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Abstract: This paper presents an approach to the identification of nonlinear system in noisy
environment using a wavelet based State Dependent Parameter (SDP) model to chacterize
the system’s nonlinear dynamics. The obtained model is in the form of a set of linear
regressive output/input terms (state) multiplied by the respective SDPs, which are compactly
parameterized by wavelet basis functions. In this approach, a modified Instrumental Variable
(IV) algorithm is used to solve to the inconsistency problem of linear least squares parameter’s
estimation in the presence of noise. A simulation example is provided to illustrate the proposed
approach.

1. INTRODUCTION

Our recent publications (i.e. Truong et al. 2006, 2007a,
2007b) have presented approaches to the identification of
nonlinear systems using wavelet based State Dependent
Parameter (SDP) models. This model structure expresses
the nonlinear system as a set of the linear regressive
output/input terms (states) multiplied by associated State
Dependent Parameters to characterize the nonlinearities.
These state dependencies, in the first step, are non-
parametrically estimated using a SDP algorithm based on
recursive fixed interval smoothing (i.e. Young 2001,Young
et al. 2001,etc). The shapes of the SDP relationships (as
defined by the plots of the parameters against the state
variables) indicate and visualize the nature of the most
significant nonlinearities within the dynamic SDP model.
They are then, in the second step, parameterized in a com-
pact manner via wavelet series expansion by employing ap-
propriate types of wavelet basis functions that are selected
corresponding to the features of the SDP relationships.
This formulates the wavelet based SDP model (WSDP).

In a noisy environment, the parameter’s estimates ob-
tained by a standard linear Least Squares (LS) algorithm
are biased away from their true values. It is because the
regressor matrix contains the process output terms which
are correlated with noise. In this situation, to obtain the
consistency in the parameter’s estimates, other estimation
solutions are necessary. One of the simplest approaches to
this problem is to use Instrumental Variable (IV) methods
since they do not require a priori knowledge about the ad-
ditive noise statistical properties, and have been proven to
be so effective in the linear model estimation context (i.e.
Young 1970,Stoica et al. 1983,Young 1984, Söıderströım et
al. 1989)

The main idea of a basic IV method is to replace the regres-
sor vector (associated to the noisy process output terms)
with the instrumental variable. This variable is chosen in
such a way that it correlates with the regression variables

but uncorrelated with the noise variable to represent the
noise-free output. However, since the process noise-free
output can not be measured in practice, traditionally,
the instrument is generated by filtering the process input
through an ”auxiliary model” 1 which is typically obtained
by the LS method.

In a nonlinear system identification context as considered
in present study, as the regressor matrix is constructed
from nonlinear functions of the past sample values of the
output data and the input data, the instrument can not
be easily obtained by just using the process input. In
this paper, to counteract the bias problem in a WSDP
setting, a modified Instrumental Variable (MIV) procedure
is employed. In this approach, a predicted output is used
to be an instrument to replace the noisy output in the
regressor matrix (Kalafatis et al. 1997). This procedure
is implemented iteratively to gradually remove the noise
from the predicted output, thus removes the bias from the
parameter estimates.

The paper’s structure is organized as follows. Background
information about WSDP models is provided in Section 2.
The modified instrumental variable procedure is described
in Section 3. An illustrative example is provided in Section
4 to demonstrate the merit of the proposed approach.
Finally, Section 5 concludes the papers.

2. BACKGROUND

It is assumed that a nonlinear system can be represented
by following State Dependent Parameter (SDP) model:

1 In an iterative IV method, this ”auxiliary model” can be later
iteratively adapted (Young 1970).
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y(k) =

ny
∑

i=1

fi{y(k − i)}y(k − i)

+

nu
∑

i=0

gi{u(k − i)}u(k − i) + e(k) (1)

where, u(k) and y(k) are, respectively, the sampled input-
output sequences; and nu,ny refer to the maximum num-
ber of lagged inputs and outputs. The error term e(k)
refers to the noise variable, assumed initially to be a
zero mean, white noise process that is uncorrelated with
the input u(k) and its past values. Here, the parameters
fi{.} and gi(.} are dependent on the non-minimal state
variables defined by the input and output variables and
their past sampled values. In the open literature (i.e.
Young 2001,Young et al. 2001,etc) they are regarded as
State Dependent Parameters (SDP) to carry the system’s
nonlinearities.

At this point, the nonlinear system identification prob-
lem is equivalent to a 2-stage-identification procedure: (1)
SDPs’ non-parametric estimation, (2) Nonlinear system
model’s structure determination and parameter’s estima-
tion.

2.1 SDP’s Nonparametric Estimation

The estimate of the state dependency is based on consider-
ing the changes of the SDPs in a transformed space, where
the data are re-ordered in a non-temporal manner (nor-
mally the simple ascending-order ). In this transformed
space, the SDPs are assumed to vary in a stochastic man-
ner, according to a specified member of the Generalised
Random Walk (GRW) family, such as the random walk
or the integrated random walk. They are then estimated
in a recursive approach that exploits the Fixed Interval
Smoothing (FIS) algorithm, where the hyper-parameters
associated with the stochastic models for the parameter
variations are estimated using Prediction Error Decompo-
sition (PED), as well as associated Maximum likelihood
(ML) algorithm (see Young 1993, 2001,Young et al. 2001
for more details). The final results of this process are in
the form of non-parametric relationships (graphs) between
the SDP estimates and the states on which they are de-
pendent.The features of these nonparametric relationships
serve as the basis for the selection of wavelet functions as
well as the associated scaling parameters for the subse-
quent nonlinear model’s structure selection process.

2.2 Model’s Structure Determination and Parameter’s
Estimation

Using wavelet series expansion, a SDP relationship f can
be parameterized with respect to the state variable x as
below:

f(x) =

imax
∑

i=imin

∑

k∈Li

ai,kΨ(2−ix − k) + ξ(x) (2)

where Ψ(x) is any compactly supported mother wavelet
function (e.g. a Mexican hat wavelet, Morlet wavelet ,
and so on), whose supporting range falls within (s1, s2).

Here, imin, imax, respectively, refer to the minimum and
maximum (finest and coarsest) scales (resolutions) to be
employed for approximation. Li(determined as in (3) and
(4) ) is the translation library at scale i.

Li = {k ∈ (2−ixmin − s2, 2
−ixmax − s1), k ∈ Z} (3)

Limax
⊂ Limax−1 ⊂ ... ⊂ Limin

. (4)

The realization of f(x) as in (2) is often overparameterized
since the wavelet function library as derived in (3) and (4)
consists all the possible combination of the parameters.
In order to obtain a compact parameterization for the
SDP relationship under study, a PRESS statistic based
term selection algorithm is implemented (Truong et al.
2006, 2007a, 2007b). This procedure uses the incremental
value of PRESS 2 (∆PRESS) as criterion to detect the
significance of each terms within the model in which the
maximum ∆PRESS signifies the most significant term,
while its minimum reflects the least significant term.
Based on this, the algorithm initializes with the initial
subset being the most significant term. It then starts
to grow to include the subsequent significant terms in a
forward regression manner, until a specified performance
is achieved.

By doing so, the State Dependent Parameters fi(x) and
gi(x) can be compactly parameterized in the following
forms

fi(x) =

nfi
∑

j=0

afi,j lfi,j(x)

gi(x) =

ngi
∑

j=0

agi,j lgi,j(x) (5)

where, Lfi
= {lfi,0, ..., lfi,nfi

}, Lgi
=

{

lgi,0, ..., lgi,ngi

}

are,
respectively, the optimized sets of wavelet functions used
for parameterization of fi(x) and gi(x). Substituting (5)
into (1) yields

y(k) =

ny
∑

i=1

nfi
∑

j=0

[afi,j lfi,j{y(k − i)}]y(k − i)

+

nu
∑

i=0

ngi
∑

j=0

[agi,j lgi,j{u(k − i)}]u(k − i)

+ e(k) (6)

Equation (6) is regarded as a wavelet based SDP model
(WSDP).

By letting

2 The difference between the overparameterized (original) model’s
PRESS value and the one calculated by excluding a term from the
original model.
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θfi = [afi,0, ..., afi,nfi
]T

θgi = [agi,0, ..., agi,ngi
]T

Lk,fi = y(k − i)[lfi,0{y(k − i)}, ..., lfi,nfi
{y(k − i)}]

Lk,gi = u(k − i)[lgi,0{u(k − i)}, ..., lgi,ngi
{u(k − i)}]

θ =
[

θf1, ..., θfny
, θg0, ..., θgnu

]T

Lk = [Lkf1, ..., Lkfny
, Lkg0, ..., Lkgnu

]T

L = [L0, ..., LN−1]

E = [e(0), ..., e(N − 1)]T

Y = [y(0), ..., y(N − 1)]T (7)

Equation (6) is now written in the following matrix form:

Y = LT θ + E (8)

which is a standard least squares formulation.

Let us define the cost function as below

J =
[

Y − LT θ
]T [

Y − LT θ
]

(9)

and as usual, the estimate θ̂ of the parameter vector θ to
minimize the cost function J is obtained in the usual least
squares manner, i.e.

θ̂ =
[

LLT
]−1

[LY ] (10)

3. MAIN RESULTS

3.1 Sensitivity of the Least Squares Solution to Noise

In the presence of noise, the parameter’s estimate as
obtained in (10) will be biased since the regressor matrix
contains the process output terms which are correlated
with noise. However, this bias is dependent upon the signal
to noise ratio (SNR). If SNR is high, the bias in the
parameter’s estimate can be significantly reduced, and vice
versa. To demonstrate that, let us consider the following
example.

Consider a nonlinear system described by the following
equation:

y(k) = [−0.5Ψ1,3(x) + 0.45Ψ0,1(x)]
y(k−1) y(k − 1)

+ [0.25Ψ2,1(x) − 0.65Ψ1,0(x)]
u(k) u(k) (11)

where,

Ψi,k(x) = Ψ(2−ix − k), and Ψ(x) = (1 − x2)e−0.5x2

With u(k) = sin( k
50 ) and the initial condition to be

y(0) = 0, (11) is simulated to generate 1000 data points
(Figure 1).

To simulate the output measurement noise, a zero mean,
white noise sequence is added to the noise-free output
signal. In this case, the output signal is redefined as below:

y(k) = ȳ(k) + ϑ(k) ϑ(k) = N(0, σ2) (12)

in which ȳ(k) denotes the noise-free signal.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5
(a)

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
(b)

 Sampling index

Fig. 1. Benchmark example: (a) noise-free output (b) input

For this example, to investigate various noise levels added
to the output signal, σ is selected to be several values
(0.0057,0.0284 and 0.0398) to respectively add 1%, 5% and
7% noise (by standard deviation) to the noise-free signal
ȳ(k).

The parameter’s estimates are shown in Table 1 in compar-
ison to the true values. To quantify the bias, the following
measure (Normalized Squared Error-SE) is introduced:

SE =

∥

∥

∥
θ̂ − θ0

∥

∥

∥

θ0
(13)

in which θ0 denotes the true parameters. As shown on

True values LS estimates
σ

0.0057 0.0284 0.0398

a1,3,f1 -0.5 -0.4915 -0.3939 -0.3313
a0,1,f1 0.45 0.4506 0.4580 0.4598
a2,1,g0 0.25 0.2518 0.2795 0.3050
a1,0,g0 -0.65 -0.6516 -0.6681 -0.6809

SE 0.92% 11.56% 18.63%

Table 1. Sensitivity of the Least Squares Estimates

to Noise

Table 1, the bias increases as SNR descreases. When
σ = 0.0057(1% of noise added by standard deviation),
the bias is insignificant. The Least Squares (LS) estimates
are very close to their true values. When the noise level
increases, the LS estimates are significantly biased away
from the true values.

3.2 Modified Instrumental Variable Parameter Estimation

Assuming that the true system can be represented as:

y(k) = L̄T
k θ0 + ϑ(k) (14)

where θ0 represents the true estimate of θ , and L̄T
k rep-

resents the noise free regressor vector which is formulated
from the noise free output ȳ(k) , and the noise free input
u(k) as described in (7), i.e.
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L̄k =





































y(k − 1)[lf1,0{y(k − 1)}, ...
..., lfi,nf1

{y(k − 1)}]T

...
y(k − ny)[lfny,0{y(k − ny)}, ...

..., lfny,nffny
{y(k − ny)}]T

u(k)[lg0,0{u(k)}, ...
..., lg0,ng0

{u(k)}]T

...
u(k − nu)[lgnu,0{u(k − nu)}, ...

..., lgnu,ngnu
{u(k − nu)}]T





































(15)

As

θ̂ = [LLT ]−1[LY ] = [LLT ]−1[L(L̄T θ0 + V )] (16)

Thus, we can express the difference between θ̂ and θ0 as
below

θ̂ − θ0 = [LLT ]−1[L(L̄T θ0 + V )] − θ0

= {[LLT ]−1LL̄T − 1}θ0 + [LLT ]−1LV (17)

in which,

V = [ϑ(0), ..., ϑ(N − 1)]
T

(18)

As some elements in L are terms such as y(k−1)[lf1,0{y(k−
1)}, ..., lfi,nf1

{y(k − 1)}], ..., y(k − i)[lfi,0{y(k − i)}, ...,

lfi,nfi
{y(k − i)}], ..., which contains the noise terms, i.e.

ϑ(k−1), ..., ϑ(k− i), ..., the least squares estimate of θ will
be biased. It is because LV does not tend to zero even if
ϑ(k) is a zero mean white noise sequence.

The bias as in (17) will be disappeared if we substitute
the noisy process output y(k) with the noise free output
ȳ(k) in the L matrix (constructed as in (7)). However, as
this information is unavailable in practice, its prediction
ŷ(k) is proposed to be used (Kalafatis et al. 1997). This
procedure is proposed to be implemented iteratively to
gradually remove the bias from the estimates as described
below:

1. Form the data matrix LT
Y,U by using the process input

u(k) and the measured output y(k) as in (7), and
obtain the initial estimate for the parameters as:

θ̂0 = [LY,ULT
Y,U ]−1[LY,UY ] (19)

2. Generate the predicted output Ŷ 0
LS as

Ŷ 0
LS = LT

Y,U θ̂0

For the ease of representation, let us denote LT

Ŷ ,U
be the

data matrix that is formulated as in (7) by using ŷ(k) and
u(k) instead of the actual noise corrupted output y(k), and
u(k), i.e.

L
Ŷ ,U

= [L̂0, ..., L̂N−1] (20)

in which,

L̂k =





































ŷ(k − 1)[lf1,0{ŷ(k − 1)}, ...
..., lfi,nf1

{ŷ(k − 1)}]T

...
ŷ(k − ny)[lfny,0{ŷ(k − ny)}, ...

..., lfny,nffny
{ŷ(k − ny)}]T

u(k)[lg0,0{u(k)}, ...
..., lg0,ng0

{u(k)}]T

...
u(k − nu)[lgnu,0{u(k − nu)}, ...

..., lgnu,ngnu
{u(k − nu)}]T





































(21)

3. Set Ŷ = Ŷ 0
LS .

4. Form a new data matrix LT

Ŷ ,U
by using ŷ(k) , and

u(k), and compute θ̂ as

θ̂ = [L
Ŷ ,U

LT

Ŷ ,U
]−1[L

Ŷ ,U
Y ] (22)

5. Generate the predicted output Ŷ as

Ŷ = LT

Ŷ ,U
θ̂ (23)

6. Repeat Step 4 through 5 until the parameter esti-
mates converge.

Upon the convergence of L
Ŷ ,U

to L̄, based on (17), it can

be shown that θ̂ is unbiased estimate of θ0. The proof of
convergence is, however, still under study and remains an
open question.

This approach is, on one hand, closely related to the In-
strumental Variable (IV) method (i.e. Young 1970, Stoica
et al. 1983,Young 1984, Söıderströım et al. 1989,etc) in
the sense that the predicted output ŷ(k) is used as an
instrument for y(k) in the regressor matrix. On the other
hand, this differs from the standard IV approach since the
estimate is actually based on the following model:

Y = LT

Ŷ ,U
θ + V (24)

which leads to the estimator

θ̂ = [L
Ŷ ,U

LT

Ŷ ,U
]−1[L

Ŷ ,U
Y ] (25)

while a standard IV estimator is as follows

θ̂ = [L
Ŷ ,U

LT
Y,U ]−1[L

Ŷ ,U
Y ] (26)

As a result, it might be regarded as a pseudo-instrumental
variable (PIV) method.

4. SIMULATION EXAMPLE

To demonstrate the merit of the proposed approach, in this
section, a simulation example is provided. For simplicity,
throughout this section, a form of Mexican hat wavelet
function as defined in (27) is used.

Ψ(x) =

{

(1 − x2)e−0.5x2

if x ∈ (−4, 4)
0 otherwise

}

(27)

Consider a nonlinear system described by the following
model:
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−4 −3 −2 −1 0 1 2 3 4
−0.5

0

0.5

1

x

Fig. 2. Mexican hat wavelet function

y(k) =
[

0.5 + 0.2e−0.5y(k−1)2
]

y(k − 1)

+
y(k − 2)2

1 + y(k − 2)2

+
[

u(k)2 − 0.7u(k) + 0.3
]

u(k) (28)

With u = sin( k
50 ) and the initial conditions to be y(0) = 0,

y(1) = 0.0057, model (28) is simulated to generate 1000
input/output data points. In this example, in order to
evaluate the effect of measurement noise, it is assumed
that the output is noisy, in the sense that a zero mean,
white noise sequence is added to the noise-free output
signal (Figure 3). In this situation the measured output
y(k) is redefined as:

y(k) = ȳ(k) + ϑ(k) ϑ(k) = N(0, σ2) (29)

where σ2 = 0.0844 is selected to add 5% noise (by
standard deviation) to ȳ(k), which now denotes the noise-
free output sequence.

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

4
(a)

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
(b)

 Sampling index

Fig. 3. Simulation data: (a) Noisy output (b) input.

Using a discrete time model form for this system, its SDP
model structure is identified as follows:

y(k) = f1{y(k − 1)}y(k − 1)

+ f2{y(k − 2)}y(k − 2) + g0{u(k)}u(k) (30)

With the finest and coarsest scaling parameters chosen
to be 0 and 3, the SDP parameters are identified in the
following general parametric forms:

f1(x) = a0,0,f1Ψ0,0(x) + a0,1,f1Ψ0,1(x)

+ a0,3,f1Ψ0,3(x) + a0,2,f1Ψ0,2(x)

+ a3,0,f1Ψ3,0(x) + a1,−1,f1Ψ1,−1(x)

+ a1,2,f1Ψ1,2(x)

f2(x) = a0,2,f2Ψ0,2(x) + a2,1,f2Ψ2,1(x)

g1(x) = a0,−1,g0Ψ0,−1(x) + a0,1,g0Ψ0,1(x)

+ a3,0,g0Ψ3,0(x) (31)

where,

Ψi,k(x) = Ψ(2−ix − k), and Ψ(x) = (1 − x2)e−0.5x2

The estimation model is then obtained by substituting
(31) into (30). Using the input-output data, the associated
parameters are estimated using the proposed modified in-
strumental variable (MIV) algorithm. After 25 iterations,
the MIV estimates’ convergence is achieved. The predicted
output ŷ(k) converges to the noise free output ȳ(k) (Figure
4) and the final identified model is found to be: y(k) =







0.3943Ψ0,0(x) + 0.6952Ψ0,1(x)
+0.1163Ψ0,2(x) + 0.2874Ψ0,3(x)
+0.4828Ψ1,−1(x) + 0.0400Ψ1,2(x)

+0.4668Ψ3,0(x)







y(k−1)

y(k − 1)

+ [0.2900Ψ0,2(x) + 0.5785Ψ2,1(x)]
y(k−2) y(k − 2)

+

[

1.4036Ψ0,−1(x) + 0.9998Ψ0,1(x)
+0.2010Ψ3,0(x)

]

u(k)

u(k) (32)

0 100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

 Sampling index

Fig. 4. Comparison between noise-free (solid) and predicted (dot-

dot) process output after 25 iterations

The obtained MIV parameter estimates along with the
noise-free estimates are given in Table 2, showing that
they are very close to each other. Figure 5 compares
the identified model’s iterative (simulated) output to the
noise-free output signal. They, in turn, imply that the
identified model (32) excellently characterizes this system.

To further validate the simulation results, 100 independent
Monte Carlo simulation tests (1000 data points each) are
generated based on (28) and (29). Here, to quantify the
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Parameter LS estimates Noise-free estimates MIV estimates

a0,0,f1 0.3012 0.3821 0.3943
a0,1,f1 0.6173 0.6548 0.6952
a0,2,f1 0.2813 0.0871 0.1163
a0,3,f1 0.2716 0.2118 0.2874

a1,−1,f1 0.2110 0.4788 0.4828
a1,2,f1 0.2028 0.0735 0.0400
a3,0,f1 0.6194 0.4908 0.4668
a0,2,f2 0.0729 0.2784 0.2900
a2,1,f2 0.2541 0.5834 0.5785

a0,−1,g0 1.3560 1.4108 1.4036
a0,1,g0 0.9656 1.0764 0.9998
a3,0,g0 0.1624 0.1795 0.2010

Table 2. Noise-free versus MIV estimates

0 100 200 300 400 500 600 700 800 900 1000
−3
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3
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Fig. 5. (a) Comparison between the noise-free output (solid) and

model iterative output of (32) (dot-dot), and (b) their difference

Parameter Noise-free estimates MIV estimates

a0,0,f1 0.3821 0.3849±0.0359
a0,1,f1 0.6548 0.7081±0.0631
a0,2,f1 0.0871 0.0900±0.0677
a0,3,f1 0.2118 0.3039±0.0773

a1,−1,f1 0.4788 0.4286±0.0864
a1,2,f1 0.0735 0.0431±0.0892
a3,0,f1 0.4908 0.4766±0.0701
a0,2,f2 0.2784 0.2975±0.0604
a2,1,f2 0.5834 0.5107±0.1189

a0,−1,g0 1.4108 1.4200±0.1460
a0,1,g0 1.0764 1.0587±0.1200
a3,0,g0 0.1795 0.2379±0.0478

RE 7.2%
MSE 2.46%

Table 3. Monte Carlo test performance

simulation results, a number of performance measures
(Relative Error-RE and Normalized Mean Squared Error-

MSE of θ̂m with respect to the noise-free estimated
value θ0) are introduced to assess the estimation accuracy
(shown in Table 3) as follows:

RE =

∥

∥

∥
m(θ̂) − θ0

∥

∥

∥

‖θ0‖
(33)

MSE =
1

M

M
∑

m=1

∥

∥

∥
θ̂m − θ0

∥

∥

∥

‖θ0‖
(34)

in which, θ̂m denotes the MIV parameter estimates in the
mth test over the total of M = 100 independent tests;

m(θ̂) = 1
M

∑M

m=1 θ̂m.

5. CONCLUSION

This paper has presented a nonlinear system identifica-
tion algorithm which uses a wavelet based SDP (WSDP)
model to identify and characterize the system’s nonlinear
dynamics. In a noisy environment, to obtain the con-
sistent estimates of the model’s parameters, a modified
instrumental variable (MIV) procedure is employed. This
procedure uses the predicted value as an instrument to
substitute for the noise disturbed process output in the
regressor matrix, and gradually removes the bias in the
parameter estimates in an iterative manner. The results
obtained from the simulation example demonstrate the
merits of the proposed approach.
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