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Abstract: In this paper, nonlinear output feedback control design for linear systems subject to
input saturation is addressed. Main issues of this paper are 1. stability analysis of the feedback
system for both of state and output feedback and 2. design of stabilizing nonlinear feedback
law. Sufficient global stability conditions for both of state and output feedback are derived.
Furthermore, a design approach based on analytical solution of partial differential equations
is proposed. It is shown that a class of feedback laws can be explicitly obtained, which is
parameterized by nonlinear functions.

1. INTRODUCTION

Linear systems with input saturation are commonly en-
countered due to the inherent constraint on actuators. The
study of such systems has received great attention because
it is not only practically important, but also the input
nonlinearity induces various interesting behaviours such
as local stability, limit cycle, performance degradation.
Linear controllers which are designed disregarding the
nonlinearity cannot bring out expected performances. It
is conceivable that nonlinear control may achieve better
performance than linear control for systems subject to
constraints. Recently, several nonlinear control methods
have been developed. Major approaches are nonlinear state
feedback control (Hu and Lin, 2003, Chen et al, 2003),
gain-scheduling control, anti-windup control (Mulder et
al, 2001) and model predictive control (Bemporad et al,
2002).

In this paper, we aim at designing nonlinear output feed-
back laws stabilizing linear systems with input saturation.
First, we consider state feedback stabilization. A global
stability condition for the closed loop system is derived,
which is characterized by PDMI (partial differential matrix
inequality) about the state feedback law. Then, we propose
a design approach based on analytical solution of PDME
(partial differential matrix equation). Next, observer based
output feedback stabilization is discussed. A global stabil-
ity condition for the closed loop system is derived and the
design example of the proposed method is shown.

As the related research, Hu and Lin, 2003 proposed the
composite quadratic Lyapuonv function. This approach
gives a flexible method of constructing nonlinear feedback
laws. Chen et al, 2003 proposed a composite nonlinear
feedback control law which consists of a linear feedback
law and a nonlinear feedback law without any switching
element. The design approach in this paper is different
from theirs in that the structure of the feedback law is
explicitly obtained by solving a PDME analytically. The
each parameters of the feedback law are determined by a
matrix inequality including nonlinear design parameters.
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Fig. 1. Feedback control systems with saturation.

We consider n-th order single input linear systems with
input saturation below:

G : ẋ = Ax + bφ(u), x ∈ R
n, u ∈ R

1 (1)

where φ(·) is a standard saturation function given by

φ(u) = sgn(u)min{|u|, um} (2)

where um denotes the maximum matnitude of the control
input. Moreover, we make the following assumptions on
the system (1).

Assumption 1. (A, b) is controllable.

Assumption 2. There exists a non-zero matrix P = PT ≥
0 such that

AT P + PA ≤ 0. (3)

Our purpose is to design globally stabilizing feedback laws.
However, not all linear systems are globally stabilizable
due to the input saturation. This assumption implies the
poles of A are at least located on the closed left-half plane.
Note that Assumption 2 does not necessarily require the
boundness of open-loop impulse response since the double
integrator is included in this class.

In this paper, the following notation will be used. Let A
be an n×m matrix. A+ denotes the pseudo-inverse matrix
of A and kerA denotes the null space of A.
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2. STABILITY ANALYSIS - STATE FEEDBACK
CASE

In this section, stability of the closed loop is analyzed
for general state feedback case, i.e., u = f(x). It is only
assumed that the state feedback law f(x) is at least C0

for all x and piecewise C1 with f(0) = 0. Then, the closed
loop system is described as below:

ẋ = Ax + bφ(f(x)) (4)

2.1 Equilibria

The origin is not necessarily the unique equilibrium point
under the nonlinear system (4). The following lemma
clarifies the equilibria of the system (4).

Lemma 1. Consider the system (4). Then, the following
statements hold:

1) If kerA = {0}, the origin is the unique equilibrium
point if and only if ξ = 0 is the unique solution of

f(−A−1bξ) = ξ, ∀ξ ∈ [−um, um] (5)

and f(−A−1bum) ≤ um, f(A−1bum) ≥ −um.
2) If kerA 6= {0}, the origin is the unique equilibrium

point if and only if η = 0 is the unique solution of

f(η) = 0, ∀η ∈ kerA. (6)

Proof The proof is based on the theory of linear matrix
equations. First, we prove the case kerA = {0}. The
equilibrium point satisfies the equation Ax + bφ = 0.
Since A is nonsingular, x = −A−1bφ holds. This means
that the equilibrium point lies on a finite length line
{−A−1bξ : ξ ∈ [−um, um]}. In the unsaturated region
|f(x)| ≤ um, ξ = f(x). Therefore, the equilibria exists
iff there exists a ξ ∈ [−um, um] such that ξ = f(−A−1bξ).
Obviously, the origin is the unique equilibrium point iff ξ =
0 is the unique solution of ξ = f(−A−1bξ). In saturated
region |f(x)| > um, ξ = ±um. f(−A−1bum) ≤ um and
f(A−1bum) ≥ −um are necessary in order for the origin to
be the unique equilibrium.

Next, we prove the case kerA 6= {0}. Ax + bφ = 0
has a solution x only if rank [A bφ] = rank A for
φ ∈ [−um, um]. Note that this rank condition is only a
necessary condition because φ depends on f(x). However,
since (A, b) is controllable, rank [A bφ] = n when φ 6= 0.
Hence, rank [A bφ] = n > rank A. The solution x exists
only if φ = 0, i.e., f(x) = 0. As the result, the equilibrium
point satisfies Ax = 0 and f(x) = 0. The origin is the
unique equilibrium point iff η = 0 is the unique solution
of f(η) = 0 for all η ∈ kerA.

2.2 Stability Theorems

The stability analysis is based on a composite Lyapunov
function, which is composed of a quadratic function and
a potential energy function related to the actuator and
the feedback law. Note that a simple quadratic form of
Lyapunov function does not exist for the global stability if
the plant is the double integrator. The following theorem
guarantees the global stability of the system (4).

Theorem 1. Suppose that there exist a P = PT ≥ 0 and
a λ ∈ (0, 1) such that the following two conditions hold.

1) A PDMI (partial differential matrix inequality) below
is satisfied.






AT P + PA Pb + AT (
∂f

∂x
)T

bT P +
∂f

∂x
A λ

∂f

∂x
b + bT (

∂f

∂x
)T λ




 ≤ 0. (7)

2) A Lyapunov function below is radially unbounded.

V (x) = xT Px + 2

∫ f(x)

0

φ(s)ds (8)

Then, the state x(t) of the system (4) converges globally
to the largest invariant set V contained in

Ω = {x ∈ R
n : Qx = 0,

∂f

∂x
b·f(x) = 0} (9)

where Q satisfies

AT P + PA = −QT Q. (10)

Proof The proof is based on Lyapunov stability theory.
By P ≥ 0 and the condition 2), the Lyapunov candidate
V (x) given by (8) satisfies V (x) ≥ 0 and is radially un-
bounded. Furthermore, V (x) is continuously differentiable.

The time derivative of V is calculated as

V̇ (x) =

[
x
φ

]T [
AT P+PA Pb+AT ( ∂f

∂x
)T

bT P+ ∂f
∂x

A ∂f
∂x

b+bT ( ∂f
∂x

)T

] [
x
φ

]

. (11)

Using λ = λ1λ2 with λ1, λ2 ∈ (0, 1), we obtain

V̇ (x) =

[
x
φ

]T [
λ1(A

T P+PA) Pb+AT ( ∂f
∂x

)T

bT P+ ∂f
∂x

A λ2

∂f
∂x

b+bT ( ∂f
∂x

)T λ2

] [
x
φ

]

−(1−λ1)‖Qx‖2+(1−λ2)
∂f
∂x

bφ2. (12)

The negative semi-definiteness of the matrix inequality in
the first term of (12) is equivalent to that there exists
λ ∈ (0, 1) such that the PDMI (7) holds. This equivalence
can be easily proved by a congruence transformation
diag{

√
λ1I,1/

√
λ1}. We can find λ1, λ2 ∈ (0, 1) such that

λ = λ1λ2 for any λ ∈ (0, 1), and vice versa.

Hence, by the condition 1), V̇ satisfies

V̇ (x) ≤ −(1 − λ1)‖Qx‖2 + (1 − λ2)
∂f

∂x
bφ2 ≤ 0. (13)

In addition, V̇ = 0 holds only in the region Ω.

By the above argument, we conclude V̇ (x) ≤ 0 for all
x ∈ R

n. According to LaSalle’s invariant principle, x
converges to the largest invariant set V ⊂ Ω.

Theorem 1 guarantees that the state converges to some
invariant set. The following corollaries set forth that, if
further conditions are added to Theorem 1, the conver-
gence to the origin can be concluded.

Corollary 1. Assume that the conditions 1) and 2) of

Theorem 1 are true. If ∂f
∂xb < 0 for all x ∈ R

n/{0}, then
Ω = {x ∈ R

n : Qx = 0, f(x) = 0}. In particular, if a pair
(f(x), Ax) is zero-state observable or detectable, V = {0}.
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Proof By (9), if ∂f
∂xb < 0 for all x ∈ R

n/{0}, Ω = {x ∈
R

n : Qx = 0, f(x) = 0}. Moreover, Assume that the pair
(f(x), Ax) is zero-state observable or zero-state detectable.
Then, x(t) ∈ V ⊂ Ω converges to the origin. In conclusion,
V = {0}.

Corollary 2. Assume that the conditions 1) and 2) of
Theorem 1 are true. If PA + AT P < 0, then V = {0}.

Proof By (9), Ω = V = {0}.

3. DESIGN OF NONLINEAR STATE FEEDBACK
LAW

An important property of Theorem 1 is that the stability
condition is characterized by a PDMI about the state
feedback law f(x). The PDMI (7) needs to be solved in
order to design f(x). In this section, a state feedback
design method is proposed based on the PDMI condition
in Theorem 1. The main idea is to focus on the kernel
space of the matrix in (7) and (7) is reduced into a PDME
(partial differential matrix equation) and a reduced-order
PDMI. Then the PDME is solved analytically.

First, (7) is reduced into a PDME and a reduced-order
PDMI. By Schur complement together with PA +AT P =
−QT Q ≤ 0, (7) is equivalent to

2λ
∂f

∂x
b + (bT P +

∂f

∂x
A)(QT Q)+(Pb + AT (

∂f

∂x
)T ) ≤ 0(14)

and

kerQ ⊂ ker (bT P +
∂f

∂x
A). (15)

Further, the kernel condition (15) is equilvalent to that
there exists a k(x) ∈ R

n such that

bT P +
∂f

∂x
A = −k(x)T QT Q. (16)

For fixed x, (16) is considered as a linear matrix equation
about k(x). (15) is a necessary and sufficient condition for
the existence of the solution k(x).

Substitution of (16) into (14) yields

∂f

∂x
b +

1

2λ
k(x)T QT Q(QT Q)+QT Qk(x) ≤ 0. (17)

By the property QT Q(QT Q)+QT Q = QT Q of pseudo-
inverse, the above inequality equals to

∂f

∂x
b +

1

2λ
k(x)T QT Qk(x) ≤ 0. (18)

Hence, the design problem boils down to finding f(x)

satisfying the PDME (16) subject to ∂f
∂xb ≤ − 1

2λ‖Qk(x)‖2

and AT P + PA = −QT Q.

The following theorem is one of the main results of this
paper and gives the explicit state feedback law subject to
some conditions, which is obtained via the PDME (16).

Theorem 2. Let g(·), h(·) ∈ R be piecewise C1 functions
and k0, k1, l0, l1 ∈ R

n be constant vectors. The following
state feedback laws f(x) satisfy PDMI (7).

f(x) =−[(bT P + kT
0 QT Q)A+ + lT0 (I − AA+)]x

−

∫ α(x)

0

g(v)dv −

∫ β(x)

0

h(w)dw (19)

where α(x), β(x) are defined by

α(x) = kT
1 QT QA+x (20)

β(x) = lT1 (I − AA+)x (21)

if the integral kernel g(·), h(·) and the gain k0, k1, l0, l1
satisfy the following constraints:

(1) An inequality

−(bT P + kT
0 QT Q)A+b − lT0 (I − AA+)b

−kT
1 QT QA+b · g(α(x)) − lT1 (I − AA+)b · h(β(x))

+
1

2λ
‖Q{k0 + k1g(α(x))}‖2 ≤ 0 (22)

(2) Two algebraic equations

(bT P + kT
0 QT Q)(I − A+A) = 0 (23)

kT
1 QT Q(I − A+A) = 0 (24)

Remark 1. The state feedback law (19) is parameterized
by a constant gain vector and two integral kernels. Each
parameters are freely chosen so that both of the constraints
(22)∼(24) are satisfied.
It has been assumed that g(x), h(x) ∈ C1 in the derivation
of (19). However, (19) is still the solution of (7) even if
g(·), h(·) are only piecewise C1 functions. Therefore, it is
assumed that g(·), h(·) are at least piecewise C1 functions
in Theorem 2.

Proof of Theorem 2 In this proof, it is only confirmed
that the state feedback law (19) satisfies the PDME (16).
For the detailed derivation of solution, refer to Akasaka
and Liu (2007).

We start with expanding the PDME (16) into coupled
PDE’s. Solving the linear matrix equation (16) with re-
spect to ∂S/∂x, the general solution is obtained as

∂f

∂x
= −(bT P + k(x)T QT Q)A+ + l(x)T (I − AA+) (25)

where l(x) ∈ R
n is an arbitrary vector function and (25)

is a solution of (16) iff

(bT P + k(x)T QT Q)(I − A+A) = 0. (26)

Next, the compatibility of the coupled PDE’s must be
checked. The compatibility condition can be found in the
textbooks of partial differential equations, for instance,
Zwillinger (1992). It is verified that the compatibility
condition is satisfied if k(x), l(x) is chosen to be

k(x) = k0 + k1g(α(x)), l(x) = l0 + l1h(β(x)). (27)

We comfirm that (19) is a solution of (16) as follows. The
partial derivative of (19) yields

∂f

∂x
=−[(bT P + kT

0 QT Q)A+ + lT0 (I − AA+)]

−g(α(x))kT
1 QT QA+ − lT1 (I − AA+)h(β(x))

=−{bT P + (k0 + k1g(α(x)))T QT Q}A+

−(l0 + l1g(β(x)))T (I − AA+) (28)
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Hence, (19) is a solution of (16).

Finally, the inequality constraint (22) is derived from
substituting (25) into (18). The algebraic equations are
derived from (26).

4. STABILITY ANALYSIS - OUTPUT FEEDBACK
CASE

In this section, observer based output feedback stabiliza-
tion is studied based on the state feedback laws designed
in the last section. Assume that y = Cx ∈ R

q and φ(u)
can be measured as the feedback information and (C, A)
is detectable.

An output feedback law is constructed as below:

˙̂x = (A + LC)x̂ + Bφ − Ly
u = f(x̂)

(29)

This system simply consists of a full-order Luenberger
observer and the state feedback law f(·) obtained in the
previous section. Let the estimated error be e = x̂ − x.
Then, the closed loop system is described as

ẋ = Ax + Bφ(f(x + e))
ė = (A + LC)e.

(30)

In the sequel, the global stability of the system (30) will
be discussed when the state feedback law is designed
via the PDMI (7). In general, separation principle is
not preserved for nonlinear systems. However, the system
(30) is represented by a simple cascade system and e(t)
converges to zero exponentially provided that A + LC is
a Hurwitz matrix. This makes the stability analysis more
easily. The next result gives a global stability condition for
the system (30).

Theorem 3. Suppose that the conditions 1) and 2) of
Theorem 1 are true and A + LC is a Hurwitz matrix. If
there exists positive constants ρ, M such that

‖
∂f

∂x
(x)‖‖x‖ ≤ ρ|f(x)| (31)

for all ‖x‖ ≥ M , then x, e converge globally to V, 0,
respectively.

Remark 2. The condition (31) in Theorem 3 requires the
polynomial growth of f(x) for ‖x‖ ≥ M . If f(x) is a
polynomial function, (31) is automatically satisfied.

The following lemma is used in the proof of Theorem 3.

Lemma 2. If the condition (31) of Theorem 3 is true, then

‖φ(f(x̂))
∂f

∂x̂
(x̂)‖ ≤

ρ

2M
W (ζ) (32)

holds for ‖x‖ ≥ M .

Proof See Appendix A.

Proof of Theorem 3 The idea of the proof is basically
similar to Sepulchre et al. (1997). Let ζ = [xT eT ]T in the
argument below.

First, it will be proved that ζ(t) is bounded for each
ζ(0) ∈ R

2n by using the function below.

W (ζ) = xT Px + 2

∫ f(x+e)

0

φ(s)ds + eT Pee (33)

where Pe = PT
e > 0 is the solution of Lyapunov equaiton

Pe(A + LC) + (A + LC)T Pe + Qe = 0. (34)

Since A + LC is a Hurwitz matrix, there exists Pe > 0 for
any Qe > 0. By the condition 2) in Theorem 1 and Pe > 0,
W (ζ) satisfies W (ζ) ≥ 0 and is radially unbounded.

The time derivative of W (ζ) satisfies

Ẇ (ζ)≤ 2φ(f(x̂))
∂f

∂x̂
(x̂)(A + LC)e. (35)

In above, the inequality follows from the condition 1) of
Theorem 1 and eT Qee ≥ 0. Since A + LC is Hurwitz,
there exist kǫ(e(0)) > 0 and ǫ > 0 such that ‖e(t)‖ ≤
kǫ(e(0)) exp(−ǫt). Then,

Ẇ (ζ) ≤ 2φ(f(x̂))
∂f

∂x̂
(x̂)(A + LC)e

≤ 2‖φ(f(x̂))
∂f

∂x̂
(x̂)‖‖A + LC‖‖e‖

≤ 2‖φ(f(x̂))
∂f

∂x̂
(x̂)‖‖A + LC‖kǫ(e(0)) exp(−ǫt). (36)

Applying Lemma 2 to the above equation, for ‖x‖ ≥ M ,

Ẇ (ζ)≤Kǫ(e(0))W (ζ) exp(−ǫt) (37)

where Kǫ(e(0)) = ρ‖A + LC‖kǫ(e(0))/M > 0. Then, the
following bound of W (ζ(t)) is obtained by Comparison
Principle

W (ζ(t))≤W (ζ(0)) exp{Kǫ(e(0))

∫ t

0

e−ǫτdτ}

≤W (ζ(0)) exp{Kǫ(e(0))/ǫ}. (38)

This implies that ζ(t) is bounded for each ζ(0) ∈ R
2n

because W (ζ) is continuous, bounded from below and
radially unbounded.

Finally, we prove the convergence of the state as follows.
The time derivative of U(e) = eT Pee is U̇(e) = −eT Qee <
0 (e 6= 0). The boundedness of the whole state has been al-
ready guaranteed by the above argument. Thus, x(t), e(t)
globally converges to the largest invariant set contained in
{(x, e) : e = 0} according to LaSalle’s invariant principle.
In the largest invariant set, the dynamics of x is given
by ẋ = Ax + φ(f(x)). Since the condition 1) and 2) of
Theorem 1 are true, then the largest invariant set must be
{(x, e) : x ∈ V, e = 0}. That concludes the proof.

5. DESIGN EXAMPLE

Global stabilizing nonlinear feedback law is concretely
designed for the system (1) with a controllable canonical
form.

5.1 Controllable Canonical Form

Consider the system (1) which is composed of integrators
and stable poles as below:
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ẋ =









0 1 0
1

...
. . .

1
0 −µ2 −µ3 · · · −µn









︸ ︷︷ ︸

A

+







0
...
0
1







︸ ︷︷ ︸

b

φ (39)

For the system (39), the matrices I − A+A, I − AA+ are
calculated as

I − A+A = diag{1, 0, · · · , 0} (40)

I − AA+ =







0 0 · · · 0 0
...

...
0 0 · · · 0 0
µ2 µ3 · · · µn 1







. (41)

Using these matrices, we obtain the constraints (22)∼(24)
in Theorem 2 as follows:

−lT1 en · h(β(x)) +
1

2λ
‖Q{k0 + k1g(α(x))}‖2 ≤ 0 (42)

pn1 + kT
0 QT Qe1 = 0 (43)

kT
1 QT Qe1 = 0 (44)

where pij is the (i, j)-th element of P and ei ∈ R
n is a

unit vector whose i-th element is 1. In particular, if the
constant gains are chosen to be k0 = k1 = l0 = 0 and
l1 = en, the state feedback law (19) is

f(x) =−
n−1∑

j=1

pn(j+1)xj −

∫ β(x)

0

h(w)dw (45)

where β(x) = µ2x1 + · · · + µnxn−1 + xn, (42), (43) are
reduced to h(·) ≥ 0, pn1 = 0 respectively and (44) is
automatically satisfied.

Theorem 4. Assume that the system (39) consists of dou-
ble integrators and stable poles. Let Ā ∈ R

(n−2)×(n−2),
q ∈ R

1×n be

Ā =









0 1 0
1

...
. . .

1
−µ3 −µ4 · · · −µn









, q =









0
µ3

...
µn

1









T

. (46)

If P is given by

P = κqT q +

[
02×2 02×(n−2)

0(n−2)×2 P̄

]

(47)

where κ > 0 and P̄ > 0 is the solution of P̄ Ā + ĀT P̄ =
−Q̄ < 0, then the state feedback law (45) with h(·) > 0
globally asymptotically stabilizes the equilibrium point
N = {0} of the system (39).

Proof If P̄ > 0, P given by (47) is positive semi-definite.
Furthermore, it is easy to see that AT P +PA ≤ 0 because

AT P + PA =

[
0 0
0 ĀT P̄ + P̄ Ā

]

=

[
0 0
0 −Q̄

]

≤ 0. (48)

Thus, P given by (47) is a solution of AT P + PA ≤ 0 and
the constraint pn1 = 0 is satisfied.

To prove the globally asymptotic stability, we begin with
the radial unboundedness of V (x) given by (8). Let x = τv
in which τ > 0 and ‖v‖ = 1. Then, xT Px = τ2vT Pv =
τ2(κ‖qv‖2+ v̄T P̄2v̄) in which v̄ = [v3 · · · vn]T . Accordingly,
V (x) is not radially unbounded only if ‖qv‖2 + v̄T P̄2v̄ = 0.
The unique solution v∗ of this equation is obtained as v∗ =
[1 0 · · · 0]T due to P̄ > 0. Therefore, the radial unbound-
edness of V (x) is guaranteed iff limτ→∞ |f(τv∗)| = ∞. By
(45), |f(τv∗)| = |κτ | and limτ→∞ |f(τv∗)| = ∞ is satisfied.
Hence, V (x) is radially unbounded.

Finally, we prove that the maximum invariant set V in
Theorem 1 equals to N = {0}. Since ∂f

∂xb = −h(·) < 0,

Ω = {x ∈ R
n : x3 = · · · = xn = 0, f(x) = 0}. (49)

In the set Ω, f(x), ḟ(x) and f̈(x) are respectively cal-

culated as f(x) = −pn2x1 − pn3x2, ḟ(x) = −pn2x2 and

f̈(x(t)) = 0. By (47), pn2 = κµ3 6= 0. Hence, f(x) ≡ 0 iff
x1 = x2 = 0. This means that the maximum invariant set
V = {0}.

5.2 Numerical Example: Output Feedback Design

A numerical example is shown for the fourth order case of
the system (39) consisting of double integrators and stable
poles. Assume that all parameters of the plant (39) are
known and the available feedback information is y = x1

and φ(u). The control object is to track the output y to the
constant reference signal r without windup phenomenon.

Concretely, we design the nonlinear output feedback law
(29) as follows. f(x̂) is designed based on Theorem 4
and the nonlinear kernel is chosen so that the condition
of Theorem 3 is satisfied in order to ensure the global
stability. Let us choose the nonlinear kernel as

h(w) = h1 + h2|w| (50)

in which h1, h2 > 0. Then, the following state feedback
law is obtained

f(x̂) = −
3∑

i=1

p4(i+1)xi − h1β(x̂) −
h2

2
|β(x̂)|β(x̂) (51)

where β2(x) = µ3x2 + µ4x3 + x4.

Fig. 2, 3 show the time responses of the system output
y = x1, the saturation output φ for the several values of
the references r = 1, 5, 10, respectively. In the simulation,
the plant parameters are set as µ3 = 10, µ4 = 2, i.e.
the eigenvalues of A are 0, 0, −1 ± 3j. The maximum
value of the control input is um = 5. The observer gain
is L = [41 613 3639 1592]T . The initial state is x(0) =
[0 0.1 0.1 0.1]T and x̂(0) = 0. Each gain of (51) is set as

f(x̂) = −15
{

10(x̂1 − r) − 3x̂2 − 1.6x̂3

−0.2β(x̂) − 0.1|β(x̂)|β(x̂)
}

. (52)

In Fig 2, it is confirmed that the output y converges to
each reference values without windup.

6. CONCLUSION

In this paper, a nonlinear output feedback control design
method is proposed for linear systems subject to input
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Fig. 2. The time responses of the plant output y = x1

for the different values of the reference signal r (From
above, the curve corresponds to the response for r =
10, 5, 1).
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Fig. 3. The time responses of the saturation output φ for
the different values of the reference signal r (From
above, the curve corresponds to the response for r =
10, 5, 1).

saturation. The main results of this paper are as follows.
First, global stability conditions are derived for both of
state and output feedback cases. The sufficient condition
is basically given by a partial differential matrix inequality
and a growth order requirement for the feedback law.
Secondly, a class of nonlinear feedback laws has been
obtained by solving a partial differential matrix equation
analytically. It is remarkable that the control laws are
parameterized by nonlinear integral kernels.

The obtained state feedback law and the observer depend
on the system parameters. As the next step, we need to
develop robust design method for the parameter uncer-
tainties. Further, achievable performances by the nonlinear
control must be analyzed.
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Appendix A. PROOF OF LEMMA 2

First, we prove the following relationship:

|φ(f(x̂))||f(x̂)| ≤ W (ζ) (A.1)

The integral
∫ f

0
φ(s)ds satisfies

∫ f

0

φ(s)ds =







1

2
|φ(f)||f | if |f | ≤ um

|φ(f)||f | −
1

2
|φ(f)|2 if |f | > um

≥
1

2
|φ(f)||f | (A.2)

Hence,

|φ(f(x̂))||f(x̂)| ≤ 2

∫ f(x̂)

0

φ(s)ds ≤ W (ζ). (A.3)

(32) is proved as follows.

‖φ
∂f

∂x̂
‖ ≤ |φ|‖

∂f

∂x̂
‖ ≤ ρ

|φ||f(x̂)|

‖x‖
≤

ρW (ζ)

M
(A.4)

for all ‖x‖ ≥ M . The first inequality is obvious. The
second inequality follows from (31) in Theorem 3. The
third inequality holds due to (A.1) and ‖x‖ ≥ M .
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