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Abstract: A systematic design method for observer based linear control of LTI systems with
input constraints is introduced. The method allows to optimize the observer parameters with
respect to the system’s performance while at the same time the compliance with the constraints
is guaranteed. To improve the results we further propose a method to design both the controller
and the observer simultaneously. Since the presented methods are based on LMI techniques
they are computationally very efficient. The proposed methods are demonstrated by means of
an example.
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1. INTRODUCTION

A lot of research has been carried out on the control of
linear systems with input constraints, as input constraints
are probably the most important type of nonlinearity
encountered in real world systems. Most research on this
topic is focused on one of the following strategies:

• Model Predictive Control, where the input saturation
is taken into account as a constraint of the optimiza-
tion problem at each iteration, see e.g. Camacho and
Bordons (2004),

• Anti-Windup, where an additional nonlinear con-
troller is added to counteract the negative conse-
quences of saturation, see e.g. Kothare et al. (1994)
and Hippe (2006),

• the design of an appropriate state feedback controller
such that stability is guaranteed even under satura-
tion or such that saturation does not occur at all, as
in Hu and Lin (2001), Hu et al. (2002), Saberi et al.
(2000), and Adamy and Flemming (2004).

In this paper we deal with the design of observers for
controllers of the latter type. The existing approaches for
the design of observers for this kind of controls (Hu and
Lin, 2001; Saberi et al., 2000; Shi et al., 2002) guarantee
asymptotic stability. The usual strategy to obtain a good
performance is to choose a very high observer gain. Using
an observer with high gain results in a very fast decay of
the estimation error, such that the system behaves like
under state feedback after a short time span and thus
reaches approximately the same performance as under
state feedback.

Unfortunately, a system with a very fast observer is sensi-
tive to noisy measurements and modeling inaccuracies. If
on the other hand the observer gain is chosen lower to avoid
these issues, there is no guarantee that the performance
will be acceptable. Additionally, the existing methods offer
no possibility to guarantee that the input constraint is not
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violated by the control law, i.e. that saturation does not
occur. This may be a design specification, e.g. if using the
maximum input during a longer time span might damage
the actuator.

In this paper we develop a constructive method to design
a classical Luenberger observer for the stabilization of
systems with input constraints such that the performance
is optimized and the constraints are not violated. The
method is applicable to both stable and unstable systems
of any order. Our method offers an effective design proce-
dure and leads to a simple observer based control structure
with reasonable observer gain.

2. PROBLEM STATEMENT

Consider the following linear time invariant system with a
linear feedback control law:

Σ :































ẋ = Ax + Bu, (1a)

y = Cx, (1b)

yM = CMx, (1c)

u = −Kx, (1d)

|ui| ≤ umax,i, i = 1, . . . p, (1e)

x(0) ∈ X0, (1f)

with the state vector x ∈ R
n, the plant input u ∈ R

p,
and the output y ∈ R

q. By yM we denote the vector of
measured outputs. The absolute value |ui| of each input is
constrained by umax,i.

The set of possible initial values, denoted by X0, is assumed
to be a convex subset of the null controllable region C. This
region contains all states for which there exists a control
law such that the trajectory x(t) of Σ reaches the origin
in finite time (Hu and Lin, 2001). In case of stable plant
dynamics C is the complete state space R

n.

To allow the stabilization of Σ using measurement feed-
back, the system is extended by a Luenberger observer to
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Ω :







ẋ = Ax + Bu, (2a)
˙̃x = Ax̃ + Bu + LCM (x − x̃), (2b)

u = −Kx̃, (2c)

where x is the state of the plant, x̃ the state of the
observer, and L the observer feedback matrix.

For ease of exposition a full observer is chosen, but the
results can readily be extended to reduced observers. The
composite system Ω can be written in the coordinates x

and e as the familiar equations

ẋ = (A − BK)x + BKe, (3a)

ė = (A − LCM )e, (3b)

where e = x − x̃ is the observation error.

We address the following stabilization problem:

Problem 1. Find, if possible, an observer based linear
control law (2b), (2c), i.e. suitable matrices K and L, such
that the system Ω is stabilized for all initial values x(0)

and x̃(0) in given convex sets X0 and X̃0 with guaranteed
performance while respecting the input constraint |ui| ≤
umax,i.

Remark 1. The input constraint is considered to be a hard
constraint which must not be exceeded by the control law.
It should be noted, however, that the approach of this
paper can easily be extended in order to consider linear
control laws that are allowed to saturate by incorporating
invariance analysis methods from Hu and Lin (2001) or
Alamo et al. (2005). For reasons of space and simpler
presentation we omit these possible extensions.

Our approach to solve Problem 1 is as follows: first, we
recall the design of a stabilizing linear state feedback
matrix K for Σ in Section 3. In Section 4 we deal with the
region where the control action is linear. Then, in Section
5, we propose a method to design an observer L such that
Problem 1 is solved by K and L. Finally, a method for the
simultaneous design of controller and observer is proposed
in Section 6. It is based on the previous methods and leads
to improved results. In the last section we demonstrate the
effectiveness of the proposed method on the basis of an
example.

3. CONTROLLER DESIGN – STATE FEEDBACK

First we consider the design of a controller K for the linear
feedback law (1d) of system Σ, i. e. using state feedback
without an observer. The controller should exhibit good
performance – which, of course, implies stability – for all
initial values x0 in a given set X0 without any element of
the input u saturating.

This design problem can be cast as a convex optimization
problem with constraints in the form of linear matrix
inequalities (LMIs). We will briefly introduce the optimiza-
tion problem and the LMIs related to the requirements
imposed on the controller. For a detailed derivation of the
LMIs we refer to Boyd et al. (1994).

We use the following notation in the context of LMIs:
By X≻(�)0 we mean that the matrix X is symmetric
and positive (semi)definite, analogously by X≺(�)0 we
mean that X is symmetric and negative (semi)definite. The
convex hull of a set A is denoted by convA.

The performance requirement can be formulated as: Find
a set G ⊂ R

n and a minimum value for γ such that G is
positively invariant, X0 is a subset of G, and γ is an upper
bound on the output energy

J =

∞
∫

0

y
T
y dt (4)

over G, i.e.
J ≤ γ ∀x(0) ∈ G ⊇ X0. (5)

By defining the set G using a Lyapunov function,

G = {xTRx ≤ 1}, R ≻ 0, (6)

Eq. (5) is guaranteed to be fulfilled if the matrix inequality
[

QAT + AQ − BW − WTBT QCT

CQ −γIq

]

≺ 0 (7)

is met, where Q = R−1 and the substitution

W = KR−1 (8)

has been used in order to obtain a linear matrix inequality.

If X0 is a convex polytope given by

X0 = conv{x0,1, . . . ,x0,k}, (9)

we can express the requirement X0 ⊆ G as the set of LMIs
[

Q x0,i

x
T

0,i 1

]

� 0, i = 1, . . . , k. (10)

Finally, we demand that |Kx| ≤ umax. This can be cast
as the matrix inequalities

[

Q WT

W X

]

� 0, (11a)

Xii < u2

max,i, (11b)

where X is a slack matrix variable (Boyd et al., 1994).

The final optimization problem is then

min γ (12a)

such that

Q ≻ 0, (12b)

(7), (10), (11).

From the solution of this optimization problem the con-
troller can then be found as K = WQ−1.

4. LINEAR REGION

Before we turn to the design of the observer, i.e. the
problem how to choose the observer matrix L, we first
deal with the problem of estimating the linear region for a
given L. The linear region L is the region where the input
remains unsaturated at all times t ≥ t0:

L =

{[

x(t0)
e(t0)

]
∣

∣

∣

∣

|K(x(t) − e(t))|i ≤ umax,i ∀t ≥ t0

}

. (13)

The representation of the estimate set, Le, is particularly
simple if we define it using a Lyapunov function v(x, e) as

Le =

{

[

x

e

]
∣

∣

∣

∣

v(x, e) =

[

x

e

]T

P

[

x

e

]

≤ 1

}

, (14)

where P ≻ 0, P ∈ R
2n×2n.

To be a correct estimate of L, Le must be positively
invariant and the input must be unsaturated over Le. First
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we show how these conditions can be cast as LMIs. In a
second step, we deal with the optimization of P such that
the volume of the region Le is maximized.

For Le to be an invariant set with respect to the system
Ω, the LMIs

P ≻ 0, ÂTP + PÂ ≺ 0, (15)

with

Â =

[

A− BK BK
0 A − LCM

]

, (16)

have to be met by the matrix variable P.

The input must meet the constraints (1e) for all states
contained in the set Le. The input can be written as a
function of x and e as

u = −Kx̃ = − [K −K]

[

x

e

]

, (17)

resulting – analogously to (11) – in the LMIs




P
KT

−KT

K −K X



 � 0, Xii < u2

max,i, (18)

where i = 1, . . . , p. These LMIs guarantee that control law
(2c) never saturates over Le.

After deriving the LMIs for the constraints, we can now
continue by maximizing the volume of Le. The volume of
Le is related to P as

vol(Le) ∼
1

detP
= detP−1. (19)

The maximization of the volume of Le can be cast as a
convex optimization problem in Q = P−1. By the fact
that the function

2n

√

detQ (20)

is convex in Q and that 2n

√· is strictly increasing, the
maximization of (19) is equivalent to the maximization
of (20) (Boyd and Vandenberghe, 2004).

Transforming the LMIs (15) and (18) to LMIs in terms of
Q together with the convex objective function (20) leads
to the optimization problem

max 2n

√

detQ (21a)

such that

Q ≻ 0, (21b)

QÂT + ÂQ ≺ 0, (21c)








Q Q

[

KT

−KT

]

[

KT

−KT

]

Q X









� 0, (21d)

Xii ≤ u2

max,i. (21e)

However, maximizing the volume of Le may often lead
to the phenomenon that Le becomes large only in certain
dimensions. This means that – despite of Le having a large
volume – in some coordinates only small initial states are
guaranteed to be admissible, which is of course not desir-
able. By adding a shape constraint to the optimization, we
can reach a better result. A set Z ⊂ R

2n with a certain
shape is chosen first. In a second step the size of this region
is scaled by a factor α. The optimization problem is then
to find the maximum value of α for which a suitable matrix

Q can be found such that all constraints are met and αZ
is a subset of Le.

If Z is chosen as a convex polytope

Z = conv{z1, . . . ,zk}, zi ∈ R
2n, (22)

the condition αZ ⊆ Le can be written as the set of LMIs
[

Q αzi

αz
T

i 1

]

� 0, i = 1, . . . , k. (23)

Retaining the other constraints of optimization problem
(21), we arrive at the following optimization problem

maxα (24a)

such that

Q ≻ 0, (24b)

QÂT + ÂQ ≺ 0, (24c)




Q Q

[

KT

−KT

]

[K −K]Q X



 � 0, (24d)

Xii < u2

max,i, (24e)
[

Q αzi

αz
T

i 1

]

� 0. (24f)

If the above optimization problem (24) yields

X0 × X̃0 ⊆ L̃e =

{[

x

x̃

] ∣

∣

∣

∣

[

x

x − x̃

]

∈ Le

}

, (25)

Problem 1 is solved by the given observer matrix L.
However, this case rarely occurs unless L is chosen with
care. We therefore introduce a design method for the
observer matrix L in the next section.

5. OBSERVER DESIGN

We now consider the design of an observer L which solves
Problem 1 for a given controller K. For reasons that will
become clear below, we express the LMIs in terms of P,
not of its inverse Q.

5.1 Stability and performance

The invariance condition (15) now depends on the vari-
ables P and L. By partitioning P in four blocks each of
size n × n as

P =

[

P11 P12

PT
12 P22

]

, (26)

we can separate the bilinear terms of Eq. (15) and obtain
[

A − BK BK
0 A

]T

P + P

[

A− BK BK
0 A

]

−
[

0 P12LCM

CT

MLTPT

12
CT

MLTP22 + P22LCM

]

≺ 0. (27)

Expression (27) contains terms that are products of matrix
variables. It is not an LMI but a bilinear matrix inequality
(BMI). In contrast to LMI problems, BMI problems are
generally nonconvex and therefore are much harder to
solve. This is mainly due to the fact that nonconvex
optimization problems can possess local optima.

Unfortunately, Eq. (27) cannot be written as an LMI. Even
using substitutions as we did in Eq. (8) in the control
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design case, say V1 = P12L and V2 = P22L, fails, since
then an additional rank constraint on [V1 V2] is needed to
guarantee a solution for L. Such a rank constraint renders
the optimization problem nonconvex (Orsi et al., 2006).

A restriction on the variable space enables us to obtain an
LMI formulation of the problem nontheless. By setting

P12 = 0 and V = P22L (28)

we get
[

(A − BK)TP11 + P11(A − BK)
KTBTP11

. . .

. . .
P11BK

ATP22 + P22A− VCM − CT

MVT

]

≺ 0, (29)

which is an LMI in P and V. At this point we can see that
the above substitution would be impossible if the equations
were written in terms of Q.

Of course, restricting P by fixing P12 = 0 will increase
the conservativeness of the solution, but this is the price
to pay for an LMI formulation of the problem.

5.2 Initial region

Another design objective is the inclusion of the set Z0 of
possible initial conditions

z0=̂

[

x0

e0

]

(30)

in the Lyapunov region Le. In case of a given convex
polytopic set Z0, we obtain a set of LMIs for this constraint
analogously to Eq. (23):

[

Q z0,i

z
T

0,i 1

]

� 0 ⇔
[

P Pz0,i

z
T

0,iP 1

]

� 0, (31)

where P = Q−1.

Usually, however, only the set X0 is given a-priori. Because
the initial state of the observer, x̃0, is a virtual state, it
can be chosen freely. Of course, it must not depend on x0,
since the latter is unknown. This means that the initial set
in the coordinates x and x̃ must be of the form X0 × X̃0.

If we assume that X0 is a convex polytope that is symmet-
ric about the origin, two options appear suggestive:

(1) We choose X̃0 = X0. In this configuration, x0 and x̃0

can take mutually independent values in the set X0.
Then the result for Z0 in the coordinates x and e is
a parallelepiped:

Z0 =

{[

x

e

]∣

∣

∣

∣

x ∈ X0, x − e ∈ X0

}

. (32)

(2) We can choose x̃0 such that the worst case initial
estimation error e0 is minimized:

x̃0 = argmin max
i

‖x̃0 − x0,i‖, (33)

where x0,i are the vertices of X0.
Since we assumed X0 to be symmetric with respect

to the origin 1 , problem (33) is easily solved to x̃0 =
0, resulting in the initial set X0 × {0}. Eq. (32) then
simplifies to

Z0 =

{[

x

e

]
∣

∣

∣

∣

x = e ∈ X0

}

. (34)

1 If this is not the case, problem (33) can be written as a set of LMIs
and is easily solved numerically.

Remark 2. The set Z0 is a constraining factor in the op-
timization. A larger set will generally lead to a slower ob-
server, and thus to poorer performance, or even render the
optimization problem infeasible. It is therefore advisable to
choose Z0 as small as the application allows.

5.3 Input constraint

We can simply use the LMIs (18) to consider the input
constraint.

5.4 Optimization problem

LMI (29) can be extended by an upper limit γ on the
output energy as in (7) to





(A − BK)TP11 + P11(A − BK)
KTBTP11

C

. . .

. . .
P11BK CT

ATP22 + P22A − VCM − CT

MVT 0
0 −γIq



 ≺ 0.

(35)

Combining the above LMIs, we arrive at the optimization
problem

min γ (36a)

such that

P ≻ 0, (36b)

(18), (35), (31),

in the matrix variables P and V. Reversing the substitu-
tion (28) yields the observer matrix L = P−1

22
V.

In some cases, the above procedure leads to an admissible
observer. However, problem (36) is infeasible in many
cases. Apart from the restriction P12 = 0 this is due
to the fact that the controller has been designed first
without taking into account that an observer will be added
afterwards. This limits the set of feasible L and P. If a
solution exists, the resulting observer based control may
perform poorly.

However, we can extend the above results to a method
for the simultaneous design of both the controller and
the observer. This extended method solves the problems
mentioned above, as is shown in the next section.

6. SIMULTANEOUS CONTROLLER AND OBSERVER
DESIGN

6.1 Design method A: Input Constraint Adaptation

The observer we designed in Section 5 must be compatible
with the original controller K. The controller K has been
designed before as in Section 3 under the assumption of
state feedback. We can expect these parameters to be close
to the boundary of the feasible set, which limits the set
of feasible observer matrices L and Lyapunov matrices
P. These limitations – together with the restrictions on
P12 – might result in bad performance or even render the
observer design optimization problem infeasible.

If we choose a weaker controller we can expect that the
set of feasible observer parameters enlarges and that the
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parameters found will lead to a better overall performance
of the system.

In order to design a weaker controller the input constraint
is tightened. We adapt the input constraint to

|ui| ≤ ξumax,i, (37)

with ξ ∈ (0, 1). If feasible, optimization problem (12) will
then yield a weaker controller Kξ. We can then design an
observer Lξ using procedure (36).

The result, Kξ and Lξ, of course depends on ξ. So does the
result for γ of (36). The function γ(ξ) can be evaluated as
follows:

(1) Design the controller as in (12) with LMI (11b) being
replaced by the LMI

Xii < ξ2u2

max,i. (38)

(2) Design the observer using the above controller as in
(36). The result for γ is γ(ξ). The function γ(ξ) is
defined to be ∞ if one of the design steps is infeasible.

Figure 1 shows γ(ξ) for the example in Section 7 below.
The curve shown is typical. For small values of ξ, the con-
troller becomes very slow, resulting in a bad performance.
For large values of ξ, the observer becomes slow, also re-
sulting in a bad performance. Somewhere in between there
exists an optimal value. A local numerical optimization
method, e.g. a hill climbing algorithm, can be used to find
that optimal value for ξ. If the system is unstable, it may
happen that no ξ exists for which γ is finite. This can
have two reasons: Either there exists an optimal solution,
but due to the conservativeness of the approach it cannot
be found, or the problem simply does not have a feasible
solution at all.

Remark 2. For systems with multiple inputs one could
define different factors ξi for each input. In this case it
is much harder to arrive to an intuitive assessment of
the landscape of the objective function γ(ξ1, . . . , ξp), as
it depends on p variables. As a result the optimization will
be computationally heavier.

6.2 Design Method B: BMI Solver

Alternatively to the method of the preceding section,
the problem can be left in its original BMI formulation
(15) and be solved with a dedicated BMI solver. The
use of a BMI solver has two major advantages: we can
simultaneously optimize K, L and P and the restriction
P12 = 0 can be dropped. However, there are also some
serious drawbacks: The solver can only optimize locally
and convergence is not guaranteed. Additionally, the solver
is not always able to find a feasible solution by itself.
Design method A can therefore be very helpful in order
to find a feasible starting point for the BMI optimization.

6.3 Additional pole constraint

For some examples, including the double integrator of
Section 7 below, both optimization methods A and B tend
to shift the real part of one or several eigenvalues of the
estimation error matrix A − LCM to very high negative
values. This is not desirable, as it renders the observer
prone to noise. To prevent this phenomenon, we add the
constraint

Re(pi) > −ρ, ρ > 0, (39)

0.1 0.2 0.3 0.4 0.5 0.6
0

1000

2000

3000

4000

γ

ξ

Fig. 1. γ(ξ) for the double integrator

on the poles pi of that matrix to the optimization problem.
This constraint can be written as the LMI

2ρP22 + ATP22 + P22A − VCM − CT

MVT ≻ 0, (40)

as shown in Chilali and Gahinet (1996). The value for ρ
should be chosen depending on the plant. According to
our experience, the optimal value for γ remains almost
unchanged as long as ρ is large enough.

7. EXAMPLE

We will now demonstrate the above methods in the follow-
ing example. For the computations we used the interface
YALMIP (Löfberg, 2004) with the solver SeDuMi (Sturm,
1999) for the LMI optimizations. For the BMI optimization
of method B we used the solver PENBMI (Kočvara and
Stingl, 2006).

Consider the double integrator system

A =

[

0 1
0 0

]

, B =

[

0
1

]

, C = [1 0] , (41)

with the input constraint |u| ≤ umax = 1 and the set
of possible initial conditions X0 = {x ∈ R

2| |xi| ≤ 2}.
The observer is assumed to be initialized at x̃0 = 0, i. e.
X̃0 = {0}.
Using the design method of Section 3, we obtain the
controller

K = [0.1745 0.3135] . (42)

If we design the observer heuristically by placing the poles
ten times faster than those of the closed loop system, the
observer matrix is given by

L =

[

3.135
17.45

]

. (43)

We use Z = X0 × X̃0 as the shape constraint. Method
(24) of Section 4 to compute an estimate of the linear
region then yields an optimal value αmax = 0.355. Since
Z = X0×X̃0, a value αmax ≥ 1 is needed to fulfill Eq. (25).
Thus, Problem 1 has not been solved by this heuristic
design.

The method of Section 5 turns out to be infeasible for this
example.

The input constraint adaptation design method A of
Section 6.1 yields ξ = 0.4577 and the parameters
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K = [0.048346 0.17176] , (44a)

L =

[

50.301
12.222

]

, (44b)

P = 10−2







0.6854 1.476 0 0
1.476 11.75 0 0

0 0 3.638 −1.880
0 0 −1.880 8.124






, (44c)

for ρ = 100.

Using the BMI design method B of Section 6.2 with the
parameters (44) as initialization values we obtain

K = [0.10149 0.091633] , (45a)

L =

[

100.04
5.6071

]

, (45b)

P = 10−2







1.505 1.253 0.03249 −1.056
1.253 13.67 −0.06157 1.476

0.03249 −0.06157 3.803 −0.1356
−1.056 1.476 −0.1356 3






.

(45c)

A simulation with the parameters of each method for

x0 = [2 2]
T
, an initial condition on the corner of X0, is

shown in Fig. 2. A cut of the corresponding set Le in the
x-plane is displayed in Fig. 3. The upper bound γ on the
output energy J and the effective output energy for x0 are
listed in Table 1.
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J. Löfberg. YALMIP : A toolbox for modeling and
optimization in MATLAB. In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004. URL http:
//control.ee.ethz.ch/~joloef/yalmip.php.

0 20 40 60 80 100
−5

0

5

10

 

 

0 20 40 60 80 100
−1

−0.5

0

0.5

1

 

 

BMI

Input Constraint Adapt.

State Feedback

u
y

t

Fig. 2. Simulation results of the different observer design
methods and the state feedback without observer.

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

Heuristic pole placement (Eq. (24))

BMI (Sec. 6.2)

Input Constraint Adaptation (Sec. 6.1)

X0

x1

x
2

Fig. 3. Cut of Le, the positive invariant estimate of the
linear region L, in the x-plane.

Method γ J(x0)

State feedback (Eq. (12)) 69.44 69.44
Observer design (Eq. (36)) ∞ (infeasible) -
Input constraint
adaptation (Section 6.1) 795.86 575.84
BMI Solver (Section 6.2) 409.95 338.62

Table 1. Performance comparison, x0 = [2 2]
T
.

R. Orsi, U. Helmke, and J. B. Moore. A Newton-like
method for solving rank constrained linear matrix in-
equalities. Automatica, 42(11):1875–1882, 2006.

A. Saberi, A. A. Stoorvogel, and P. Sannuti. Control of
Linear Systems with Regulation and Input Constraints.
Springer, 2000.

G. Shi, A. Saberi, A. A. Stoorvogel, and P. Sannuti. Semi-
global stabilization and output regulation of constrained
linear plants via measurement feedback. International
Journal of Control, 75(18):1525–1538, 2002.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11-12:625–653, 1999. URL http:
//sedumi.mcmaster.ca/.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9921


