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Abstract: This paper discusses a new design of chattering reduction for sliding mode control.
Conventionally, a boundary layer around the sliding surface is used to achieve smooth control
signals. However, the boundary layer design become in-effective in chattering reduction when
there is high-level measurement noise. To solve this problem, this paper proposes a dynamic
sliding mode control, which, with the help of an LTR observer for uncertainty estimation,
achieves chattering reduction even in very noisy environments.

1. INTRODUCTION

Sliding mode control is robust with respect to system un-
certainties through the use of switching control or variable
structure control (Hung et al., 1993). However, chattering
of the control signal has become the major obstacle to
its applications in the real world. In the literature, the
first approach to chattering reduction is the boundary
layer control BLC (Slotine and Sastry, 1983; Burton and
Zinober, 1986). In the BLC design, the boundary layer
width plays two contradicting roles: on one hand, it has
to be large to reduce the control chattering; on the other
hand, it has to be small to achieve good control accuracy.
In cases when the requirement on the control accuracy is
high, the boundary layer control becomes ineffective in re-
ducing the control chattering. This is especially true when
the state measurements are corrupted with measurement
noises. When the measurement noise is of a level that is
larger than the boundary layer width, the high-frequency
oscillations in the noise will be reflected and amplified in
the control signal (see simulation examples below).

The second approach to chattering reduction is the dy-
namic sliding mode control DSMC (Sira-Ramirez, 1992-
1993; Bartolini, 1989; Bartolini and Pydynowski, 1996;
Bartolini et al., 1998), where an integrator (or any other
strictly proper low-pass filter) is placed in front of the
system to be controlled, as shown in Figure 1. The time
derivative of control input, w = u̇, is treated as the
control variable for the augmented system (the system
plus the integrator). A switching sliding mode control w is
then designed for the augmented system. Fortunately, the
switching signal w is contained in the controller, which is
normally implemented within a computer, and hence will
not do any damage to the real system. The control input
to the real system u =

∫
wdt becomes chattering free since

the low-pass integrator in Figure 1 will filter out the high-
frequency chattering in w. The advantage of such DSMC
design is that control chattering is reduced by low pass
filtering, not by sacrificing the control accuracy since no
boundary layer is used in the design of w. Hence, the mech-
anism of chattering reduction and that of accuracy control

are decoupled in the DSMC design. Another advantage of
DSMC is that it is better immune to the measurement
noise since the low-pass filter (1/s) in Figure 1 can to some
extent filter out the noise contained in the signal w.

Despite its superiority to the BLC, the design of DSMC
is challenging for the following reason. In the DSMC
design, the sliding variable is different from that in the
BLC design since the augmented system in Figure 1
is one dimensional larger than the original system. As
a result of this, the resultant new sliding variable in
DSMC contains an uncertainty term due to the external
disturbance and/or parametric uncertainty. Evaluation of
the new sliding variable in DSMC becomes difficult. This
issue is not addressed in the early works (Sira-Ramirez,
1993), but has been discussed by Bartolini in his series of
works. In Bartolini (1989), a variable structure estimator
is proposed to estimate the sliding variable in DSMC,
but it must assume a priori that the system state is
uniformly bounded before proving the system stability.
In Bartolini and Pydynowski (1996), a one-dimensional
observer is proposed to estimate the sliding variable, but
stability is guaranteed only if a differential inequality with
bounded coefficients is satisfied. The most recent approach
(Bartolini et al., 1998) attempts to solve the problem
based on a bang-bang optimal control without using any
observer. But it is implementable only if one can detect
the sign change of the derivative of an accessible signal.
Finally, note that the sliding differentiator (Levant, 1998)
approach for estimation of the sliding variable in DSMC
also has to assume a priori a bounded trajectory.

To overcome the problem of sliding variable estimation
in DSMC, this paper proposes using a two-dimensional
LTR observer (Doyle and Stein, 1979) for estimation of the
potentially unbounded sliding variable in DSMC. The LTR
observer, which was originally proposed for gain and phase
margins recovery for observer-based LQ control, finds new
applications in this paper for the estimation of state-
dependent uncertainties in a dynamic system. The method
proposed in this paper is better than existing methods
since it does not need the bounded trajectory assumption

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9877 10.3182/20080706-5-KR-1001.0509



(Bartolini, 1989), nor the differential inequality condition
(Bartolini and Pydynowski, 1996), nor the detection of
the sign change of the derivative of an accessible signal
(Bartolini et al., 1998).

To simplify the writing of complex mathematical expres-
sions, the following notations will be used in this paper.
First, the big O(·): one writes s(t) = O(v(t)) if after
some finite time |s(t)| ≤ M |v(t)| for some finite constant
M > 0. Second, the small o(·): one writes s(t) = o(v(t)) if
after some finite time |s(t)| ≤ ε|v(t)| where ε is a positive
number that approaches zero as π approaches infinity in
the observer Riccati equation (8) in Section 2. Third, given
a time signal u(t), |u|t = supτ≤t|u(τ)|. These notations
are standard in the study of adaptive system stability
(Narendra and Annaswamy, 1989).

2. SLIDING VARIABLE DESIGN IN DSMC

Consider the dynamic sliding mode control design for a
linear system with uncertainty :

ẋ = Ax + B(u + e), e = ∆ax + d (1)

y = Cx

where x ∈ Rn is the accessible system state, u ∈ R1 is the
scalar control input, and e = ∆ax+d is system uncertainty,
in which d is an unknown disturbance satisfying |d| ≤ d̄,
|ḋ| ≤ d̄1, and ∆a ∈ R1×n contains uncertain parameters
with known upper bounds: ‖∆a‖ ≤ ā. (A,B) is control-
lable. The row vector C ∈ R1×n is a design parameter
chosen such that (A,C) observable and all zeros of the
system (A,B,C) are in the open left-half plane.

The structure of dynamic sliding mode control is depicted
in Figure 1. Basically, one puts an integrator in front of
the system, and w = u̇ is treated as the control variable
to suppress the uncertainty e. This strategy is sometimes
called the first-order dynamic extension of the control
input u. One then designs a switching sliding mode control
for w to eliminate the uncertainty’s effects. Even though
w is chattering, the control input u to the system will
be chattering free because the high-frequency chattering
is filtered out by the integrator, which acts as a low-pass
filter.

In the dynamic sliding mode control in Figure 1, the
augmented system is one dimensional higher than the
original system due to the inclusion of the integrator. As a
result, the relative degree of the extended system becomes
r + 1, where r is the relative degree of the original system
(A,B, C). Hence, a sliding variable for the augmented
system is chosen as

s = y(r) + λr−1y
(r−1) + · · ·+ λ1ẏ + λ0y (2)

where λi’s are chosen such that s = 0 defines a stable r’th-
order ODE of y. The task of the control variable w = u̇ is
then to drive the new sliding variable s to (almost) zero in
the face of uncertainties. However, the new sliding variable
s is difficult to evaluate because its first term y(r) contains
uncertainties ∆ax + d

y(r) = CArx + CAr−1B(u + ∆ax + d). (3)

The other terms y(i) = CAix, i = 0, · · · , r − 1 in (2) have
no such problems because they are decoupled from the
uncertainties.

Since y(r) cannot be evaluated correctly based on x and
u, a robust LTR observer (Doyle and Stein, 1979) is
suggested below to estimate y(r), and hence s. Define a
two-dimensional state

q =
[

y(r−1)

y(r)

]
∈ R2, (4)

where the first component y(r−1) = CAr−1x is accessible
for evaluation given x, but the second component y(r) is
not accessible due to the uncertainties in (3). In the sequel,
an LTR observer is employed to estimate q and hence the
inaccessible second component y(r). By taking the time
derivative of (3), one can show that q satisfies the dynamic
model,

state : q̇ = A2q + B2(CAr+1x + CArBu

+CAr−1Bw + ∆p) (5)

output : y(r−1)(= CAr−1x) = C2q

where ∆p is an unknown uncertainty

∆p = CArB(∆ax + d) + CAr−1B[∆a(Ax

+B[∆ax + u + d]) + d(1)] (6)
and system matrices

A2 =
[

0 1
0 0

]
, B2 =

[
0
1

]
, C2 = [ 1 0 ] .

The following robust LTR observer (Doyle and Stein, 1979)
is suggested to estimate the state vector q in (5):

˙̂q = A2q̂ + B2(CAr+1x + CArBu + CAr−1Bw)

+L2(y(r−1) − C2q̂) (7)
where the output injection gain L2 = QCT

2 /µ,µ > 0 and

(I + A2)Q + Q(A2 + I)T −QCT
2 C2Q/µ + πB2B

T
2 = 0,(8)

with π > 0 sufficiently large.

Lemma 1 (Doyle and Stein, 1979) : Since (A2 +
I,B2, C2) is minimum-phase, the solution Q of the ob-
server Riccati equation (8) satisfies limπ→∞

Q
π = 0.

Based on Lemma 2, one can now show that the proposed
LTR observer achieves small estimation errors of q by using
a sufficiently large design parameter π in the observer
Riccati equation (8).

Theorem 2 : The LTR observer (7) and (8) achieves
a small estimation error q̃ = q − q̂ in the sense that
limt→∞ ‖q̃(t)‖ ≤ ε1‖x‖ + ε2|u| + ε3 where limπ→∞ εi = 0,
for i = 1, 2, 3.

Proof: Define the state estimation error q̃ = q − q̂; it
satisfies, via (5) and (7),

˙̃q = (A2 − L2C2)q̃ + B2∆p. (9)
Set V = q̃T Q−1q̃ for the error dynamics (9). Its time
derivative along the trajectoy of (9) is

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9878



V̇ ≤ −2V − 1
µ
‖C2q̃‖2 − π‖BT

2 Q−1q̃‖2 + 2‖∆p‖‖BT
2 Q−1q̃‖.

The maximum of the last two terms in the above equation
occurs when ‖BT

2 Q−1q̃‖ = ‖∆p‖/π, with the maximum
value being ‖∆p‖2/π. Hence,

V̇ ≤−2V − 1
µ
‖C2q̃‖2 +

‖∆p‖2

π
≤ −V − (V − ‖∆p‖2

π
)

From the last equation, V̇ < −V as long as V > ‖∆p‖2/π;
therefore eventually one has limt→∞ V (t) ≤ ‖∆p‖2/π.
Using V (t) ≥ σ(Q−1)‖q̃(t)‖2 = 1/σ̄(Q) ‖q̃(t)‖2, one
derives

lim
t→∞

‖q̃(t)‖ ≤
√

σ̄(Q)
π

‖∆p‖ ≤ ε1‖x‖+ ε2|u|+ ε3, (10)

where the last inequality is obtained by noting that ∆p
defined in (6) is a linear combination of potentially un-
bounded x, u, and bounded d and ḋ. Finally, by quot-
ing Lemma 2, one concludes that limπ→∞ εi = 0 for all
i = 1, 2, 3. End of proof.

Since |ỹ(r)| ≤ ‖q̃‖, it follows from Theorem 3 that the
estimate ŷ(r) of y(r) obtained from the proposed LTR
observer (7) achieves a small estimation error, whose
magnitude can be controlled by the design parameter π in
the observer Riccati equation (8). Following the notations
introduced at the end of Section 1, one can say that

ỹ(r)(t) = o(‖x‖) + o(|u|) + o(1). (11)

Recall that for the dynamic sliding mode control, the new
sliding variable s is defined as in (2), where the first term
y(r) can now be approximately estimated by the robust
LTR observer (7). Hence, an estimate of s is obtained as

ŝ = ŷ(r) + λr−1y
(r−1) + · · ·+ λ1ẏ + λ0y, (12)

= ŷ(r) + λr−1CAr−1x + · · ·+ λ1CAx + λ0Cx

with ŷ(r) the second element of q̂ in the observer (7).

3. CONTROL DESIGN IN DSMC

In the previous section, one has introduced the design of
sliding variable s in dynamic sliding mode control, and
presented a solution to its evaluation problem via the LTR
observer. Having obtained an estimate ŝ in (12) for the
sliding variable s, one can now present the control design
for the control variable w = u̇ in Figure 1, which aims to
drive s to almost zero,

u =
∫

wdt =
∫

[φ(ŝ) + v(ŝ)]dt, (13)

where φ(ŝ) is a nominal control for the situation when
there is no system uncertainty,

φ(ŝ) =
1

CAr−1B
{−CAr+1x− CArBu− λr−1ŷ

(r)

− · · · − λ1CA2x− λ0CAx− σŝ} (14)

and v(ŝ) a switching control to suppress the adverse effects
of system uncertainty,

v(ŝ) =− δ(x, u)
CAr−1B

sgn(ŝ), (15)

δ(x, u) = ρ1‖x‖+ ρ2|u|+ ρ3,

in which ρi(> 0)’s are chosen large enough so that δ(x, u)
is an upper bound of |∆p| in (6).

To facilitate the stability analysis, introduce a state trans-
formation,

x = T

[
z
η

]
, T ∈ Rn×n. (16)

The first group of new state z ∈ Rr is called the external
state (Marquez, 2003), consisting of output derivatives,

z =


z1

z2

...
zr

 =


y
ẏ
...
y(r−1)

 =


Cx
CAx
...
CAr−1x

 ∈ Rr, (17)

where r is the relative degree of the system (1). The second
group of new state η ∈ Rn−r is the internal state or zero
dynamic state (Marquez, 2003) satisfying

η̇ = Qη + Pz, (18)
for some matrices Q, P , where Q is a square matrix whose
eigenvalues are open-loop zeros of the system (A,B,C)
(Marquez, 2003). Since by design, (A,B,C) has only
stable zeros, Q is known to be stable. Note that the state
transformation (16) is introduced here only for the purpose
of stability analysis; it is not required in the computation
of the proposed control law.

The stabilizing property of the proposed control (13) is
proved by the theorem below.

Theorem 3 : The proposed dynamic sliding mode control
(13) practically stabilizes the system (1) with bounded con-
trol u, in the sense that the system state is asymptotically
driven into a residual set around the origin, with the size
of residual set approaching zero as the design parameter
π in observer Riccati equation (8) approaches infinity.

Proof: In this proof, one denotes s̃ = s− ŝ, where s and ŝ
are as given in (2) and (12). Choose V2 = 1

2s2 and check
its derivative under the proposed control w in (13),

V̇2 = s[CAr−1Bv + ∆p− σŝ + λr−1ỹ
(r)] = −σs2

+s(σ + λr−1)ỹ(r) + s[−δ(x, u)sgn(ŝ) + ∆p] (19)

where one has used ŝ = s − s̃ and s̃ = ỹ(r) to derive the
second equality. There may be two possible cases for the
square brackets in the above equation.
Case 1. |s| ≤ |s̃|: In this case, it follows from s̃ = ỹ(r) and
(11) that

|s| ≤ ε1‖x‖+ ε2|u|+ ε3. (20)
Case 2. |s| > |s̃|: In this case, sgn(ŝ) = sgn(s − s̃) =
sgn(s). Equation (19) then becomes

V̇2 ≤−σs2 + s(σ + λr−1)ỹ(r) − |s|(δ(x, u)− |∆p|)
≤−σs2 + s(σ + λr−1)ỹ(r)

≤−σ|s|[|s| − (1 +
λ

σ
)(ε1‖x‖+ ε2|u|+ ε3)]
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where the second inequality results from δ(x, u) > |∆p|,
and the last inequality results from (11). From the last
inequality, one concludes that after some finite time,

|s| ≤ (1 +
λ

σ
)(ε1‖x‖+ ε2|u|+ ε3). (21)

Judging from the conclusion (20) in Case 1 and the
conclusion (21) in Case 2, one concludes that

s = o(‖x‖) + o(|u|) + o(1). (22)

From (2), one can write y = 1/D(s)s, where D(s) = sr +
λr−1s

r−1 + · · · + λ0 is by design a stable polynomial.
Following this, the external state z in (17) is related to s by
zT =

[
1

D(s) ,
s

D(s) , · · · ,
sr−1

D(s)

]
s. Since all transfer functions

in this equation are proper and stable, it follows from (22)
that

‖z‖t = o(‖x‖t) + o(|u|t) + o(1). (23)

Since Q in (18) is a stable matrix, quoting (23) yields

‖η‖t = o(‖x‖t) + o(|u|t) + o(1). (24)

Finally, it follows from (23), (24) and the state transforma-
tion (16) that the system state ‖x‖t = o(‖x‖t) + o(|u|t) +
o(1). This equation can be re-arranged as

‖x‖t = o(|u|t) + o(1). (25)

Since y = 1/D(s)s, as stated earlier, one has y(r) =
sr/D(s)s, where the transfer function sr/D(s) is proper
and stable. It then follows from (22) that y(r) =
o(‖x‖t) + o(|u|t) + o(1). Substituting this result into
(3) shows that u(t) = (y(r) − CArx − CAr−1B∆ax −
CAr−1Bd)/(CAr−1B) = O(‖x‖t) + O(1) + o(|u|t). This
leads to |u|t = O(‖x‖t) + O(1) + o(|u|t). Re-arranging the
equation gives

|u|t = O(‖x‖t) + O(1). (26)

Substituting (26) into (25) yields ‖x‖t = o(‖x‖t) + o(1),
implying that

‖x‖t = o(1). (27)

This suggests that after some finite time the proposed
control achieves |x(t)| ≤ |x|t ≤ ε with limπ→∞ ε = 0.
In other words, x(t) will eventually be driven into a small
residual set around the state space origin, with the size of
residual set approaching zero as the design parameter π
in the observer Riccati equation (8) approaches infinity.
Finally, substituting (27) into (26), one concludes that
the control input |u(t)| ≤ |u|t = O(1) is uniformly
bounded. The boundedness of w = u̇ follows from a careful
examination of (13)-(15). End of proof.

Remark : According to the statement of Theorem 3, the
final control accuracy is controlled by the LTR observer
parameter π in (8), while the chattering reduction of the
control signal u is achieved by low pass filtering. Hence, the
mechanism of chattering reduction and that of accuracy
control are decoupled in the dynamic sliding mode control
design.

Notice that the conventional boundary layer control is
susceptible to measurement noise when the noise is of a
level larger than the boundary layer width. When this
happens, the measurement noise will be reflected and
amplified in the control signal. In contrast, in the dynamic
sliding mode control, the low-pass filter (1/s) in Figure
1 can to some extent filter the noise contained in the
signal w; making the dynamic sliding mode control better
immune to measurement noise. To compare how these
two different controls perform in noisy environments, two
simulation examples will be presented below.

Example 1 : Boundary layer control. Consider a
relative-degree-three system (1) with

A =

[ 0 1 − 1
−1 − 2 4
1 − 3 − 1

]
, B =

[ 0
1.6
1.6

]
, CT =

[ 1
0
0

]
,

xT (0) = [1, 1, 1], and a disturbance uncertainty e = cos(t).
One tests the conventional boundary layer control with
a small boundary layer width 0.05. When the state mea-
surement is noise-free, the control signal will be smooth
because of the use of a boundary layer. But when the state
measurement is contaminated with a uniform noise with
zero-mean and standard deviation 0.001, the results are
quite different as shown in Figure 2. The upper plot of
Figure 2 shows the system state (with noise removed),
and the lower plot shows the control input. It is seen
that although the system state is successfully regulated to
almost zero in the face of unknown disturbance, the control
signal has severe chattering due to the measurement noise.

Example 2 : Dynamic sliding mode control. The
same system as in Example 1 is tested again for the
proposed dynamic sliding mode control (13). The sliding
variable in (2) are chosen with λ2 = 30, λ1 = 300, λ0 =
1000. Other design parameters are δ(x, u) = 35 in (15),
σ = 3 in (14), µ = 1, π = 108 in (8). The upper plot
of Figure 3 shows the time history of system state, which
achieves almost the same performance as that with the
boundary layer control in Example 1. However, note from
the lower plot of Figure 3 that the dynamic sliding mode
design has successfully removed the control chattering even
in this noisy environment.
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