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Abstract: Performance monitoring and diagnosis of model predictive control systems (MPC)
has been a great interest for both academia and industry. In recent years some novel approaches
for multivariate control performance monitoring have been developed without the requirement
of process models or interactor matrices. Among them the prediction error approach has shown
to be a promising one, but it has certain limitations in applications. This paper further develops
the prediction error approach for performance monitoring of model predictive control systems,
and demonstrates its applications in two industrial MPC performance monitoring and diagnosis
problems.
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1. INTRODUCTION

Since notable work of (Harris, 1989), research on the
control performance assessment (CPA) or control perfor-
mance monitoring (CPM) has achieved a great progress
and remains to be a very active area. There is a great
demand from industry for this research to produce prac-
tical solutions, particularly for MPC monitoring. “It is
an important asset-management technology to maintain
highly efficient operation performance of automation sys-
tems in production plants.” (Jelali, 2006). Over the last
decade, CPA/CPM has considerable achievements in in-
dustrial applications especially with the univariate CPA or
CPM. Many algorithms including commercial software are
available. There are several interesting reviews addressing
related research achievements in different stages (Harris
et al., 1999; Huang et al., 1999; Jelali, 2006; Qin, 2007).

Although many publications are available, multivariable
CPA or CPM still has many stumbling blocks in practi-
cal applications. Recently some progress has been made
towards this direction (Jelali, 2006; Huang et al., 2006).
In particular, performance assessment of model predictive
control (MPC) has been the current interest since MPC
is the most effective and widely used advanced multivari-
ate control strategies in modern industries. The existence
of the constraints and economic optimization makes the
MPC controller with certain specialities, so that the exist-
ing CPA/CPM may not be directly applicable for it (Xu
et al., 2007).
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For multivariable CPA/CPM to be practical, it must
reduce a priori knowledge requirement. Traditional ap-
proaches for the multivariable CPA with minimum vari-
ance control as benchmark need to estimate the interactor
matrices, which is equivalent to knowing the process model
(Huang et al., 1999) or at least the first few Markov pa-
rameter matrices. Most recently, some new methods have
been developed to address the multivariable CPA problems
with only the input/output data (Jelali, 2006; Huang
et al., 2006). Obviously, simpler methods require less a
prior process knowledge but also provide less diagnostic
information. There is a tradeoff between simplicity and
diagnostic capability of the CPA/CPM methods. Thus,
how to extract the most information out of the data is of
considerable interest.

What simple index may be considered as a measure or one
of MPC performance measures? Consider that, if a closed-
loop output is highly predictable, one should be able to
do better, i.e. to compensate the predictable content by
a well designed controller. This is the principle of predic-
tive control. Should a better controller be implemented,
the closed-loop output would have been less predictable.
Therefore, high predictability of a closed-loop output im-
plies high potential to improve its performance by con-
troller re-tuning and/or re-design, or in other words, the
existing controller may not have been satisfactory in terms
of exploring its potential. Motivated by the prediction-
error approach of (Huang et al., 2006), this paper further
develops closed-loop prediction-error measures that are
more relevant to practical problems. Furthermore, applica-
tions of prediction-error measures for two industrial model
predictive control systems are reported in this paper. The
remainder of this paper is organized as follows: Section 2
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revisits the concept of prediction-error and closed-loop
potentials; Section 3 further develops the prediction-error
approach; Section 4 provides two industrial case studies
and illustrates the utility of the new performance mea-
sures; finally the conclusion is drawn in section 5.

2. FORMULATION OF CLOSED-LOOP POTENTIAL
FOR MULTIVARIATE CPM/CPA

As argued in the last section, if a closed-loop output
is highly predictable, then a well designed predictive
controller should be able to compensate the predictable
content. Therefore, a higher predictability of a closed-
loop output implies a higher potential to improve its
performance by controller re-tuning or re-design; that is to
say, the existing controller may not have been satisfactory
in terms of performance. So the multi-step prediction
error for multivariate processes potentially provides useful
information for performance assessment. In this section,
we shall revisit the concepts of multi-step prediction error
and closed-loop potentials as defined in (Huang et al.,
2006).

For multivariable process, the closed-loop output with zero
setpoint driven by white noise can be described by a time
series model:

Yt = Gclat (1)

where Gcl is closed-loop time series model and at is white
noise with mean zero and covariance Σa. Transfer the
above model to a moving average (MA) form:

Yt =
∞∑

k=0

Fka(t − k) = F0at + F1at−1 + · · · + Fi−1at−(i−1)

+ Fia(t−i) + · · · (2)

Clearly, the above time series model can be estimated
without any a priori knowledge about the process.

With the MA model, one can obtain the optimal ith step
prediction:

Yt|t−i = Fia(t−i) + Fi+1a(t−i−1) + · · · (3)

and the prediction error:

et|t−i = Yt − Yt|t−i = F0at + F1at−1 + · · · + Fi−1at−(i−1)

(4)
The covariance of the prediction error can be calculated
as:

cov(et|t−i) = F0ΣaFT
0 +F1ΣaFT

1 + · · ·+Fi−1ΣaFT
i−1 (5)

Define its scalar measure:

si = tr(cov(et|t−i)) = tr(F0ΣaFT
0 +· · ·+Fi−1ΣaFT

i−1) (6)

si is monotonically increasing with i, as i → ∞, et|t−i →

Yt, and s∞ = tr(cov(Yt)). If we plot si versus i, the
plot reflects how the prediction error increases with the
prediction horizon.

Huang et al. (2006) defined a closed-loop potential as

pi =
s∞ − si

s∞
(7)

The closed-loop potential can be interpreted as: “If a
deadbeat control action can be applied from time i, then
the sum of squared error (SSE) can be reduced by 100×pi

percent. From stochastic view point, if i is greater than
the interactor order d, it is possible that the variance

of the multivariate output can be reduced by 100 × pi

percent of the current variance. Since the order of the
actual interactor matrix may not be known, one can check
the trajectory of the closed-loop potential versus a range
of possible time lag d”. As si is monotonically increasing
with i, pi is monotonically decreasing. When i → 0,
s0 = tr(cov(Yt−Yt|t)) = 0, p0 = 1. Therefore, the index pi

starts from 1 at i = 0 and monotonically decreases to 0 at
i → ∞. Larger the closed-loop potential is, more potential
the control performance can be improved.

3. THE EXTENDED CLOSED-LOOP POTENTIAL

3.1 Closed-loop potential based on mean square error

The above closed-loop potential has the following advan-
tages:

(1) It has a simple expression and easy to implement.
(2) The calculation of the index needs only the output

data. It does not require any a priori knowledge about
the interactor matrix or the process model.

(3) By plotting the trajectory of the closed-loop potential
versus the time lag d, we can get the potential plot,
which is useful in performance assessment of model
predictive control whose control strategy is based on
predictions.

From the potential plot we can draw the conclusion
whether or how much the present closed-loop has potential
to improve. Furthermore, with the plot, we can compare
performance of same controller with different tuning pa-
rameters. However, the closed-loop potential is variance
based performance measure, which may not be general
enough to consider, for example, the tracking performance
such as offset. To generalize it, we need to analyze the
closed-loop potential as it is originally defined. Substitut-
ing Eqn. (6) into (7) yields

pi =
tr(FdΣaFT

d + Fd+1ΣaFT
d+1 + . . .)

tr(F0ΣaFT
0 + F1ΣaFT

1 + . . .)

If the process has a simple interactor matrix dI (Huang
et al., 1999), then the numerator represents the variance
that can be eliminated through minimum variance control,
denoted here as tr(ΣR). The denominator represents the
actual variance of the output, denoted as tr(ΣY ). Thus

pi =
tr(ΣR)

tr(ΣY )

Namely pi is the percentage of output variance that could
be reduced by minimum variance control for a process with
a simple interactor matrix of order d. Obviously, most of
MIMO processes do not have a simple interactor matrix.
Therefore, instead of calculating a single closed-loop po-
tential, one should calculate a set of closed-loop potentials
over a horizon of time lags. One can then determine the
control performance according to the trajectory of the
closed-loop potentials.

With the above interpretation, we are ready to extend it to
a more general solution, namely extend it from variance
measure to mean square error measure. In this way, the
tracking performance such as offset will be considered
automatically in the closed-loop potential calculation. The
scalar measure of mean square error of output MSEY is
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defined as tr(MSEY ) = tr(E[yt − y
sp
t ][yt − y

sp
t ]T ), which

can be written as tr(δδT ) + s∞ where δ stands for the
offset.

With the consideration of mean square error, the new
closed-loop potential pmi, analogous to the definition of
pi, can be defined as

pmi =
tr(MSER)

tr(MSEY )
(8)

where MSER represents the mean square error that can
be eliminated through optimal control (minimum variance
control plus offset compensation), which yields

MSER = δδT + ΣR (9)

and MSEY can be written as

MSEY = δδT + ΣY (10)

Substituting Eqns (9) and (10) into Eqn.(8) yields

pmi =
tr(δδT + ΣR)

tr(δδT + ΣY )

=
tr(δδT ) + s∞ − si

tr(δδT ) + s∞
(11)

With s0 = tr(E(e2
t|t)) = 0,

pm0 =
tr(δδT ) + s∞

tr(δδT ) + s∞
= 1

From (11), we can see that pmi is monotonically decreasing

starting from 1 as well, but as i → ∞, pmi →
tr(δδT )

tr(δδT )+s∞

which is not necessarily to be zero, the value of which
depends on ratio of offset to the mean square error. In this
way, the closed-loop potential will not be zero when there
is offset even if the time lag goes to infinity. This is more
reasonable since if the time lag goes to infinity, there is no
potential to predict the dynamic variability but the offset
is always practicable and controllable. Therefore, as time
lag goes to infinity, the potential depends on the offset
only.

Furthermore, when there exists offset, tr(δδT ) is positive,

pmi − pi =
tr(δδT ) + s∞ − si

tr(δδT ) + s∞
−

s∞ − si

s∞

=
sitr(δδ

T )

s∞(tr(δδT ) + s∞)
> 0 (12)

The result above shows that the closed-loop with offset has
larger potential than the one without offset as expected.
Using an alternative expression:

pmi − pi =
sitr(δδ

T )

s∞(tr(δδT ) + s∞)
=

si

s∞
×

1

1 + s∞
tr(δδT )

(13)

We can draw the conclusions:



lim
tr(δδT )→0

(pmi − pi) = 0

lim
tr(δδT )→∞

(pmi − pi) =
si

s∞

(14)

For comparison, in the sequel, we call the new developed
closed-loop potential as the extended closed-loop potential
(ECP), while the closed-loop potential defined in Huang

et al. (2006) as the original closed-loop potential (OCP).
When the offset is close to zero, the ECP is close to OCP.
When the offset is much larger than s∞, the ECP will
approach to the constant 1, which implies that there is
always maximum potential to improve for the closed-loop
no matter what is the time delay.

The procedures of implementing the ECP are summarized
as follows:

(1) Calculate the offset
(2) Estimate a time-series model using closed-loop data
(3) Transfer the time series model to a moving average

form as in (2)
(4) Calculate the optimal ith prediction and the predic-

tion error respectively according to (3) and (4)
(5) Calculate the covariance of the prediction error as in

(5)
(6) Calculate the ith ECP respectively according to (11).
(7) Plot the potential trajectory and analyze the perfor-

mance of the closed-loop.

From the procedures discussed above, we can see that the
proposed extension has all features that the previous one
has, and moreover, it can evaluate the tracking perfor-
mance of loops with offset through a natural extension.

3.2 The individual closed-loop potential

In the previous algorithm, to calculate potential of in-
dividual variable, the trace operator tr[·] is replaced by
diagonalization operator diag[·] (Huang et al., 2006):

pindi ,
s̃∞i − s̃i

s̃∞i

(15)

where s̃i, s̃∞i are defined as:

s̃i , [diag(F0ΣaFT
0 + F1ΣaFT

1 + · · · + Fi−1ΣaFT
i−1)](i)

s̃∞i = [diag(F0ΣaFT
0 + F1ΣaFT

1 + · · · )](i) (16)

where, following Matlab notation, i stands for the ith
element of the vector. Such individual potential is conve-
nient for assessing potential of each controlled variable in
a multivariate system. However, the contribution of each
variable to the potential of total system is not explicit.
Namely, sum of individual closed-loop potentials is not the
same as the (overall) multivariate closed-loop potential. In
view of this problem, a new individual potential is defined
as:

pmindi ,
s̃∞i − s̃i

s∞
(17)

where the s̃i, s̃∞i have been defined in (16).

At each i, making the summation over each individual
potential, the result is the multivariate potential index
defined in the last section:

∑
pmindi =

∑
(s̃∞i − s̃i)

s∞
=

s∞ − si

s∞
= pi (18)

When there is offset, the new individual potential index is:

˜pmindi ,
Γ̃i + s̃∞i − s̃i

δδT + s∞
(19)

where Γ̃i = [diag(δδT )](i). The summation is the same as
the multivariate (overall) potential (ECP) as shown below:
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Fig. 1. Block diagram of a cascade control loop.
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Fig. 2. Output of the two controllers and their setpoints.

∑
˜pmindi =

Γ̃i + s̃∞i − s̃i

s∞
=

tr(δδT ) + s∞ − si

tr(δδT ) + s∞
= pmi

(20)

The new individual potential can reflect contribution of
each variable. It provides us with a guideline on how to
improve the performance of closed-loop via balancing the
tuning of each variable.

4. INDUSTRIAL APPLICATIONS

In this section both the previous and the proposed closed-
loop potential measures will be applied to evaluate the
performance of two industrial control systems, one with
offset and the other without.

4.1 Case study with offset

Process description Fig. 1 shows a block diagram of a
cascade temperature control loop in a distillation column.
To control the components in the column top and the
column bottom, the column’s temperature gradient (the
setpoint of the loop calculated from XY-07) must be
maintained appropriately. The basic method to control
the temperature gradient is to regulate the reflux flow.
Consider the main controller GICA81 (temperature con-
troller) of the loop in this study. Two control strategies:
PID and MPC have been used for the process. The output
of GICA81 is the setpoint of the inner controller FICA68
(flow controller). The setpoint is calculated by a formula
with the parameter of temperature measured in the col-
umn. The closed-loop output under the two controllers
are shown in the top panel and bottom panel of Fig.
2, respectively. Performance between these two control
strategies is compared and analyzed using the OCP and
ECP, respectively, elaborated next.
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Fig. 3. OCP and ECP plot of the two controllers.
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Fig. 4. ECP trajectory of the two controllers.

Analysis Following the steps described in Section 3, we
can calculate the potential of each controller with and
without considering offset, namely using ECP and OCP,
respectively. The results are shown in Fig. 3.

From Fig. 3, we can see that there exist potentials for
both controllers. Within each sub-figure, one can see the
potential with consideration of offset (ECP) is always
higher than the one without considering offset (OCP).
The ECP never goes to zero if there is offset. The smaller
the difference between the two potentials within each sub-
figure is, the less the offset is. The MPC controller has less
offset than the PID one.

Fig. 4 shows comparison of ECPs between the two con-
trollers, PID and MPC. There exists more potential for
the PID controller to improve, which implies that the
performance of the MPC controller is better. Fig. 5 shows
the potential plots of two controllers without considering
the offset (namely OCP). Less difference of the potentials
between the two controllers, particularly when time lag
is large, can be seen from Fig. 5, indicating limitation
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Fig. 5. OCP trajectory of the two controllers.
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Fig. 6. Schematic diagram of the industrial process.

of closed-loop potential without considering the offset in
measuring control performance.

4.2 Case study without offset

Process description Another application is the control
performance assessment and diagnosis of the Residual
Fluid Catalytic Cracking Unit (RFCCU) MPC controller
in a petrochemical complex, where multiloop PID con-
troller and MPC controller are applied respectively. Fig.
6 is a simplified process flow chart. With the absorbent
of stable gasoline, the absorption & desorption column
absorbs the fractions of C3 and C4 in the unstripped gas.
The whole column is divided into absorption part on top
and desorption part on bottom. The unstripped feed gas
goes into the middle column and stable gasoline is com-
pressed in from the top column. Two kinds of gas contact
in the reverse direction and the fractions of C3 and C4 in
unstripped gas are absorbed by stable gasoline. Besides
the fractions of C3 and C4, gasoline in the desorption
column contains the fraction of C2. After contacting with
the high temperature steam from the bottom column, C2

in gasoline is desorbed. Finally, product flowing out of the
top column is lean gas without C3 and fractions have more
C than C3.

Table 1. List of process variables and their
corresponding tag names.
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Fig. 7. Output data set under PID controller.
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Fig. 8. Output data set under MPC controller.

The control system consists of three manipulated variables
(MVs), two controlled variables (CVs) and two distur-
bance variables (DVs). A description of process variables
and the corresponding tag names is shown in Table 1,
where CV1 is the level of the feed’s buffer tank and CV2
is the level of the bottom column.

For the PID controller, the configuration was setup in
the distributed control system (DCS). Data sets collected
under PID and MPC control are shown in Fig. 7 and Fig.
8 respectively.

Performance assessment Following the procedure of sec-
tion 3, the trajectories of the potentials of the closed-loop
systems under two controllers can be calculated. In this
example, all CVs are constraint CV, and the offset is not
a concern as long as all CVs are within the constraints.
Thus, the closed-loop potential does not need to consider
the offset, namely OCP is sufficient for the application.
However, we will demonstrate the utility of the new in-
dividual closed-loop potentials defined in Eqn. (17). Fig.
9 shows that there exist potentials for both controllers,
especially when the time lag is small. Furthermore, the
MPC controller appears to have more potential to improve,
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Fig. 9. OCP trajectory under different controllers.
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Fig. 10. Individual potential trajectory of different con-
trollers.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time lag

C
lo

s
e
d
−

lo
o
p
 p

o
te

n
ti
a
l

OCP plot of y1 under different controllers

 

 

PID controller

MPC controller

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time lag

C
lo

s
e
d
−

lo
o
p
 p

o
te

n
ti
a
l

OCP plot of y2 under different controllers

 

 

PID controller

MPC controller

Fig. 11. Originally defined individual potential trajectory
of different controllers.

which implies that the MPC controller may not be well
tuned or not as good as the PID. For further analysis of the
reason, we calculate the new individual potential for each
controller shown in Fig. 10. For the PID controller, the out-
put y1 is the key contributor to the closed-loop potential
of the whole system (note a few spikes in y1 in Fig. 7 that
can be an important contributor to the potential), while
the output y2 has little potential, indicating a good tuning
for it. For the MPC controller, although the output y1 has
a larger contribution than that of y2, both of them have
large potential, indicating that the controller can be re-
tuned for both variables. Note that new defined individual
potentials add up to the multivariate potential. Thus they
can be used to assess the contributions of each individual
variable on the overall potential. Although PID in this
application appears better than MPC, i.e. less predictable,
the existence of spikes in y1 worths further investigation.

To compare potential of individual CVs among different
controllers, however, we need the individual potential plots
originally defined by Huang et al. (2006). The original
individual potential trajectories are plotted in Fig. 11. Ob-
viously, both CVs under PID control have less potential to
improve than the ones under MPC control, which reflects
that the PID controller indeed has a better performance
in this application (without considering offset).

5. CONCLUSION

Closed-loop potentials are promising measures of MPC
performance. However, they have certain limitations as
they are originally defined. In this paper, extensions of
previous work are attempted and new closed-loop poten-
tials are defined. The proposed performance measures have
all the advantages of the previous ones in addition to new
features that are lack in the previous results. Regardless
of the dimension of plant, the closed-loop potential is a
scalar, which facilitates the implementation, visualization,
and interpretation. This paper is also the first report in
actual industrial application of the closed-loop potential
as a measure of MPC performance.
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