Proc. of the 44th IEEE CDC and ECC 2005.

Seville, Spain. pp. 6966–6971.

Matveev, A. S. and A. V. Savkin (2005a). Decentral-

ized stabilization of linear systems via limited ca-

pacity communication networks. In: Proc. of the

44th IEEE CDC and ECC 2005. Seville, Spain.

pp. 1155–1161.

Matveev, A. S. and A. V. Savkin (2005b). Multi-rate

stabilization of linear multiple sensor systems via

limited capacity communication channels. SIAM

J. on Control and Optimization 44(2), 584–618.

Matveev, A. S. and A. V. Savkin (2006). On a problem

related to application of digital networked com-

munication technology to stabilization of noisy

plants over noisy channels. In: Proc.of the IEEE

Conf. on Cont. Appl.. Munich. pp. 2072–2077.

Matveev, A. S. and A. V. Savkin (2007). An analogue

of Shannon information theory for detection and

stabilization via noisy discrete communication

channels. SIAM J. on Control and Optimization

46(4), 1323–1361.

Matveev, A. S. and A. V. Savkin (2008). Estima-

tion and Control over Communication Networks.

Birkhauser. Boston.

Nair, G. N. and R. J. Evans (2004). Stabilisability

of stochastic linear systems with finite feedback

data rates. SIAM Journal on Control and Opti-

mization 43(2), 413–436.

Nair, G. N., R. J. Evans and P. E. Caines (2004). Sta-

bilizing decentralized linear systems under data

rate constraints. In: Proc. of the 43rd IEEE CDC.

Atlantis, Bahamas. pp. 3992–3997.

Petersen, I. R. and A. V. Savkin (2001). Multi-rate

stabilization of multivariable discrete-time lin-

ear systems via a limited capacity comunication

channel. In: Proc. of the 40th IEEE CDC. Or-

lando, Florida, USA. pp. 304–309.

Savkin, A. V. (2006). Analysis and synthesis of net-

worked control systems: topological entropy, ob-

servability, robustness, and optimal control. Au-

tomatica 42(1), 51–62.

Wong, W. S. and R. W. Brockett (1999). Systems with

finite communication bandwidth constraints: Sta-

bilization with limited information feedback.

IEEE Trans. on Autom. Control 44, 1049–1053.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8038


