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Abstract: In this paper, we investigate coordination of a network of second-order dynamic
agents under communication delays. Based on the frequency-domain analysis and matrix theory,
the necessary and sufficient conditions for the system converging to stationary consensus and
dynamic consensus are obtained, respectively. The conditions depend on the communication
delay, the eigenvalues of the Laplacian matrix, and the interconnection topology of the network.
Moreover, we apply the consensus algorithm to the formation control of the multi-agent
system with communication delays. The agents in the system can achieve arbitrary desired
formation pattern, and the formation moves in a desired velocity. Simulation results illustrate
the correctness of the results.
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1. INTRODUCTION

Recently, coordination control of multi-agent systems has
attracted a lot of interest in a variety of research com-
munities including biology, robotics, communications and
sensor networks, artificial intelligence, automatic control,
etc (Pettersen et al., 2006). In the coordination control of
multi-agent systems, each agent updates its state accord-
ing to the target (if any) and the information of the states
of its neighbors.

Consensus problem is one of the most important issues
in the coordination control of multi-agent systems, which
requires that the outputs of several spatially distributed
agents or processors reach a common value without re-
curse to a central coordinator or global communication
(Spanos et al., 2004). In 1995, Vicsek et al. (1995) pro-
posed a simple discrete-time model of multi-autonomous
agent systems, and provided various simulations which
demonstrated the agents’ heading consensus phenomena.
Jadbabaie et al. (2003) studied the linearized Vicsek’s
model and proved that all the agents converge to a com-
mon steady state provided that the digraph formed by
the agents is jointly connected. The consensus problem of
the multi-agent system modeled by first-order integrators
with fixed or switched communication topology has been
extensively studied in Olfati-Saber and Murray (2004) and
Moreau (2005). In reality, however, many vehicles can not
be controlled directly by their speeds and their accelera-
tions should be used as force-based control. So a double
integrator is often needed to model the dynamics of the
vehicles. Since both position consensus and speed consen-
sus are involved, the consensus problem of the multi-agent
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system modeled by double integrators is more challenging.
Ren (2006) proposed a consensus algorithm to solve the
problem, and get some sufficient conditions for the system
converging to a dynamical consensus, i.e., all the agents
asymptotically converge to time-varying consensus value.

With non-negligible communication delays, the consensus
analysis for multi-agent systems becomes much more dif-
ficult. For the system modeled by first-order integrators,
some stability results for the consensus problem were ob-
tained for the multi-agent system with identical commu-
nication delay (Olfati-Saber and Murray, 2004; Moreau,
2004). Base on the contraction theory and the wave vari-
able method, Wang and Slotine (2006) studied the consen-
sus problem of the multi-agent system with diverse com-
munication delays. The topology graph in their analysis
is connected and bidirectional or unidirectional formed
in closed rings. Recently, Liu and Tian (2007) proposed
a protocol to solve the consensus problem of the multi-
agent system with diverse communication delays, and the
results can be applied to networks with directed topol-
ogy graphs with nonsymmetric weights. However, little
attention has been payed to the consensus of the multi-
agent system of double integrators with communication
delays. Hu and Hong (2007) considered a leader-following
consensus problem of multi-agent systems with identical
communication delays. Under a certain bound of time
delay, the connectedness condition was obtained for the
convergence to the leader’s state with fixed or switched
topology. In their analysis, they didn’t explicitly study
the relationship between the communication delay and the
consensus convergence.

Another important issue in the coordination control of
multi-agent systems is the formation control, which re-
quires each agent moves according to the prescribed tra-
jectory, and all the agents keep a certain spatial formation
pattern at the same time. To achieve this goal, many
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typical control strategies have been developed, such as
leader-follower, virtual structure, potential functions, etc.
Besides these methods, Lin et al. (2005) and Ren (2006)
extended consensus algorithms to the formation control
and get sufficient conditions for the multi-agent systems
converging to arbitrary desired formation pattern.

The paper is organized as follows. Some definitions for
directed graphs are given in Section 2. In Section 3, we
present the formulation of consensus problem of multi-
agent system modeled by double integrators with com-
munication delays, and get the sufficient and necessary
conditions for the system converging to stationary con-
sensus and dynamical consensus respectively. In Section
4, consensus protocol is applied to the formation control
of multi-agent systems with communication delays so that
the system asymptotically achieves the desired geometric
formation pattern in the plane, and the velocity of the
formation asymptotically converges to the desired velocity.
Simulations illustrate the correctness of the above results
in Section 5. The conclusion is given in Section 6.

2. PRELIMINARIES

A weighted directed graph (digraph) G = (V, E ,A) of
order n consists of a set of vertices V = {v1, ..., vn},
a set of edges E ⊆ V × V and a weighted adjacency
matrix A = [aij ] ∈ Rn×n with nonnegative adjacency
elements aij . The node indexes belong to a finite index
set I = {1, 2, ..., n}. An edge of the weighted digraph G is
denoted by eij = (vi, vj) ∈ E , i.e., eij is a directed edge
from vi to vj . We assume that the adjacency elements
associated with the edges of the digraph are positive, i.e.,
aij > 0 ⇔ eij ∈ E . Moreover, we assume aii = 0 for
all i ∈ I. The set of neighbors of node vi is denoted by
Ni = {vj ∈ V : (vi, vj) ∈ E}.
In the weighted digraph G = (V, E ,A), the out-degree of
node i is defined as: degout(vi) =

∑n

j=1 aij . Let D be the
diagonal matrix with the out-degree of each node along
the diagonal, which is called as the degree matrix of G.
The Laplacian matrix of the weighted digraph is defined
as L = D −A.

If there is a path in G from one node vi to another node
vj , then vj is said to be reachable from vi, written vi → vj .
If not, then vj is said to be not reachable from vi, written
vi 6→ vj . If a node is reachable from every other node in
the digraph, then we say it globally reachable. A digraph
is strongly connected if every two of its nodes, say v and u,
are such that v is reachable from u and u is reachable from
v. Thus, the connectedness of the digraph that has only
one globally reachable node is much weaker than strong
connectedness of the digraph.

In this paper, we just consider static topology G =
(V, E ,A), i.e., the connection of the nodes in the digraph
G does not change with time.

3. CONSENSUS WITH COMMUNICATION DELAYS

In a multi-agent system with n agents, each agent can be
considered as a node in a digraph, and information flow
between two agents can be regarded as a directed path be-
tween the nodes in the digraph. Thus, the interconnection

topology in a multi-agent system can be described as a
digraph G = (V, E ,A).

Consider the multi-agent systems with each agent’s dy-
namics described as

ξ̇i = ζi,

ζ̇i = ai, i ∈ I, (1)

where ξi ∈ R, ζi ∈ R, and ai ∈ R are the position, velocity
and acceleration, respectively, of agent i.

3.1 Stationary consensus

Firstly, we investigate the stationary consensus of the
system (1). We say that the system (1) asymptotically
converges to a stationary consensus, if,

lim
t→∞

ξi(t) = c, lim
t→∞

ζi(t) = 0, ∀i ∈ I,

where c is a constant.

Consider the following consensus protocol (Ren, 2006)

ai = −γζi −
∑

vj∈Ni

(aij(ζi − ζj) + γaij(ξi − ξj)), (2)

where γ > 0, Ni denotes the neighbors of agent i, and
aij > 0 is the adjacency element of A in the digraph G =
(V, E ,A). When there exist non-negligible communication
delays for the information transmission between agents,
the algorithm (2) turns to be

ai =−γζi −
∑

vj∈Ni

aij(ζi(t − τij) − ζj(t − τij))

−γ
∑

vj∈Ni

aij(ξi(t − τij) − ξj(t − τij)),

where communication delay τij > 0 corresponds to infor-
mation flow from agent j to agent i, i.e., the edge eij ∈ E
in the digraph G = (V, E ,A). In order to analyze the
relationship between the communication delays and the
Laplacian matrix L, we assume the delays are identical,
i.e., τij = τ , and get

ai =−γζi −
∑

vj∈Ni

aij(ζi(t − τ) − ζj(t − τ))

−γ
∑

vj∈Ni

aij(ξi(t − τ) − ξj(t − τ)), (3)

With the consensus protocol (3), the closed-loop form of
the system (1) becomes

ξ̇i = ζi,

ζ̇i =−γζi −
∑

vj∈Ni

aij(ζi(t − τ) − ζj(t − τ))

−γ
∑

vj∈Ni

aij(ξi(t − τ) − ξj(t − τ)). (4)

Theorem 1. Consider the network (4) of n agents with a
static interconnection topology G = (V, E ,A) that has a
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globally reachable node. The system (4) asymptotically
converges to a stationary consensus, if and only if

τ < min
i∈I,λi 6=0

1

|λi|
(
π

2
− | arctan(

Im(λi)

Re(λi)
)|), (5)

where λi, i ∈ I, is the eigenvalue of L. Moreover, when

τ = mini∈I,λi 6=0
1

|λi|
(π

2 − | arctan( Im(λi)
Re(λi)

)|), the system (4)

has periodic oscillations.

Proof. The system (4) can be rewritten as

ξ̇(t) = ζ(t),

ζ̇(t) =−γζ(t) − Lζ(t − τ) − γLξ(t − τ), (6)

where ξ(t) = [ξ1(t), · · · , ξn(t)]T and ζ(t) = [ζ1(t), · · · , ζn(t)]T .
Taking the Laplace transform of the system (6), we get

sξ(s) = ζ(s),

sζ(s) =−γζ(s) − e−sτLζ(s) − γe−sτLξ(s),

where ξ(s) and ζ(s) are the Laplace transforms of ξ(t) and
ζ(t) respectively. The above equation can also be written
as

s2ξ(s) = −γsξ(s) − e−sτLsξ(s) − γe−sτLξ(s).

Thus, we get the characteristic equation about ξ(t) as
follows:

det(s2 + (γI + e−sτL)s + γe−sτL) = 0, (7)

i.e.,

det[(sI + γI)(sI + e−sτL)] = 0.

Therefore, (7) is equivalent to

det(sI + γI) = 0, (8)

or

det(sI + e−sτL) = 0. (9)

Obviously, the equation (8) has n roots at s = −γ, and we
will prove that all the roots of (9) are in the open left half
plane or at s = 0 in the following.

Because G = (V, E ,A) has a globally reachable node, 0 is
the simple eigenvalue of L, i.e., rank(L) = n − 1, and all
the other eigenvalues have positive real parts(Lin et al.,
2005). Denote the eigenvalues of L as λi, i = 1, · · · , n. We
assume λ1 = 0 and Re(λi) > 0, i = 2, · · · , n. Thus, (9)
becomes

s

n∏
i=2

(s + λie
−sτ ) = 0. (10)

It is obvious that (10) has a simple root at s = 0. When
s 6= 0, we investigate the roots of the following equation
for λi, i = 2, · · · , n

s + λie
−sτ = 0, (11)

i.e.,

1 + λi

e−sτ

s
= 0. (12)

Based on the Nyquist stability criterion, the roots of (12)
lie on the open left half complex plane, if and only if the

Nyquist curve λi
e−jωτ

jω does not enclose the point (−1, j0)

for ω ∈ R. Defining

gi(ω) = λi

e−jωτ

jω

=
|λi|
ω

e
−j( π

2 +ωτ−arctan(
Im(λi)

Re(λi)
))

,

we get |gi(ω)| = |λi|
|ω| .

When ω ∈ (0,+∞), |gi(ω)| and arg(gi(ω)) = −(π
2 + ωτ −

arctan( Im(λi)
Re(λi)

)) are all monotonously decreasing, where

arg(.) denotes the phase. gi(ω) crosses the negative real
axis for the first time at

ωc1 =
1

τ
(
π

2
+ arctan(

Im(λi)

Re(λi)
).

So we obtain

|gi(ωc1)| =
τ |λi|

π
2 + arctan( Im(λi)

Re(λi)
)
.

When ω ∈ (−∞, 0), |gi(ω)| is monotonously increasing,

and arg(gi(ω)) = π
2 −ωτ +arctan( Im(λi)

Re(λi)
) is monotonously

decreasing. gi(ω) crosses the negative real axis for the last
time at

ωc2 =
1

τ
(arctan(

Im(λi)

Re(λi)
) − π

2
).

So we get

|gi(ωc2)| =
τ |λi|

π
2 − arctan( Im(λi)

Re(λi)
)
.

From Nyquist stability criterion, the roots of (12) all have
negative real part, if and only if

|gi(ωc1)| < 1 and |gi(ωc2)| < 1,

holds. Thus, (9) has its roots in the open left half complex
plane except for a root at s = 0, if and only if

|gi(ωc1)| < 1 and |gi(ωc2)| < 1, ∀i = 2, · · · , n, (13)

holds. By simple computation, (13) is equivalent to (5).

As proved above, the roots of (7) all have negative
real parts except for a root at s = 0. Therefore, the
state ξi(t) of the system (4) converges to a steady state,
i.e., limt→∞ ξi(t) = ξ⋆

i , i ∈ I, and limt→∞ ζi(t) =
0,∀i ∈ I holds for (4). Thus, it is obtained from (4)
that L[ξ⋆

1 , · · · , ξ⋆
n]T = 0. Since rank(L) = n − 1 and

L[1, · · · , 1]T = 0 based on the definition of the Laplacian
matrix L, the roots of Lξ⋆ = 0 can be expressed as
ξ⋆ = c[1, · · · , 1]T , where c is a constant. Therefore, the
system (4) converges to a stationary consensus.

Similar to the proof of Theorem 10 in Olfati-Saber and
Murray (2004), we can prove (7), i.e., (9), has roots
on the imaginary axis except for s = 0 when τ =

mini∈I,λi 6=0
1

|λi|
(π

2 − | arctan( Im(λi)
Re(λi)

)|), but we omitted the

proof here for the length of the paper. Thus, the system
(4) has periodic oscillations. Theorem 1 is proved.
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3.2 Dynamical consensus

In the following, we investigate the dynamical consensus
of system (1). We say that system (1) asymptotically
converges to a dynamical consensus, if

lim
t→∞

ξi(t) = c +

t∫

0

v(t)dt, lim
t→∞

ζi(t) = v(t), ∀i ∈ I,

where c is a constant, and v(t) ∈ R is the desired velocity
of all the agents in the system (1).

The consensus algorithm for the dynamic consensus is
taken as (Ren, 2006)

ai = v̇ − γ(ζi − v) −
∑

vj∈Ni

(aij(ζi − ζj) + γaij(ξi − ξj)).(14)

With communication delay τ between agents, the consen-
sus algorithm (14) turns to be

ai = v̇ − γ(ζi − v) −
∑

vj∈Ni

aij(ζi(t − τ) − ζj(t − τ))

−γ
∑

vj∈Ni

aij(ξi(t − τ) − ξj(t − τ)). (15)

With (15), the closed-loop form of (1) is

ξ̇i = ζi,

ζ̇i = v̇ − γ(ζi − v) −
∑

vj∈Ni

aij(ζi(t − τ) − ζj(t − τ))

−γ
∑

vj∈Ni

aij(ξi(t − τ) − ξj(t − τ)). (16)

Theorem 2. Consider the network (16) of n agents with a
static interconnection topology G = (V, E ,A) that has a
globally reachable node. If and only if

τ < min
i∈I,λi 6=0

1

|λi|
(
π

2
− | arctan(

Im(λi)

Re(λi)
)|), (17)

where λi, i ∈ I is the eigenvalue of L, the system (16)
asymptotically converges to a dynamical consensus.

Proof. Take the variable transformation as follows

ζi(t) = ζi(t) − v(t), ξi(t) = ξi(t) −
t∫

0

v(t)dt. (18)

Hence, the dynamics of ξi(t) and ζi(t) are given by

ξ̇i = ζi,

ζ̇i =−γζi −
∑

vj∈Ni

aij(ζi(t − τ) − ζj(t − τ))

−γ
∑

vj∈Ni

aij(ξi(t − τ) − ξj(t − τ)). (19)

Form the proof of Theorem 1, if and only if (17) holds, the
system (19) converges to a stationary consensus, i.e.,

lim
t→∞

ξi(t) = c, lim
t→∞

ζi(t) = 0, ∀i ∈ I,

where c is a constant. Therefore, we get from (18)

lim
t→∞

ξi(t) = c +

t∫

0

v(t)dt, lim
t→∞

ζi(t) = v(t), ∀i ∈ I.

Theorem 2 is proved.

4. FORMATION CONTROL WITH
COMMUNICATION DELAYS

In this section, we apply the consensus analysis in the
previous section to the formation control of multi-agent
systems with communication delays. Consider the follow-
ing multi-agent system modeled by double integrators

q̇i = pi,

ṗi = ui, i ∈ I, (20)

where qi ∈ R2 denotes the position of agent i, pi ∈ R2

denotes its velocity, and ui ∈ R2 denotes its control input.

For multi-agent systems, there exist two ways to describe
the geometric pattern in the plane (Lin et al., 2005). The
first one is using the inter-agent distance dij =‖ qi −
qj ‖, vj ∈ Ni. In this way, the formation geometric pattern
is determined by the constraints of the desired distance
between linked agents, as in the rigid formation framework
of Olfati-Saber and Murray (2002). The other way is
specifying the position vector, c⋆

i ∈ R2, of each agent
with respect to a common coordinate frame (Ren, 2006;
Lin et al., 2005). We adopt the latter way to describe
the formation pattern in this paper. For simplicity of
statement we just consider the time-invariant position
vector c⋆

i . However, our discussions can be extended to
the time-varying case directly (Ren, 2006). The control
objectives are as follows.

a. All the agents asymptotically converge to a prescribed
geometric pattern in the plane, which is characterized by
{c⋆

i ∈ R2, i ∈ I}.
b. Each agent’s velocity asymptotically approaches to a
desired function s(t).

For the system (20), the formation control algorithm based
on the consensus protocol (14) is

ui = ṡ − γ(pi − s) −
∑

vj∈Ni

aij(pi − pj)

−γ
∑

vj∈Ni

aij((qi − c⋆
i ) − (qj − c⋆

j )), (21)

where γ > 0, Ni denotes the neighbors of agent i, and
aij > 0 is the adjacency element of A in the digraph G =
(V, E ,A). With communication delays between agents, the
above algorithm turns to be

ui = ṡ − γ(pi − s) −
∑

vj∈Ni

aij(pi(t − τ) − pj(t − τ))(22)

−γ
∑

vj∈Ni

aij((qi(t − τ) − c⋆
i ) − (qj(t − τ) − c⋆

j )),

where τ is the uniform communication delay.

With (22), the closed-loop form of the system (20) is
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q̇i = pi, (23)

ṗi = ṡ − γ(pi − s) −
∑

vj∈Ni

aij(pi(t − τ) − pj(t − τ))

−γ
∑

vj∈Ni

aij((qi(t − τ) − c⋆
i ) − (qj(t − τ) − c⋆

j )).

Theorem 3. Consider the network (23) of n agents with a
static interconnection topology G = (V, E ,A) that has a
globally reachable node. If and only if

τ < min
i∈I,λi 6=0

1

|λi|
(
π

2
− | arctan(

Im(λi)

Re(λi)
)|), (24)

where λi, i ∈ I is the eigenvalue of L, the system (23)
asymptotically achieves the desired geometric formation
pattern in the plane, and the velocity of the formation
asymptotically approaches to s(t).

Proof. Take the variable transformation as follows

pi(t) = pi(t) − s(t), qi(t) = qi(t) −
t∫

0

s(t)dt − c⋆
i .

Thus, the dynamics of pi(t) and qi(t) are given by

q̇i = pi,

ṗi =−γpi −
∑

vj∈Ni

aij(pi(t − τ) − pj(t − τ))

−γ
∑

vj∈Ni

aij(qi(t − τ) − qj(t − τ)).

The above equation can be rewritten as

q̇ = p, (25)

ṗ =−γp − (L ⊗ I2×2)p(t − τ) − γ(L ⊗ I2×2)q(t − τ),

where ⊗ denotes the Kronecker product, q = [qT
1 , · · · , qT

n ]T

and p = [pT
1 , · · · , pT

n ]T . From the proof of Theorem 1
and the properties of Kronecker product, if and only
if (24) holds, the system (25) asymptotically converges
to a stationary consensus. Therefore, the system (23)
asymptotically achieves the desired formation pattern, and
the velocity of the formation asymptotically converges to
s(t). Theorem 3 is proved.

5. SIMULATION

In order to illustrate the correctness of the above discus-
sions, we consider the consensus problem and formation
control of the multi-agent systems respectively in the fol-
lowing simulations.

Example 1. Consensus problem. Consider a network of five
agents described by (4). The interconnection topology is
described in Figure 1. The globally reachable node set of
the digraph is {1, 2, 5}. The weights of the directed edges
are: a15 = 0.10, a21 = 0.15, a32 = 0.20, a43 = 0.25,
a52 = 0.30. The eigenvalues of Laplacian matrix L are:
λ1 = 0, λ2 = 0.25, λ3 = 0.2, λ4,5 = 0.275± j0.1199. Based
on Theorem 1, the system (4) asymptotically converges
to a stationary consensus if and only if τ < 3.865(s).
Choosing τ = 1.5(s), γ = 0.5, and the initial states gener-
ated randomly, we obtain that the system converges to a

1 2

3
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Fig. 1. The digraph composed of 5 agents.
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Fig. 2. Stationary consensus of the multi-agent systems.
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Fig. 3. Periodic oscillations in the multi-agent systems.

stationary consensus (see, Figure 2). When τ = 3.865(s),
the system has periodic oscillations (see, Figure 3). When
τ > 3.865(s), the system diverges, but we don’t demon-
strate the simulation for short.

With the same interconnection topology and link weights
as above, we obtain from Theorem 2 that the system (16)
asymptotically converges to a dynamical consensus if and
only if τ < 3.865(s). However, we don’t demonstrate the
simulation here for the length of the paper.

Example 2. Formation control. Consider a network of four
agents described by (23). The interconnection topology is
described in Figure 4. The globally reachable node set of
the digraph is {1, 2, 4}. The weights of the directed edges
are: a14 = 0.20, a21 = 0.50, a32 = 0.60, a42 = 1.00.
The eigenvalues of the Laplacian matrix L are: λ1 = 0,
λ2 = 0.60, λ3,4 = 0.85 ± j0.2784. From Theorem 3, the
system (23) asymptotically achieves the desired geometric
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Fig. 4. The desired formation pattern: diamond.
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Fig. 5. Trajectories of the agents.
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Fig. 6. Velocities of the agents.

formation pattern in the plane, and the velocity of the
formation asymptotically converges to s(t), if and only if
τ < 1.402(s). The desired formation pattern is a diamond

(see, Figure 4), and c⋆
1 = [1,

√
3]T , c⋆

2 = [2, 0]T , c⋆
3 =

[1,−
√

3]T , c⋆
4 = [0, 0]T . Choose τ = 0.5(s), γ = 0.5, and

the initial states generated randomly, and we assume the
desired velocity s(t) = [3 sin t, 3 cos t]T . Then, each agent’s
dynamic trajectory is illustrated in Figure 5, and the
agents,velocities asymptotically converge to the desired
velocity (see, Figure 6).

6. CONCLUSION

In this paper, the coordination control is investigated
for the multi-agent system modeled by double integra-

tors with directed interconnection topology. We study
a simple consensus protocol for the consensus problem
of the multi-agent system with communication delays.
Using the frequency-domain analysis and matrix theory,
we obtain the necessary and sufficient condition for the
system asymptotically converging to stationary consensus
and dynamical consensus, respectively. It is shown that
under a fixed directed topology that has a globally reach-
able node, the system exhibits periodic oscillations when
the delay equals the critical value, which is a function of
the eigenvalues of the Laplacian matrix. Furthermore, we
apply the consensus protocol to the formation control of
the multi-agent system with communication delays. The
agents can asymptotically achieve arbitrary prescribed
geometric formation pattern in the plane, and the agent
asymptotically converges to the desired velocity.
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