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Abstract: This paper studies the mathematical modelling of Internet congestion control.
Differently to previous models, which consider either the link capacity or the node processing
capability as the constraints, here we take both of them into account, i.e., the aggregate flow
rate on a link cannot exceed the link capacity and the aggregate flow rate at a node is limited
by the node processing capability. A decentralized primal-dual algorithm is proposed to solve
the congestion control problem and its convergence is proven. Using this algorithm we show the
bottleneck of the network performance when these two constraints are unbalanced.

1. INTRODUCTION

With the development of the Internet, mathematical mod-
elling of congestion control have received considerable at-
tention [Low et at. (2002); Srikant (2003); Paganini et al.
(2005)]. The basic idea of congestion control is simple. The
sources control their transmission rates based on the net-
work congestion level. If the flow rate is too large, then the
source decreases its transmission rate to avoid congestion.
Similarly, if the rate is too small, then the source increases
the rate to achieve more benefits. In mathematical models,
each flow is assigned a utility function and the system
adjusts the flow rates to maximize the aggregate system
utility subject to some resource constraints. In this way,
congestion control can be interpreted into an optimization
problem.

Several decentralized end-to-end network congestion con-
trol algorithms have been proposed in the past decade
[Kelly et al. (1998); Liu et al. (2003); Low et al. (1999)].
Most of these algorithms consider the link capacity con-
straint, so that the aggregate flow rate on a link cannot ac-
cess the link capacity. However, the link capacity is not the
only constraint subjected to the network traffic. Actually,
from a viewpoint of Graph Theory [Diestel (2005)], the
Internet structurally includes two sets of subjects, nodes
and links. The link capacity only describes the traffic con-
straint on the links. There should be a similar constraint to
the nodes. That is, the processing capability of a node also
limits the maximum aggregate transmission rates through
it. Here the processing capability of a node is defined as
the maximum number of bits that this node can process
within unit time. In [Doyle et al. (2005)], the authors
used the node capability rather than the link capacity as
the constraint.

Since both the link capacity and the node processing
capability are inevitable constraints to the Internet traffic,

⋆ This work was supported by the Australian Research Council’s
Discovery Projects Scheme (Project number FF0455875).

we consider these two constraints together in this paper.
First we will propose a decentralized congestion control
algorithm based on the two constraints. Then we will prove
the convergence of the algorithm and show the convergence
rate. After that, the effects of these two constraints will be
investigated using simulations.

2. CONGESTION CONTROL ALGORITHM

2.1 Optimization problem

Consider a communication network with N nodes, L links.
S flows of packets are transmitted from their sources to
destinations within the network. Set Ali = 1 if flow i
goes through link l and Ali = 0 otherwise. Then the
matrix A = (Ali, 1 ≤ l ≤ L, 1 ≤ i ≤ S) contains all
the link routing information. If the rate of flow i is xi and
the capacity of link l is Cl, then we have the following
inequality

Ax ≤ C, (1)

where x = (xi, 1 ≤ i ≤ S) and C = (Cl, 1 ≤ l ≤ L)
are the flow rate vector and capacity vector, respectively.
Similarly, we can define the node routing matrix B, where
Bni = 1 if flow i goes through node n and Bni = 0
otherwise. Then we have the inequality of node processing
capability.

Bx ≤ D, (2)

where D is the node capability vector with the element
Dn to be the processing capability of node n. The above
two inequalities (1) and (2) show the constraints to the
communication network, i.e., the aggregate rate on each
link cannot exceed the link bandwidth and the accumu-
lated rate at each node cannot exceed the node processing
capability.

The aim of transmitting a flow of packets from its source to
the destination is to get some benefit from the information
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transmission (e.g., downloading a file, reading news, or
making an online booking, etc.). It is natural to set a
utility function Ui for flow i, and assume that Ui is related
to its rate xi. Thus, we can denote it as Ui(xi). Finally, the
congestion control can be achieved by solving the following
optimization problem

max
x

∑

i

Ui(xi) (3)

subject to Ax ≤ C

Bx ≤ D

over x ≥ 0

In order to solve the above optimization problem, define
the Lagrangian

L(x, p, q) =
∑

i

Ui(xi) −
∑

l

pl





∑

i∈F (l)

xi − Cl





−
∑

n

qn





∑

i∈F (n)

xi − Dn





=
∑

i



Ui(xi) − xi





∑

l∈L(i)

pl +
∑

n∈N(i)

qn









+
∑

l

plCl +
∑

n

qnDn (4)

where F (l) is the set of flows which go through link l,
F (n) is the set of flows which go through node n, and
L(i) and N(i) are sets of links and nodes on flow i’s route,
respectively.

The optimal flow rate xi satisfies

∂L(x, p, q)

∂xi

= 0 (5)

Substituting equation (5) into (4), we get

U ′
i(xi) =

∑

l∈L(i)

pl +
∑

n∈N(i)

qn (6)

To solve xi from (6), we assume the following assumption
holds:

Assumption 1: on the interval Ii = [mi,Mi], the utility
functions Ui(xi) are increasing, strictly concave, and twice
continuously differentiable.

Based on equation (6) and Assumption 1 we have

xi =



U
′−1
i





∑

l∈L(i)

pl +
∑

n∈N(i)

qn









Mi

mi

(7)

where [z]ba = min{max{z, a}, b} restricts the resulted xi

within a reasonable range [mi,Mi], and U
′−1
i is inverse of

U ′
i .

To get optimal values of pl and qn, we can define the dual
function as

H(p, q) = max
x

L(x, p, q) (8)

and the dual problem as

min
p≥0,q≥0

H(p, q) (9)

This dual problem can be solved using the gradient pro-
jection method [Bertsekas et al. (1997), p. 212]

pl(t + 1) =

[

pl(t) − α
∂H

∂pl

(p(t), q(t))

]+

=



pl(t) + α





∑

i∈F (l)

xi − Cl









+

(10)

qn(t + 1) =

[

qn(t) − β
∂H

∂qn

(p(t), q(t))

]+

=



qn(t) + β





∑

i∈F (n)

xi − Dn









+

(11)

where α and β are stepsizes and [z]+ = max{z, 0}.

2.2 Algorithm

Based on the above derivation, we have the following
decentralized primal-dual algorithm:

• Initial conditions

Link l : pl(0) ≥ 0;

Node n : qn(0) ≥ 0;

Flow i : xi(0) ∈ [mi,Mi].

• Link l’s Algorithm: At time t = 1, 2, · · ·, link l:
· gets rates of flows which go through link l;
· computes its price using equation (10)

pl(t + 1) = [pl(t) + α(xl(t) − Cl)]
+

where xl(t) =
∑

i∈F (l) xi(t) is the aggregate flow

rate on link l;
· communicates the new price pl(t + 1) to all flows

which go through l.
• Node n’s Algorithm: At time t = 1, 2, · · ·, node n:

· gets rates of flows which go through node n;
· computes its price using equation (11)

qn(t + 1) = [qn(t) + β(xn(t) − Dn)]+

where xn(t) =
∑

i∈F (n) xi(t) is the aggregate flow

rate at node n;
· communicates the new price qn(t+1) to all flows

which go through node n.
• Flow i’s Algorithm: At time t = 1, 2, · · ·, flow s:

· receives prices of links and nodes which flow i
goes through;

· chooses a new transmission rate xi(t + 1) using
equation (7)

xi(t + 1) = [U
′−1
i (pi(t) + qi(t))]Mi

mi

where pi(t) =
∑

l∈L(i) pl(t) is the aggregate price

of all the links on flow i’s route and qi(t) =
∑

n∈N(i) qn(t) is the aggregate price of all the

nodes on flow i’s route;
· communicates new rate xi(t + 1) to links and

nodes on its route.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12978



3. CONVERGENCE OF THE ALGORITHM

In this section, we will prove the convergence of the
algorithm. But before that, we assume that the utility
function satisfies the following assumption.

Assumption 2: the curvatures of Ui are bounded away from
zero by −U ′′

i (xi) ≥ 1/αi > 0.

Because of the similarity in the definitions of p and q,

we can combine them together by r =

[

p
q

]

to simplify

our proof. Then the dual function can be rewritten by
H(r) = H(p, q).

Next, we prove that using the algorithm, the dual problem
converges to the optimal point.

Theorem 1. Assume Assumption 1 and 2 hold, and the
stepsizes α, β > 0 are small enough. The limit point r∗ of
the sequence r(t) generated from the algorithm is optimal.

Proof. From Assumption 1 we know that H(r) is convex,
lower bounded, and continuously differentiable.

Next, we will prove that H(r) satisfies the Lipschitz con-
dition, i.e., there exists a constant K such that ‖∇H(r)−
∇H(g)‖2 ≤ K‖r − g‖2, ∀r, g ≥ 0.

According to the Mean Value Theorem [Bertsekas et al.
(1997), p. 639], we can find w = tr +(1− t)g ≥ 0, t ∈ [0, 1]
such that ∇H(r) −∇H(g) = ∇2H(w)(r − g). So we have

‖∇H(r) −∇H(g)‖2 = ‖∇2H(w)(r − g)‖2

≤ ‖∇2H(w)‖2‖r − g‖2 (12)

From the definition of H(w), we have

∇H(w) = E − Fx(w) (13)

where E =

[

C
D

]

and F =

[

A
B

]

. Then

∇2H(w) = −F ·

[

∂x(w)

∂w

]

(14)

The element of the matrix
[

∂x(w)
∂w

]

is given by

∂xi(w)

∂wl

=
Fli

U ′′
i (xi(w))

(15)

So we have
[

∂x(w)

∂w

]

= UFT (16)

where U = diag(1/U ′′
i (xi(w))) and FT is the transpose of

F . Substituting (16) into (14), we get

∇2H(w) = −FUFT (17)

The above equation shows that ∇2H(w) is a symmetric
matrix. Hence ‖∇2H(w)‖1 = ‖∇2H(w)‖∞.

We know the norms of matrix satisfy the inequality [Bert-
sekas et al. (1997), P635]

‖∇2H(w)‖2
2 ≤ ‖∇2H(w)‖1 · ‖∇

2H(w)‖∞ (18)

Then we have

‖∇2H(w)‖2 ≤ ‖∇2H(w)‖1

= max
l

∑

k

[∇2H(w)]kl

= max
l

∑

k

∑

i

Fki

−1

U ′′
i (xi(w))

Fli

= max
l

∑

i

[

−1

U ′′
i (xi(w))

Fli

∑

k

Fki

]

(19)

Here
∑

k Fki is the number of nodes and links along

the route of flow i. We set L = maxi

∑

k Fki.
∑

i Fli

is the number of flows sharing a node or link. We set
F = maxl

∑

i Fli. From Assumption 2, we know that
−1

U ′′

i
(xi(w)) ≤ αi. We set α = maxi αi. Consequently, (19)

becomes

‖∇2H(w)‖2 ≤max
l

∑

i

[

−1

U ′′
i (xi(w))

Fli

∑

k

Fki

]

≤ αFL (20)

Define K = αFL. Then equation (12) becomes

‖∇H(r) −∇H(g)‖2 ≤ K‖r − g‖2 (21)

Thus the Lipschitz condition holds.

Based on the above conditions, if we set 0 < α, β < 2/K,
then the limit point r∗ is optimal [Bertsekas et al. (1997),
P214]. �

Corollary 2. Assume Assumptions 1 and 2 hold, and the
stepsizes α and β satisfy 0 < α, β < 2/K. Starting from
any initial conditions m ≤ x(0) ≤ M and r(0) ≥ 0, the
algorithm converges to the primal-dual optimal point.

Proof. According to Theorem 1, we know that r∗ =
limt→∞ r(t) is dual optimal.

According to Assumption 1, Ui is increasing, strictly
concave, and twice continuously differentiable. Hence U ′

i

is continuous and one-to-one. Moreover, U ′
i is defined on

a compact set [mi,Mi]. So x(r) = U
′−1
i (r) is continuous.

According to (7), the optimal flow rate is

x∗ = lim
t→∞

x(t) = lim
t→∞

x(r(t)) = x(r∗) (22)

So (x∗, r∗) is primal-dual optimal [Bertsekas et al. (1997),
p. 664]. �

4. SIMULATIONS

4.1 Network structure

In order to testify our algorithm, we consider a random
network [Erdős et al. (1960)] with N = 100 nodes
and L = 200 links. To construct this network, first we
generate 100 isolated nodes. Then 200 pairs of nodes
are randomly selected and links are added between these
pairs. (Assume there is no duplicate connection or self-
connection). Finally we randomly choose 400 pairs of
nodes as sources and destinations and generate F = 400
flows. Once a source-destination pair is determined, a
route for this flow is determined from its source to the
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Fig. 1. Convergence rate of the iteration of flow rate. In
each simulation we keep

∑

l Cl = 1000 and
∑

n Dn =
1000.

destination based on a shortest path rule. If there are more
than one shortest path between the source-destination
pair, then we randomly choose one.

In the network, the demand for processing capability is
different from node to node. Generally speaking, hubs
need more capability since more flows go through them.
In our network setting, the flows are randomly generated
using the shortest path rule. So we can set the processing
capability of each node to be proportional to the number of
shortest paths between any pair of nodes which go through
this node. The latter is called betweenness in graph theory
[Newman (2003)]. In our simulation we set

Dn = γXn (23)

where γ is a constant and Xn is the betweenness of node
n.

Similarly, links connected to hubs need larger capacities
since more traffic load goes through them. Here we set

Cmn = φ(Xm + Xn), (24)

where Cmn is the capacity of the link between nodes m
and n, and φ is a constant.

4.2 Performance indicators

The traffic performance can be measured in two aspects:
the aggregate system utility and the utilization ratio of
network resources. Since the task of the optimization
problem is to adjust the flow rates to find the maximum
utility, we can use the aggregate utility,

∑

i Ui(xi), as our
first performance indicator. In the following simulations,
we use

Ui(xi) = di log(xi + 1) (25)

as the utility function, where di is the number of links
along the route of flow i. This utility function is actually a
modified version of the utility function used in TCP Vegas
[Low et at. (2002)].

When the total utility reaches the maximum, there are
still some idle resources. That is to say, a proportion of
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Fig. 2. Convergence rate of the iteration of link price. In
each simulation we keep
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Fig. 3. Convergence rate of the iteration of node price. In
each simulation we keep
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the resources is wasted. From an economical point of view,
we want this kind of waste to be as little as possible, or
the utilization ratios of system resources to be as high as
possible. For this reason, we use the utilization ratios as
our second performance indicator. The utilization ratio of
the link capacity is defined as

ul =

∑

l

∑

i Alixi
∑

l Cl

, (26)

where
∑

l

∑

i Alixi is the total occupied bandwidth and
∑

l Cl is the total provided capacity. Similarly, the utiliza-
tion ratio of the node processing capability is defined as

un =

∑

n

∑

i Bnixi
∑

n Dn

, (27)

where
∑

n

∑

i Bnixi is the total occupied node capability
and

∑

n Dn is the total provided node capability.

4.3 Convergence rate

In figures 1-3 we plot the convergence of the iteration of the
flow rate, the link price and the node price, respectively.
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Fig. 4. Aggregate system utility as a function of total link
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result is averaged over 10 simulations.

Considering the random nature of the network construc-
tion we can choose any flow, link, or node, and investigate
its convergence, without loss of generality. Here we choose
the first flow, the first link, and the first node. Actually, we
also investigate the convergence properties of other flows,
links and nodes, and find that the results are quite similar.

The figures show that the convergence rate of the algo-
rithm depends on the stepsizes α and β. The algorithm
converges to the optimal point faster if we increase the
stepsize. Of course, in order to guarantee the convergence,
the values of α and β cannot be too large.

4.4 Effect of two constraints

In our algorithm, we consider two constraints on two
kinds of system resources — the link capacity and the
node processing capability. Next we will study how these
constraints affect the system performance.

Figure 4 plots the aggregate system utility as a function
of total provided link capacity and total provided node
processing capability. The figure show that the aggregate
utility is a nondecreasing function of two kinds of system
resources. This result agrees with our commonsense that
providing more bandwidth or more powerful router bene-
fits the network traffic. However, since we have two kinds
of resources, solely enhancing one of them may have little
profit because the other one will become the bottleneck of
the traffic and prevent the system from achieving higher
utility. In figure 4, for example, if the total provided node
processing capability is fixed to 500, then the resulting
utility is almost unchanged no matter how much the total
link capacity is increased.

Figures 5 and 6 plot the utilization ratios of node capa-
bility and link capacity, respectively. The bottleneck effect
is shown more clearly in these two figures. In figure 5, for
example, when the total link capacity is fixed, the larger
the node capability is assigned to the network, the higher
percentage of it is wasted. The utilization ratio of the node
processing capability is high only when the total node
capability is equal to or less than the total link capacity.
As the result, the surface looks like a waterfall dropped
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Fig. 5. utilization ratio of node capability as a function of
total link capacity and total node processing capabil-
ity. The result is averaged over 10 simulations.
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Fig. 6. Utilization ratio of link capacity as a function of to-
tal link capacity and total node processing capability.
The result is averaged over 10 simulations.

roughly at the diagonal. In figure 6 we also find the
utilization ratio of the link capacity displays the waterfall
shape.

As a special case, if we keep the total node processing
capacity to be infinity, then the link capacity becomes the
only constraint. In this case, our algorithm degenerates to
the algorithm proposed in [Low et al. (1999), Algorithm
A1]. Figure 7 compares the result of our algorithm with
that one. Because Algorithm A1 in [Low et al. (1999)] does
not consider the node processing capability constraint,
their optimal utility is a horizon line in the figure. On
the contrary, the total node processing capability is one
of the main reasons to limit the aggregate utility in our
algorithm, especially when it is small. As it increases,
the aggregate utility also increases. However, when it is
large enough, it does not constrain the aggregate utility
anymore. Then continuing increasing it has no help to the
aggregate utility because the link capacity becomes the
bottleneck. In this case the effect of our algorithm is just
as same as Algorithm A1 in [Low et al. (1999)].
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5. CONCLUSIONS

In the Internet, congestion may happen due to limited link
capacity or node processing capability. In this paper we
propose a decentralized primal-dual algorithm to solve the
congestion control problem subject to these constraints.
We also prove the convergence of the algorithm.

Using this algorithm, we can investigate the traffic per-
formance. Since there are two kinds of system resources
related to two constraints, solely increasing one of them
cannot benefit the system performance too much as the
other one will become the bottleneck of the traffic.
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