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Abstract: Achieving robustness and a high fault sensitivity simultaneously is one of the
most important goals of diagnosis system design. The idea of the so-called passive approach,
which has been given relatively little attention in literature so far, is to include the effects of
measurement and model uncertainties in the residual. In the subsequent residual evaluation,
these uncertainties can then be accounted for such that false alarms can be precluded.
Following this passive approach, we present a new model-based diagnosis algorithm based on
state-set observation of nonlinear continuous-time systems. A set-valued observer following the
well-known predictor-corrector scheme is used to calculate a set of system states. These sets
are consistent with the underlying system model as well as with the discrete measurements
including both model and measurement uncertainties. In the prediction step, a validated ODE
solving method is applied for calculation of the consistent state set. To the authors knowledge,
such a nonlinear continuous-time set-valued observer has not yet been used for diagnosis tasks.
The performance of the method is demonstrated using measured data of fault-free and faulty
operation of an inverted pendulum as a benchmark system.

Keywords: Fault detection and diagnosis; Continuous-time system estimation; Nonlinear
systems; Nonlinear observer and filter design; Robust estimation; Uncertainty descriptions.

1. INTRODUCTION

The growing complexity of technical systems results in an
increasing demand for efficient fault diagnosis methods
that allow safe and reliable operation of the system.
Therefore, the aim of a diagnosis system is to detect
faults as early as possible while, at the same time, false
alarms, e.g. due to measurement noise, must be avoided to
minimize unnecessary system shutdowns. Hence, achieving
robustness and a high fault sensitivity simultaneously is
one of the most important goals of diagnosis system design.

Model-based diagnosis methods often perform better than
signal-based approaches. Therefore, they are the subject
of intensive research activities (see e.g. Chen and Patton
(1999); Patton et al. (2000); Planchon (2007)). In model-
based diagnosis, mathematical system models can be used
to produce analytical redundancy. With help of this re-
dundancy, residuals are created that show a characteristic
response to certain system faults. Thus, they allow not
only fault detection, but also separation of different faults,
commonly known as fault isolation. The diagnosis system
should perform this fault detection and isolation (FDI)
task despite measurement uncertainties or incomplete sys-
tem knowledge resulting in an imprecise system model.

Towards this goal, two different approaches can be distin-
guished. The active approach aims at generating residuals
which are sensitive to faults, while effects of disturbances
not representing faulty system behavior are suppressed
as far as possible. Unknown input oberservers or parity

equations are well-known and extensively studied methods
following the active approach. An excellent survey of such
active methods can be found in Patton et al. (2000).
However, the desired decoupling of the residuals from the
disturbances can usually be achieved only approximately
due to inevitable modeling errors.

The passive approach, on the other hand, aims at gener-
ating residuals such that the effects of measurement and
model uncertainties can be accounted for in the subse-
quent residual evaluation stage of the diagnosis algorithm.
Using appropriate system models, e.g. interval models,
and state-set observation techniques, uncertainties in both
measurements and system models can be considered. A
good overview of robustness issues in active and passive
approaches can be found in Puig et al. (2000).

Instead of checking whether the generated residual ex-
ceeds a given threshold, the real system behavior given
by measurements and the modeled system behavior are
checked for consistency. This approach is therefore called
consistency-based diagnosis and is particularly well suited
to work with set-valued observers.

A number of publications deal with the design of set-valued
observers for both, linear and nonlinear dynamic systems,
using a variety of different set descriptions such as poly-
topes, intervals or ellipsoids (see e.g. Jaulin et al. (2001);
Shamma and Tu (1997); Puig et al. (2002); Hanebeck
(2001); Planchon (2007)). However, in most cases discrete-
time dynamic systems are considered while continuous-
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time systems are rarely used. Since an exact discrete-time
model cannot be calculated for most nonlinear continuous-
time systems, such approaches can only lead to approxi-
mate state sets. The continuous-time approach allows the
calculation of state sets that are guaranteed to enclose the
true state sets. Furthermore, to the authors knowledge,
nonlinear continuous-time set-valued observers have not
yet been used for a consistency-based diagnosis algorithm
although the guaranteed inclusion property can be used
beneficially to obtain robust diagnosis results.

In this contribution, we describe a new diagnosis algorithm
for continuous-time nonlinear systems using state-set ob-
servers. By using system models whose parameters are
allowed to vary within a given interval as well as mea-
surements including unknown-but-bounded measurement
uncertainty, we yield a robust consistency-based diagnosis
algorithm for faults whose effects can be described by
changes in the system parameters.

The paper is organized as follows: After introducing some
notation in Section 2, we describe the nonlinear state-set
observer in Section 3. The diagnosis algorithm comprising
the state-set observer and the subsequent evaluation of
the calculated state sets is described in Section 4. In
Section 5, the performance of the method is demonstrated
using real measurement data from an inverted pendulum.
The contribution is completed with the conclusions in
Section 6.

2. NOTATION

In this section, we give a short overview of interval arith-
metic notation and the type of system models considered
in this contribution.

2.1 Interval Arithmetic

A real interval is defined as the set of real numbers

[a] =
[

a−, a+
]

=
{

x | a− ≤ x ≤ a+; a−, x, a+ ∈ R
}

. (1)

The set of all real intervals is denoted by IR. The basic
interval arithmetic operations are defined by

[a] ◦ [b] = {x ◦ y |x ∈ [a] , y ∈ [b]} (2)

with ◦ ∈ {+,−, ∗, /} and 0 /∈ [b] if ◦ = /. Functions of
intervals are defined as

[f([a])] = {y | min f(x) ≤ y ≤ max f(x), x ∈ [a]} . (3)

The midpoint and the width of [a] are denoted by â and
w{[a]}, respectively. The intersection of two intervals is
the usual set intersection

[a] ∩ [b] = {x |x ∈ [a] ∧ x ∈ [b]} . (4)

Vectors and matrices are written in bold face, the
n-dimensional identity matrix is denoted by IIIn. Interval
vectors [aaa] or matrices [AAA] are vectors or matrices built
of interval components. Operations like width, midpoint
and intersection of interval vectors or matrices are defined
componentwise.

Note that interval arithmetic operations can be imple-
mented such that roundoff errors are included in the re-
sult interval. The exact result is then guaranteed to be
contained in the calculated intervals. Further information
about interval arithmetic, its properties and implementa-
tion issues can e.g. be found in Jaulin et al. (2001).

2.2 System Models

We consider uncertain, continuous-time nonlinear systems
of order n in state space

M =

{

[ẋxx] = [fff([xxx] , [uuu])]

[yyy] = ([x1] , [x2] , . . . , [xq])
T (5)

with the interval state vector [xxx] ∈ IR
n, the interval

input vector [uuu] ∈ IR
p and the interval output vec-

tor [yyy] ∈ IR
q. For simplicity of the subsequent arguments,

we assume q ≤ n. The system function [fff(·)] is required to
be a sufficiently smooth nonlinear function. Furthermore,
we restrict our considerations to the case of systems with
linear output equations, a requirement which is fulfilled by
a wide class of technical systems. By using a regular linear
transformation, any system model with a linear output
equation can be converted into the form given by (5).

Since [uuu] and [yyy] are vectors of intervals rather than real
numbers, we can take unknown-but-bounded measure-
ment uncertainties ∆uuu and ∆yyy into account:

[uuu] = [uuumeas − ∆uuu,uuumeas + ∆uuu] (6)

[yyy] = [yyymeas − ∆yyy,yyymeas + ∆yyy] (7)

Therefore, the only assumption on the measurement uncer-
tainties is that they are bounded. No additional assump-
tions, e.g. about their stochastic properties, are necessary.
Furthermore, we assume

uuu(t) ∈ [uuu(tk)] ∀t | tk ≤ t < tk+1, (8)

i.e. [uuu(tk)] is a piecewise constant interval vector. This can
always be achieved by appropriate selection of ∆uuu.

By using interval-valued parameters in [fff(·)], model uncer-
tainties can be taken into account. This includes paramet-
ric uncertainties as well as non-modeled system dynamics
as long as their effects can be described by parameter
variations smaller than the considered parametric uncer-
tainties.

The model and measurement uncertainties result in a set of
possible states represented by the interval state vector [xxx].

3. STATE-SET OBSERVER

Traditional state observers aim at reconstructing the sys-
tem state based on measurement information using a feed-
back structure resulting in stable error dynamics. Using
concepts e.g. based on Kalman filtering, noise effects with
known stochastic properties can be taken into account.

By contrast, the state-set observer proposed in this con-
tribution is based on uncertain measurements where the
uncertainty is bounded (see (6) and (7)). Except these
bounds no further information about the type of uncer-
tainty is required.
By using interval system models, model uncertainties in
the form of interval-valued parameters can also be ac-
counted for. This can significantly reduce the modeling
overhead while still leading to satisfying diagnosis results.

The state-set observer follows the well-known predictor-
corrector scheme:

(1) During the prediction step, a predicted state
set Xp(tk+1) is calculated with a validated ODE
solving algorithm based on the system differential
equation and the previous consistent state set X (tk).
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(2) In the subsequent correction step, the predicted
state set is updated using the available measurements
of the output variables yyy(tk+1). Note that due to the
continuous-time approach, measurements need not
necessarily be obtained using a constant sample time.

Both the prediction and the correction step are explained
in detail below.

3.1 Prediction Step

For calculation of the predicted state set Xp(tk+1) from
the previous consistent state set X (tk), the validated
ODE solving algorithm developed in Nedialkov (1999) is
extended to the case of non-autonomous systems. The
algorithm is based on a Taylor series expansion of the
system function fff(·) from (5) with respect to time up to
an arbitrary order chosen by the user. This order is also
called the order of the observer. The coefficients of the
Taylor series are determined by automatic or algorithmic
differentiation (see e.g. Griewank (2000) for details). This
means that only the system function fff(·) itself and no
derivatives must be supplied by the user. All calculations
are done in interval arithmetic for proper handling of state
sets as well as roundoff errors and Taylor series remainders.

The algorithm was originally developed for guaranteed
simulation of autonomous systems. It is extended here to
account for piecewise constant interval input vectors as
described in Section 2. Since [uuu(tk)] is assumed constant
in the time interval covered by one prediction step, it
can be seen as a constant interval-valued parameter of
the system function. In this way, input signals that are
enclosed in piecewise constant intervals can be handled
using the original validated algorithm.

The algorithm consists of two parts:

(a) Calculation of an initial set X ([tk, tk+1]) enclosing all
continuous trajectories emanating from X (tk) for the
time interval [tk, tk+1] (see Fig. 1a).

(b) Calculation of a tight enclosure of the state set at
the desired time instant tk+1, which represents the
predicted state set Xp(tk+1) of the observer. For
reasons explained below, the predicted set comprises
two different set representations (see Fig. 1b).

Part (a) calculates the interval Taylor series coefficients by
automatic differentiation in interval arithmetic, including
an interval that encloses the Taylor series remainder. These
intervals are reused in part (b) to guarantee that the true
state set is enclosed. For the time interval [tk, tk+1], an
enclosure of the continuous state trajectories emanating
from each point of the initial state set X (tk) is calculated
as indicated in Fig. 1a. Using interval arithmetic, this can
be accomplished directly without having to consider any
of these trajectories specifically.
Mathematically speaking, this proves the existence and
uniqueness of the solution of the interval initial value
problem.

Part (b) uses the results from part (a) to calculate two
different enclosures of the true state set at tk+1:

(i) An interval vector [xxx] representing an axis-aligned
box.

(a) trajectory enclosure (b) predicted set enclosures

Fig. 1. Two-dimensional illustration of the two parts of the
prediction step

(ii) A rotated interval set x̂̂x̂x + AAA [rrr], where x̂̂x̂x is the mid-
point of [xxx], AAA is an orthogonal matrix and [rrr] is an
interval vector representing the rotated state set in
the coordinate system induced by AAA.

The main reason for the calculation of the second repre-
sentation is the reduction of the overestimation of the true
state set. This overestimation occurs since the true state
set must be wrapped in a larger set whose representation
is suitable for subsequent calculations. More details on the
implementation of the validated algorithm can be found in
Nedialkov (1999).

Since both sets [xxx] and x̂̂x̂x + AAA [rrr] are calculated such that
they guarantee to enclose the true state set, the desired
predicted state set is the intersection of these two sets:

Xp(tk+1) = [xxxp(tk+1)] ∩
(

x̂̂x̂xp(tk+1) + AAAp(tk+1) [rrrp(tk+1)]
)

(9)
Since interval arithmetic is used in all calculations,
Xp(tk+1) includes all roundoff errors as well as the Taylor
series remainder term. Furthermore, since the algorithm
allows to include interval-valued input variables and sys-
tem parameters, this approach does indeed guarantee that
the calculated state set encloses the true state set if the
assumptions on the system model and the uncertainties
are correct. This property makes the described approach
superior to other set-valued approaches that rely on ap-
proximate nonlinear discrete-time descriptions of the sys-
tem dynamics.

3.2 Correction Step

The state set Xp(tk+1) calculated in the prediction step
is consistent with the system model including model and
input uncertainties. In the correction step, the predicted
set can be tightened using the available uncertain mea-
surements [yyy(tk+1)]. As stated in Section 2, we restrict our
considerations to the case where the elements of the output
vector equal the first q state variables (5). This results in a
measured set Xm(tk+1), i.e. a set of states consistent with
the output measurements:

Xm(tk+1) =
([

yyyT(tk+1)
]

, [−∞,∞] , . . . , [−∞,∞]
)T

(10)

The consistent state set X (tk+1) for the next iteration of
the set-valued observer is the intersection of the predicted
and the measured state set.

To proceed to the next iterations’ prediction step, the
intersection set must be described in the same form
as Xp(tk+1) in (9). Such a representation can be cal-
culated by an interval Gauss-Seidel algorithm (see Neu-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10126



(a) result of the Gauss-Seidel
algorithm

(b) additional modification
of AAA(tk+1)

Fig. 2. State set correction by intersection of the predicted
and the measured set, x1 is measured

maier (1990)) resulting in tighter interval vectors [xxx(tk+1)]
and [rrr(tk+1)], but leaving the orthogonal Matrix AAA un-
changed, that is AAA(tk+1) = AAAp(tk+1) (see Fig. 2a). This
yields the following correction algorithm:

(1) Use the measurement information to calculate a
tighter interval vector [x̄xx(tk+1)]:

[x̄xx(tk+1)] = [xxxp(tk+1)] ∩ Xm(tk+1) (11)

(2) Use the interval Gauss-Seidel algorithm to calcu-
late [r̄rr(tk+1)] from

[x̄xx(tk+1)] = x̂xxp(tk+1) + AAA(tk+1) [r̄rr(tk+1)] . (12)

Note that AAA(tk+1) is an orthogonal non-interval ma-
trix and no preconditioning is required in this step.
Due to the properties of interval arithmetic, the
Gauss-Seidel algorithm in general gives much better
results than directly solving (12) for [r̄rr(tk+1)].

(3) Calculate [xxx(tk+1)] from

[xxx(tk+1)] = [x̄xx(tk+1)]∩
(

x̂xxp(tk+1)+AAA(tk+1) [r̄rr(tk+1)]
)

.
(13)

This step tightens the non-measurable elements
of [xxx(tk+1)].

(4) Calculate the new midpoint x̂xx(tk+1) of [xxx(tk+1)] and
account for the offset by

[rrr(tk+1)] = [r̄rr(tk+1)] +
[

AAA−1(tk+1)
] (

x̂xxp(tk+1) − x̂xx(tk+1)
)

. (14)

Note that
[

AAA−1(tk+1)
]

=
[

AAAT(tk+1)
]

is an interval
matrix enclosing the inverse of the orthogonal ma-
trix AAA(tk+1) to account for the roundoff error.

Due to the properties of interval arithmetic and AAA(tk+1)
being an orthogonal real-valued matrix, this procedure
results in tight bounds on [xxx(tk+1)] and [rrr(tk+1)] in one
single iteration of this algorithm.

As obvious from Fig. 2a, both representations of the con-
sistent state set extend beyond the true intersection set.
Although this is not a problem for many applications, even
better results can be achieved by appropriate modifica-
tion of AAA(tk+1). Since the next prediction step does not
require AAA(tk+1) to be an orthogonal matrix, we can use a

modified matrix ÃAA(tk+1) such that the representation in
the form given by (9) describes the smallest possible par-
allelepiped enclosing the true intersection set (see Fig. 2b).

To obtain such a suitable matrix Ã̃ÃA(tk+1), we need to
find n column vectors ã̃ãaT

i and n intervals [r̃i] such that the

parallelepiped described by Ã̃ÃA(tk+1) [r̃̃r̃r(tk+1)] has minimal
volume. The 2n column vectors of

(

IIIn, AAA−1(tk+1)
)

are

the normal vectors defining the supporting hyperplanes
of the regarded parallelepiped. Finding the desired col-
umn vectors of Ã̃ÃA(tk+1) thus merely amounts to select-
ing n of these 2n vectors and using them as row vectors
of Ã̃ÃA−1(tk+1) to calculate the new base matrix Ã̃ÃA(tk+1).
This task is carried out by simple enumeration of all
possible combinations and selecting the one combination
resulting in a minimal parallelepiped volume.
The required intervals [r̃̃r̃r(tk+1)] can then be calculated by

[r̃̃r̃r(tk+1)] =
([

Ã̃ÃA−1(tk+1)
]

AAA(tk+1)
)

[rrr(tk+1)] ∩
[

Ã̃ÃA−1(tk+1)
]

(

[xxx(tk+1)] − x̂xx(tk+1)
)

. (15)

While more sophisticated algorithms could be developed
for this task, even this relatively simple approach shows
the performance of the method.

Regarding the result of this correction algorithm, two cases
must be distinguished: An empty intersection set means
that the real system behavior is inconsistent with the
system model and the assumptions on the measurement
and model uncertainties. A non-empty intersection set is
guaranteed to contain all system states consistent with the
system model and all present and past measurements in-
cluding uncertainties. This property makes this set-valued
observer particularly well-suited for robust consistency-
based diagnosis algorithms.

4. CONSISTENCY-BASED DIAGNOSIS ALGORITHM

The basic idea of consistency-based diagnosis methods
is to check whether the behavior of the real system
is consistent with the behavior of mathematical system
models. These consistency tests are designed such that
faulty system behavior can be detected as well as different
faults can be isolated. In Planchon (2007), a consistency-
based diagnosis algorithm for linear discrete-time systems
was developed. This algorithm is extended here to the case
of nonlinear, continuous-time systems.

Similar to Planchon (2007), we consider a set of fault
candidates

F = {F0, F1, F2, . . . } (16)

with associated system models MFi
of the form (5).

Each fault candidate describes the behavior of the system
subject to a single abrupt or incipient fault. The fault-
free candidate is given by F0, the candidates F1, F2, . . .
represent different faults to be isolated with the help of
the diagnosis algorithm. Note that for fault detection only
the fault-free candidate F0 is required, while the task of
fault isolation requires a candidate for each characteristic
fault to be isolated.

For each system model MFi
, a set-valued observer is

designed which is initialized with an arbitrary state set
fulfilling the requirement that the true initial system state
is contained in this set. Starting with this initial state set,
the observer calculates a state set at a desired time instant
(usually a time instant where measurements are available).
This set is consistent with both, the system model and the
measurements including all uncertainties.

If the assumptions, i.e. the system models including uncer-
tainties, are correct, it directly follows from the observer
properties that the true system state is guaranteed to be
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contained in the calculated state set. On the other hand,
if the assumptions on the measurement uncertainties are
correct and the observer fails to find a consistent state set
(resulting in an empty state set), it can be concluded that
the respective system model cannot correctly describe the
true system behavior given by the available measurements.

Therefore, in each iteration, the result of the set-valued
observer for each fault candidate in F(tk) is checked for an
empty state set. The candidates Fi with empty state sets
are not included in the set of fault candidates F(tk+1) since
the corresponding system models MF i cannot describe
the true system behavior. Hence, each element in F(tk+1)
describes a fault that can have occurred. On the other
hand, we can guarantee that faults yielding an empty set
have not occurred, thus the algorithm does not produce
false alarms.

From this, we can conclude the following:

• If the fault-free system model MF0
results in an

empty state set, the behavior of the real system is
not consistent with the fault-free behavior meaning
that some fault must have occurred (fault detection).

• If there remains only one element Fi in the set of
fault candidates F , then it can be concluded that
the corresponding fault has occurred (fault isolation).
Note that it is possible that multiple elements Fi

remain in F if the corresponding models describe
faults that cannot be isolated (partial fault isolation).
It is also possible that F is an empty set if not all
possible faults are modeled and such an unmodeled
fault has occurred.

Since both, model and measurement uncertainties can
be accounted for, a robust fault detection and isolation
scheme can be implemented with the following algorithm:

(1) Initialize the set of fault candidates F(t0) with all
fault candidates Fi.

(2) Initialize each observer with an initial state set X (t0)
that contains the true initial system state.

(3) For each element in F(tk), calculate the subsequent
consistent state set X (tk+1).

(4) Build F(tk+1) using all system models with a non-
empty state set X (tk+1).

(5) If F0 6∈ F(tk+1):
Fault detected, for fault isolation restart with
step (1). F0 can be omitted.

If F(tk+1) = {Fi} 6= {F0}:
Fault isolated, stop.

Else:
Proceed to the next iteration with step (3).

The nonlinear state-set observer described in Section 3
can be used for combined state and parameter estimation.
While this can significantly reduce the number of fault
candidates required for fault isolation and allows to handle
incipient faults, the “empty-set criterion” may no longer
be sufficient for good diagnosis results in some cases. In
this case, the diagnosis algorithm must be extended by
additional FDI criteria, e.g. one can conclude that a fault
has occurred if the consistent interval for some system
parameter does no longer contain the known nominal
parameter value. However, such extensions to the diagnosis
algorithm require further research.

Fig. 3. The inverted pendulum

5. APPLICATION EXAMPLE

The performance of the proposed diagnosis algorithm is
demonstrated using real measurement data from an in-
verted pendulum. After a short description of the pen-
dulum and its system model, the diagnosis results are
presented.

5.1 The Inverted Pendulum

Fig. 3 shows a sketch of the inverted pendulum used to
obtain the measurement data. It consists of a DC-motor-
driven cart mounted on a rail with an attached rod able
to perform full rotations. Such a pendulum is a widely-
used benchmark system in the control systems world.
The strong nonlinearity as well as the unstable upper
equilibrium point also make it an excellent benchmark
for the proposed diagnosis algorithm and the set-valued
observer.

Using the state vector xxx =
(

s ϑ ṡ ϑ̇
)T

, the pendulum
motion can be described by the system model

{

ẋxx =
(

ṡ ϑ̇ s̈ ϑ̈
)T

yyy =
(

s ϑ
)T (17)

with

s̈ =
mr sinϑ

(

g cos ϑ − lϑ̇2
)

− K2

R
ṡ + K

R
u

mc + mr sin2 ϑ
and

ϑ̈ =

(

K
Rl

u − mrϑ̇
2 sinϑ − K2

Rl
ṡ
)

cos ϑ + g(mc+mr)
l

sinϑ

mc + mr sin2 ϑ
.

In this model, the rod is described by a point mass mr at
distance l from the center of rotation. The parameters mc,
K and R denote the cart mass, the motor constant and
the armature resistance of the DC motor, respectively. The
input variable is the armature voltage u in the range ±5 V.

The system is operated using a discrete-time controller
with a constant sample time of T = 0.01 s. Thus, the re-
quirement of piecewise constant input variables is fulfilled.

5.2 Diagnosis Results

To demonstrate the performance of the proposed diagnosis
algorithm, three different operation modes are regarded:

F0: fault-free (nominal) operation
F1: additional mass attached to the rod
F2: additional mass attached to the cart
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Fig. 4. Diagnosis results for the inverted pendulum

The parameters of the fault-free system model MF0
are

[mc] = [1.158, 1.160] kg [K] = [5.35, 5.45] Nm/A

[mr] = [0.343, 0.345] kg [R] = [2.6, 2.8] Ω

[l] = [0.423, 0.425] m [g] = [9.80, 9.82] m/s2.

The mass attached to the rod results in a differ-
ent equivalent length [l] = [0.505, 0.510] m and rod mass
[mr] = [0.420, 0.425] kg for the model MF1

. The mass at-
tached to the cart yields a cart mass of [mc] = [2.0, 2.05] kg
for the model MF2

. All other parameters of MF1
and

MF2
are equal to those of MF0

.

The input uncertainty includes unmodeled friction effects
and is assumed to be ∆u = 0.3 V. The output measure-

ment uncertainties are ∆yyy = (0.001 m, 0.002 rad)
T
.

For the three system models MF0
, MF1

and MF2
, a set-

valued observer of order 5 as described in Section 3 is
implemented and initialized with the initial state set

X (t0) = [aaa] ∩ (000 + III4 [aaa]) (18)

with [aaa] = ([−0.7, 0.7] , [−2π, 2π] , [−1, 1] , [−3π, 3π])
T
.

Note that an initial measurement could be used to obtain
tighter initial intervals for the measurable state variables.

Fig. 4 shows the results of the diagnosis algorithm for
the fault-free case F0 (left) and the fault case F1 (right).
Despite the relatively large input uncertainty and the large
inital state set, the set-valued observer converges rapidly
and yields very tight bounds on the non-measurable state
variables.

In the fault-free case, only F0 remains in F while both fault
models MF1

and MF2
yield empty sets. Therefore, after

approximately 1.6 s, the (correct) conclusion is reached
that no fault has occurred.
In the faulty case the fault-free system model yields
an empty set after approximately 1.9 s, which gives the
conclusion that a fault must have occurred. After re-
initialization for fault isolation only F1 remains in F , hence
the conclusion is reached that fault F1 has occurred.

In general, the amount of time needed for fault detection
and isolation after the occurrence of a fault is related to the
fault strength as well as the amount of uncertainty in the
system models. Despite the large input uncertainty, here it
is possible to detect and isolate a fault in about 2 seconds.

6. CONCLUSION

The proposed diagnosis algorithm allows to detect and
isolate faults of continuous-time nonlinear systems with
discrete measurements in the presence of uncertainties,
which are inevitable in models of real technical systems.
It is therefore a powerful tool for model-based diagnosis
yielding robust results with limited modeling effort. If the
assumptions on the system models and the uncertainties
are correct, no false alarms can occur. The performance of
the approach was shown using an inverted pendulum.
Further research directions include convergence properties
of the proposed set-valued observer as well as combined
state and parameter estimation.
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