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Abstract: In this paper a Generalized Proportional Integral output feedback control scheme is proposed
for grasping tasks. We have designed a flexible finger gripper mounted at the tip of a rigid arm which
can grasp and move objects from a place to other so that a bending force control of the flexible gripper
is combined with a position control of the rigid arm. Experiments are presented to verify the goodness
of the proposed control law.

1. INTRODUCTION

Since the dawn of robotics, the human being has tried to de-
velop different devices with the desire of creating beings similar
to him which can help him in its daily work, carrying out
repetitive or dangerous tasks. An important aspect of the human
being, in contrast to the most of the living beings, is its ability
to manipulate any object with the hands. Scientists have tried
to provide to the robots this quality since the beginning of the
robotics by developing automatic hands. A review of robotic
grasping and contact can be found in Bicchi (2000). The control
of forces is an important aspect in these robots in which an
object must be manipulated without suffering damages. Thus, a
careful analysis of the contact forces between the manipulator
and the object must be done in these cases. A literature survey
of contact dynamics modeling is presented in Gilardi and Sharf
(2002). The use of deformable or flexible robotic fingers (in
tasks where there is contact with the environment) improves
the limited capabilities of robotic rigid fingers, as shown in a
survey of Shimoga (1996). Elasticity of flexible fingers allows
a greater adaptability between the manipulator and the object
and moreover it avoids damages on the contact surfaces. Many
works have been published on the subject of flexible manip-
ulators force control, in the past decades, by using different
control techniques, as e.g., optimal control (Matsuno and Kasai
(1998)), hybrid position/force control (Chiou and Shahinpoor
(1988)), frequency domain control techniques (Chapnik et al.
(1993)), neural networks (Tian et al. (2004)) or fuzzy logic (Shi
and Trabia (2005)). These works deal with the force control of
flexible arms and we are interested in a specific application: the
use of controlled flexible fingers for grasping tasks. There are
some researchers who have also used flexible fingers to grasp
objects. Fukuda et al. (1986) designed an adaptive force control
for a pair of gripper tips made of aluminium boards sensored
with strain gages and actuated by a DC motor. Gorce and
Fontaine (1996) carried out a methodology for designing flex-
ible grippers. Tanaka et al. (1996) dealt with the force control
of a flexible finger using a piezoelectric as actuator and force
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sensors distributed along a flexible finger. Linear control (PID)
and optimal control (H∞) are compared with each other. Choi
and Cho (2002) used shape memory alloy (SMA) to actuate
upon a flexible gripper implementing a H∞ controller but the
response force of the SMA actuator is relatively slow and its
applications are limited.

In this paper, a flexible finger gripper (controlling grasping
force) mounted at the tip of a rigid arm (controlling tip posi-
tion) is designed. In the scientific literature there are also some
applications in which the manipulator combines rigid and flex-
ible parts, as e.g., Lew and Book (1993) and Yoshikawa et al.
(1996) who design a hybrid position/force control of a com-
bined flexible-macro/rigid-micro manipulator system. They use
rigid arms to manipulate the object and this presents some
disadvantages: fragile objects can be damaged because of the
high rigidity and inertia of the rigid part; force sensors are
placed at the end-effector, which can be damaged at the colli-
sion instant since the contact surface is the sensor. We deal with
this limitations and solve the problem by using the rigid part to
position the manipulator, because rigid robots are extensively
used in the industry, and by designing a flexible finger gripper to
manipulate the object, which can be coupled in whatever rigid
manipulator. Furthermore, the flexible finger gripper presents
the advantages: on the one hand, the sensor is located at the
root of the flexible finger, thus the object and the sensor are not
damaged in the collision. On the other hand, the high flexibility
with an appropriate contact detection algorithm avoid damages
on both the object and the manipulator. We have designed a
feedback control law based on Generalized Proportional Inte-
gral Control (Becedas et al. (2007)), which is found to be robust
with respect to the effects of the unknown Coulomb friction in
the motor dynamics. This control law has been applied for both
rigid and flexible parts of the manipulator. The dynamic model
of the flexible finger is based on a lumped-mass model and the
force control law only uses feedback from the coupling torque
at the root of the flexible finger. Encoder of the flexible finger
motor and force sensors placed between the impact surfaces are
not required.

This paper is organized as follows: Section 2 describes the
dynamic models for both the flexible finger gripper and the
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rigid arm. Section 3 shows the control law used. In Section
4 experimental results validate the proposed method. Finally,
Section 5 describes the main conclusions of this work.

2. MODEL DESCRIPTION

We consider a flexible finger gripper mounted at the tip of a
rigid arm as shown in Fig. 1. This gripper should grasp objects
with a controlled torque. We shall now study the dynamic
model of the flexible finger gripper and the dynamic model of
the rigid arm separately.

2.1 Flexible finger gripper

The flexible finger is a lightweight flexible beam actuated by a
DC motor. First, we analyze the motor dynamics. After that, we
study the flexible finger dynamics and we then combine both.

Motor dynamics – We use a gear DC motor which is supplied
by a current servo-amplifier. This servo-amplifier controls the
input current to the motor by means of an internally PI current
controller and this electrical dynamics can be rejected because
this is faster than the mechanical dynamics of the motor. Thus,
the servo-amplifier can be considered as a constant relation ka

between the motor current and the voltage supplied to the servo-
amplifier by the computer. Fig 2 displays a block diagram of the
set-up (servo-amplifier + motor + gear) whose equations are:

Motor : kmi = J
¨̂θm +ν ˙̂θm + Γ̂Coul + Γ̂ (1)

Servo−ampli f ier : i = kau (2)

Gear : θ̂m = θmn; Γ̂ = Γ/n (3)

where km is the electromechanical constant of the motor, i is
the current supplied to the motor by the servo-amplifier, J is

the motor inertia, ν is the viscous friction of the motor, Γ̂Coul is
the unknown Coulomb friction torque, u is the voltage supplied
to the servo-amplifier generated by the computer, ka is the
amplifier gain and n is the reduction ratio of the gear 1 . By
combining (1), (2) and (3) we obtain the following equation:

ku = J
¨̂θm +ν ˙̂θm + Γ̂Coul +

Γ

n
(4)

where k = kmka. The Coulomb friction torque is a nonlinear
term in (4) which makes it difficult the study of the motor
dynamic model. We assume the following equations for the
Coulomb friction torque model:

Γ̂Coul =

{

Γ̂Csign( ˙̂θm), | ˙̂θm| > 0;

Γ̂Csign(u), | ˙̂θm| = 0 & |u| > 0.
(5)

where Γ̂C is an unknown constant value which is different for
each motor. This nonlinear friction is considered as an input

1 Note that the magnitudes seen from the motor side of the gear are written

with an upper hat and the magnitudes seen from the other side of the gear are

written with standard letters.

Fig. 1. Flexible finger gripper mounted at the tip of a rigid arm.

Fig. 2. Block diagram of the servo-amplifier, motor and gear.

perturbation to the system. As done in Feliu and Ramos (2005),
the coupling torque can be canceled in the motor by means of
a compensation term. In this case, the voltage supplied to the
servo-amplifier is of the form:

u = uc +
Γ

k n
(6)

where uc is the voltage applied before the compensation term
as is shown in Fig. 3. Taking this into account, the system (4) is
then given by:

A1uc = θ̈m +B1θ̇m +ξ0 (7)

where A1 = k
J n

, B1 = ν
J

and ξ0 = Γ̂Coul
J n

is the disturbance owing
to the Coulomb friction.

Flexible finger dynamics – We consider a lightweight single-
link flexible arm of one degree of freedom which is in contact
with a rigid body as shown in Fig. 4(a). This arm is actuated
by a DC motor in a horizontal plane and is not affected by the
gravity effect. We assume that all its mass is concentrated at the
tip and small deformations are also considered (see Feliu and
Ramos (2005)). The collision is modeled as a spring-dashpot
model, Erickson et al. (2003) (see Fig. 4(b)). By considering
the separation of the dynamics of the motor and the arm, by
means of a compensation of the coupling torque (6) and taking
into account the environment impedance, the dynamic model of
the flexible arm in contact with an object can be expressed as
follows:

ml2∆θ̈t + cel2∆θ̇t + kel2∆θt = Γ (8)

Γ = c(θm −θt) (9)

∆θt = θt −θe (10)

where m is the tip mass, l is the length of the arm, ke and ce

are the stiffness and damping characteristics of the environment

respectively, Γ is the coupling torque, c = 3EI
l

is the rotational
stiffness of the arm, θt is the angular position of the arm tip and
θe is the equilibrium angular position of the impact surface at
the moment of the collision. In this manner, ∆θt is the variation
of θt with respect to θe and thus, ∆θ̇t ≡ θ̇t and ∆θ̈t ≡ θ̈t are
the velocity and acceleration of θt respectively, since θe is a
constant value. Taking this into account, the system defined by
the expressions (8), (9) and (10) can be written as:

Mθ̈t +Ceθ̇t +Keθt −Keθe = Γ (11)

Fig. 3. Compensation of the coupling torque measured in the
hub.
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(a)

(b)

Fig. 4. (a) Scheme of the constrained flexible arm. (b) Collision
model.

Γ = c(θm −θt) (12)

where M = ml2, Ke = kel2 and Ce = cel2. Note that Keθe is a
constant term and this can be considered as a perturbation in the
system. By neglecting this term, we can obtain a perturbation
free system, in Laplace terms:

θt(s)(Ms2 +Ces+Ke) = Γ(s) (13)

Γ(s) = c(θm(s)−θt(s)) (14)

From above expression, the relation between the coupling
torque and the motor angle is:

Γ(s)

θm(s)
=

c(s2 + Ce
M

s+ Ke
M

)

s2 + Ce
M

s+ Ke+c
M

(15)

If we assume a collision with a rigid object, the constants Ke and
Ce are high values, owing to the large values of the environment
characteristics ke and ce. Therefore, the contact dynamics of the
flexible arm with a rigid object is obtained by calculating the
following limit of the expression in (15):

lim
Ke,Ce→∞

Γ(s)

θm(s)
= c (16)

Complete system – From (16) we obtain the angular velocity
and acceleration of the motor:

θ̇m =
Γ̇

c
; θ̈m =

Γ̈

c
and by substituting these expressions in (7), the new expression
for the dynamic model of the complete system is:

A1 cuc = Γ̈+B1 Γ̇+ξ1 (17)

where ξ1 = cξ0 is an input disturbance to the system.

2.2 Rigid arm

The rigid arm is also actuated by a DC motor and thus, we
can consider the rigid arm dynamics as that dynamics of a DC
motor in which the complete inertia of the system is the sum of
the motor inertia and the inertia of the rigid arm (considering
also the inertia of the flexible finger gripper). Taking this into
account, we can model the dynamics of the rigid arm as:

k2uc2
= J2

¨̂θm2
+ν2

˙̂θm2
+ Γ̂Coul2 (18)

where k2 is a motor constant, uc2
is the voltage supplied to

the servo-amplifier, J2 is the motor inertia plus the inertia of

the rigid arm, ν2 is the viscous friction of the motor, Γ̂Coul2 is

the unknown Coulomb friction torque and θ̂m2
is the angular

position of the motor. By dividing the two terms of (18) by

the reduction ratio of the motor gear n2 and making A2 = k2
J2 n2

,

B2 = ν2
J2

and ξ2 = Γ̂Coul2/(n2J2). We obtain:

A2uc2
= θ̈m2

+B2θ̇m2
+ξ2 (19)

where θ̈m2
=

¨̂θm2
n2

and θ̇m2
=

˙̂θm2
n2

.

3. FEEDBACK CONTROLLER DESIGN

3.1 Second Order Model

Consider the following generalized second order system:

ρ1x = ÿ+ρ2ẏ+ξ (20)

where ρ1 and ρ2 are the system gains, x is the input to the
system, y is the output from the system and ξ is a constant
perturbation. The controller to be designed will be robust with
respect the constant perturbation ξ . Therefore, the transfer
function of the system is written as:

G(s) =
Y (s)

X(s)
=

ρ1

s(s+ρ2)
(21)

Our objective is to regulate the output of the system y to track
a given smooth reference trajectory y∗(t). Another important
prevailing restriction throughout our treatment of the problem is
our desire not to measure, or compute on the basis of samplings,
bounded derivatives of the system output y.

3.2 Generalized Proportional Integral Controller

Consider the model given in (20). With some rearrangements,
the perturbed system can be written as follows,

ÿ = ρ1x−ρ2ẏ−ξ (22)

The unperturbed system is flat with flat output given by y. (See
Fliess et al. (1995) and Sira-Ramı́rez and Agrawal (2004)).
Clearly, if an open loop control input x∗(t) exists that ideally
(i.e., under no perturbation inputs) achieves the tracking of y
for suitable initial conditions, this must satisfy the second order
dynamics of the unperturbed system:

ÿ∗(t) = ρ1x∗(t)−ρ2ẏ∗(t) (23)

So the nominal control input is computed from the flatness
relation,

x∗(t) =
1

ρ1
ÿ∗(t)+

ρ2

ρ1
ẏ∗(t) (24)

Given that the system is affected by a constant input, the
controller for the system should thus include a double integral
compensation action which is capable of overcoming ramp
tracking errors. The ramp error is mainly due to the integral
angular velocity reconstructor, performed in the presence of
constant, or piece-wise constant, perturbations. The integral
reconstructor is hidden in the GPI control scheme. Subtracting
(23) from (22) an expression in terms of the error in the system
is obtained:

ëy = ρ1ex −ρ2ėy −ξ (25)

where ey = y− y∗(t) and ex = x− x∗(t).

We then propose the following feedback controller:
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ρ1ex = ρ2ėy+

{

−λ3ėy−λ2ey −λ1

∫ t

0
ey(σ)dσ

−λ0

∫ t

0

∫ σ1

0
ey(σ2)dσ2dσ1

}

(26)

By substituting the previous equation (26) in (25) we obtain
an expression for the closed loop system, which is evidently
represented by an integro-differential equation for the output
tracking error ey = y− y(t)∗ as an exponentially stable equilib-
rium point. The closed loop tracking error ey evolves governed
by,

ëy +λ3ėy +λ2ey +λ1

∫ t

0
ey(σ)dσ

+λ0

∫ t

0

∫ σ1

0
ey(σ2)dσ2dσ1 = 0 (27)

The characteristic polynomial associated with this equation is
easily shown to be

p(s) = s4 +λ3s3 +λ2s2 +λ1s+λ0 = 0 (28)

Thus, the design problem is reduced to an appropriate choice of
feedback controller gains so as to make the above polynomial
Hurwitz.

The signal ėy needed in the controller is, unfortunately, not
available. We resort to an integral reconstructor of such a signal
in order to avoid tracking error velocity measurements. We
propose an integral reconstructor for the angular velocity error
signal ėy (See Marquez et al. (2000)). We proceed by integrating
the expression (25) just once.

ėy(t)− ėy(0) = ρ1

∫ t

0
ex(σ)dσ −ρ2 [ey(t)− ey(0)]−ξ t (29)

The integral reconstructor based estimated error velocity [ėθm
]e

is proposed to be of the following form:

[ėy]e = ρ1

∫ t

0
ex(σ)dσ −ρ2ey(t) (30)

The proposed estimate of the system output first derivative
above clearly exhibits a structural error of the ramp type. The
integral reconstructor neglects the effects of, possibly nonzero,
initial conditions ėy(0) and ey(0) as well as the effects of a
constant perturbation represented by ξ and resulting in a ramp
signal error for the angular velocity estimate. This growing
error is classically compensated by an iterated tracking error
integral action. It is easy to verify that the use of the integral
reconstructor does not change the closed loop features of the
proposed controller.However, the design gains {λ3,λ2,λ1,λ0}
need to be more carefully computed when the integral recon-
structor is used. The integral reconstructor expression for ėy

(30) is substituted into the proposed controller (26) and, after
some rearrangements the compensator, based on the integral
reconstructor and GPI is of the form,

x = x∗(t)+

[

α2s2 +α1s+α0

s(s+α3)

]

(y∗(t)− y) (31)

with the gains α3 = λ3 −ρ2,α2 = (ρ2(ρ2 −λ3)+λ2)/ρ1,α1 =
λ1/ρ1,α0 = λ0/ρ1.

The stability condition on the closed loop expression (1 +
G(s)H(s)) leads to the following characteristic polynomial,

s4 +(α3 +ρ2)s
3 +(α3ρ2 +α2ρ1)s

2 +α1ρ1s+α0ρ1 = 0 (32)

This can equate the corresponding coefficients of the closed
loop characteristic polynomial (32) with those of a desired
fourth order Hurwitz polynomial,

p(s) = s4 +λ ∗
3 s3 +λ ∗

2 s2 +λ ∗
1 s+λ ∗

0 = 0 (33)

Bearing this in mind, we can choose to place all the closed
loop poles at a certain real value, using the following desired
polynomial expression,

(s+ p)4 = s4 +4ps3 +6p2s2 +4p3s+ p4 = 0 (34)

where the parameter p represents the common location of all
the closed loop poles, being this strictly positive. By identifying
the corresponding terms of the equations (34) and (32), the
parameters {λ3,λ2,λ1,λ0} may be uniquely obtained.

Torque Control – The system to control the torque is given by
the expression in (17). By comparing this equation with that of
(20) the following equivalences are obtained: the equivalences
between the two expressions are A1 · c = ρ1, B1 = ρ2, uc = x,
Γ = y and ξ1 = ξ . Thus, the torque controller (see (31)) is
designed as

uc = u∗c(t)+

[

α2s2 +α1s+α0

s(s+α3)

]

(Γ∗(t)−Γ) (35)

with the gains α3 = λ3 −B1, α2 = (B1(B1 − k3) + λ2)/(A1c),
α1 = λ1/(A1c), α0 = λ0/(A1c). On the other hand, The nominal
control input (see (24)) is computed as

u∗c(t) =
1

A1c
Γ̈∗(t)+

B1

A1c
Γ̇∗(t) (36)

The impact detection follows the next equation:

|Γ∗(t)−Γ| > µ (37)

where µ is a small value selected by the designer.

Position Control – The system to control the position is given
by the expression in (19). By comparing this equation with that
used in (20) we obtain that the equivalences between the two
expressions are A2 = ρ1, B2 = ρ2, uc2

= x, θm2
= y and ξ2 = ξ .

The position controller (see (31)) is designed as

uc2
= u∗c2

(t)+

[

α2s2 +α1s+α0

s(s+α3)

]

(θ ∗
m2

(t)−θm2
) (38)

with the gains α3 = λ3−B2,α2 = (B2(B2−λ3)+λ2)/A2,α1 =
λ1/A2,α0 = λ0/A2. The nominal control input (see (24)) is
computed as

u∗c2
(t) =

1

A2
θ̈ ∗

m2
(t)+

B2

A2
θ̇ ∗

m2
(t) (39)

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup Description

Flexible finger gripper setup – The flexible finger is a rect-
angular sheet made of spring steel with width 1 [cm], length
7 [cm] and thickness 0.55 [mm]. One end of the flexible finger is
clamped to a DC motor C-6065, which has a reduction ratio n =
100. The motor is fixed to the rigid arm. A servoamplifier sup-
plies the DC motor of the flexible finger. This saturates at volt-
ages −0.3 [V ] and 0.3 [V ]. The parameters used for the torque
control were estimated as done in Mamani et al. (2007). They
are: the product A1c = 17 [N2/(V ·kg)], B1 = 0.8 [N · s/(kg ·m)]
and ξ1 = 2.02 [N2/kg] (the voltage applied to the motor to
overcome the Coulomb’s friction is ξ1/A1c = 0.12 [V ]). The
sensor system is only integrated by a pair of strain gauges with
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Fig. 5. (a) Initial position of the robot. (b) Grasping the object.
(c) Moving the object. (d) Releasing the object.

gage factor 2.16 and resistance 120.2 [Ω]. Finally, the sample
time is 2 [ms].

Rigid arm setup – The used experimental platform is con-
stituted by a three legged metallic structure to support an
Harmonic Drive mini servo DC motor RH-8D-6006-E050AL-
SP(N) which has a reduction ratio characterized by n = 50.
The frame makes possible the stably and free rotation of the
motor in the horizontal plane around the vertical axis of the
platform. The parameter values A2 and B2 of the transfer func-
tion of the rigid arm DC motor in (21) were estimated with
the method explained in Mamani et al. (2007), and the val-
ues are: A2 = 13 [N/(V · kg ·m)], B2 = 2.8 [N · s/(kg ·m)] and
ξ2 = 7.41 [N/(kg ·m)].The rigid arm is made of aluminium and
supports the flexible finger gripper. The servoamplifier accepts
control inputs from the computer in the range of [−10,10] [V ].
The sensor system is integrated by an encoder embedded in the
motor which allows us to know the rigid arm position with a
precision of 7 · 10−5 [rad]. Fig.5 depicts photographs of the
robot in an experiment of grasping and moving an object in
real time.

4.2 Controllers Design

For the flexible finger gripper torque controller the poles are
placed at -30 in the real axis. The torque controller in (35)
is designed with the gains α3 = 119.20,α2 = 312.04,α1 =
6.35 · 103,α0 = 4.76 · 104. The nominal control input in (36)is
computed as u∗c(t) = 0.06Γ̈∗(t)+0.05Γ̇∗(t).

For the rigid arm position controller the poles are placed at a
reasonable location of the negative real axis:-90. The position
controller for the rigid arm in (38) is designed with the gains
α3 = 357.20,α2 = 3.66 · 103,α1 = 2.24 · 105,α0 = 5.05 · 106.
The nominal control input in (39) is computed as u∗c2

(t) =

0.08θ̈ ∗
m(t)+0.22θ̇ ∗

m(t).

4.3 Results

In the platform, the rigid arm position control and the flexible
finger gripper torque control are combined to be applied in
grasping and moving objects from one location to other.

Rigid arm position control – Fig. 6 depicts an scheme of
the closed loop position controller for the rigid arm. The rigid
arm is initially placed in a defined location which we take
as reference, it is 0 [rad]. After, the arm is positioned in the
location where the object to be moved is placed, it is 1.3 [rad],
by following a reference trajectory during 7 [s]. The trajectory
tracking is depicted in Fig.8(a). When the rigid arm arrives to
this position the block I.P (Initial Position), which is a digital
switch that indicates the initial position of the rigid robot (see
Fig. 6) is turned on at high level, this item will be used in
the torque control of the gripper. The rigid arm maintains the
position during 5 [s] which is the time in which the object is
grasped with the flexible finger gripper. In due course, at time
t = 12 [s] the rigid arm starts a new trajectory to be positioned
in the initial location seven seconds later and the block I.P is
turned off at low level. The experiment finishes at time t = 20 [s]
and the block F.P (Final Position), which is a digital switch
that indicates the final position of the rigid robot and which is
turned on at high level (see Fig.6). Note that the two trajectories,
reference θ ∗

m2
and rigid arm position θm2

, are superimposed.

Fig.8(b) depicts the trajectory tracking error θ ∗
m2

− θm2
which

is very small, 10−3 [rad] order. The control input voltage to the
rigid arm motor is represented in Fig.8(c). The control effort is
small and the voltage signal never exceeds the values 10 [V ] and
−10 [V ], therefore, the amplifier never saturates.

Flexible finger gripper torque control – Fig.7 depicts the
closed loop feedback torque control for the flexible finger
gripper. While the rigid arm is being positioned to the place
where the object is located, the flexible finger gripper is not
being controlled. Nevertheless a reference torque trajectory Γ∗

is generated since the start with an amplitud 0.01 [Nm] (see
Fig.8(d)) because the time at which the object is detected is
not known, thus when the object is detected, the controller
makes the flexible finger to track this trajectory to grasp the
object with a small force. Obviously, the torque is null until
the object is detected, and appears a small error until t =
7 [s] (see Fig.8(e), which illustrates the tracking error in the
torque control system). At this time t = 7 [s] the rigid arm
is positioned in 1.3 [rad] very near to the object. The block
I.P (see Fig.7) is turned on at high level, this causes that the
switch is connected at position 1 (see Fig.7) and this position is

Fig. 6. Closed loop feedback position control for the rigid arm.

Fig. 7. Closed loop torque control scheme.
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Fig. 8. (a) Trajectory tracking of the rigid dynamics position.
(b) Trajectory tracking error of the rigid dynamics position
θ ∗

m2
− θm2

. (c) Control input voltage to the rigid arm DC
motor. (d) Force trajectory tracking of the flexible finger
gripper. (e) Force trajectory tracking error of the flexible
finger gripper. (f) Control input voltage to the dc motor of
the flexible finger gripper.

maintained until input c2 of the switch changes from low level
to high level. A positive voltage of 0.14 [V ] (any other voltage
higher than ξ1/A1c = 0.12[V ] is also available) is then applied
to the flexible finger gripper motor. This voltage produces a
slow movement of the finger gripper, which brings near the
object carefully. At time t = 7.926 [s] the flexible finger gripper
impacts with the object and this impact is instantaneously
detected with the impact detector (see (37)) when |Γ∗(t) −
Γ| > 0.12, whose output is turned on at high level, this causes
that the switch connects at position 2 and maintain it until
the input c3 of the switch changes from low to high level.
The controller starts and calculates a voltage which saturates
the flexible finger gripper amplifier, which saturates at 0.3 V
during a very small period of time. Later, the gripper perfectly
tracks the reference trajectory of 0.01 [Nm]. At this instant,
a new reference trajectory is generated as a Bezier’s eight
order polynomial which begins at 0.01 [Nm] and finishes at
0.04 [Nm]. The time of this trajectory is 1 [s]. The gripper
maintains the torque determined by the reference trajectory
while the rigid arm is moving to the initial position (see Fig.8(a)
and Fig.8(d)). Note that the tracking error is null since the
controller reduces the impact error until time t = 19 [s] when
the rigid arm arrives to the final location and the block F.P (see
Fig.6 and Fig.7) changes the switch input c3 from low to high
level. The switch (see Fig.7) connects at position 3. From this
instant the controller is turned off and a voltage of −0.15 [V ]
(Note ξ1/A1c = −0.12[V ]) during 0.6 [s] is included in the
flexible finger gripper motor to place the finger gripper in the
initial position. The object is placed in the location desired. At
this moment, the robot is prepared to initiate another movement,
thus, the block F.P changes to low level and the switch opens
the circuit until the input c1 changes to high level again.

5. CONCLUSIONS

A GPI controller is proposed to control the torque of a flexible
finger gripper placed at the tip of a rigid arm whose position
is also controlled. This robot can grasp and move objects from
a place to other. In many articles of the literature the control
of robots has been approached from classical control schemes,
such as PD and PID. Generally speaking, those classical control
schemes yield good results; nevertheless, they do require the
estimation, or on line computation, of bounded derivatives of
the measured signals. These signals are customarily quite noisy
and the use of low pass filters become necessary to smooth them
causing the well known delays that affect the performance and
accuracy of the tracking maneuver. We have proven that this
king of controllers proposed perform suitably for both rigid and
flexible robots and the estimation and computation of bounded
derivatives of the measured signals is not really necessary. The
feedback control of this kind of robotic systems in which the
motion is driven by DC motors usually involve an estimation,
and subsequent compensation, of the nonlinear friction effects.
In many cases, this torque is difficult to estimate because of
some additional strong non linearities in the friction phenom-
ena, yielding additional parameters to be estimated. The GPI
feedback torque control scheme is quite robust with respect
the torque produced by the friction term and its estimation
is not really necessary. The position control only requires the
measure of an encoder and the torque control only requires
the measure of a pair of strain gages placed at the root of the
flexible estructure. This configuration eliminates the danger of
damaging the torque-force sensors because these are never in
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contact with the object to be impacted. Experimental results
provide accurate results.
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