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Abstract: The paper addresses design, implementation and simulation of a novel type of softly switched 
Takagi-Sugeno fuzzy PI control system for dissolved oxygen concentration (DO) tracking at wastewater 
treatment plant (WWTP). The proposed control system is designed, including tuning the PI controllers, 
entirely based on the experimental data. This control system is validated by simulation. Copyright © 
2008 IFAC 

 

1. INTRODUCTION AND PROBLEM STATEMENT 

An activated sludge wastewater treatment plant can be 
classified as a complex system due to its nonlinear dynamics, 
large uncertainty in the disturbance inputs, multiple time 
scales in the internal process dynamics and multivariable 
structure.  
The scheme of the wastewater treatment processes considered 
in the paper is shown in Fig. 1. 
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Fig. 1. Scheme of the wastewater treatment system 

The bioreactor contains a mixture of liquid and suspended 
pollutant where a population of microorganism is produced in 
order to remove the organic substrate from the mixture. The 
settler is a gravity settlement tank where the sludge and clear 
out flow are separated. The activated sludge is directly 
recirculated from the settler to the bioreactor. The excess 
biological sludge is removed. 
During the last years control strategies for the WWTP have 
been intensively investigated. A hierarchical multilayer 
control structure that utilises multiple time scales in the plant 
dynamics for robust optimised control of the biological 
wastewater treatment plants was proposed in (Brdys et al., 
2007). The dissolved oxygen concentration in the bioreactor 
is a key manipulated variable. Its set point trajectory 
prescribed by the upper control layer is forced in the reactor 

by an aeration system that delivers an oxygen by blowing 
airflow ( )airQ t into the bioreactor. The aeration in WWTP 
role is twofold. Firstly, the oxygen is provided as a main 
component for biological processes. Secondly, it supports 
mixing sludge with the sewage what helps to treat the 
sewage. Aeration is highly energy consuming and the energy 
consumption represents more then 60% of the total energy 
demand in an activated sludge wastewater treatment 
processes.  
As the DO dynamics is nonlinear and typically WWTP 
operates under high variability of the influent quantity and 
pollutant parameters an applicability of a conventional fixed 
parameter PID controller is limited. A fuzzy logic Mamdami 
type of controllers were proposed in (Ferrer et al., 1998) and 
(Kalker et al., 1999). Another Mamdami type of fuzzy logic 
controller was presented in (Traoré et al., 2005) and it was 
applied to a bath reactor pilot WWTP. The latter work 
considered the DO controller cascaded with the ammonia 
concentration controller. This control structure was also 
considered in (e.g., Gerkšič et al., 2006) where the DO 
controller was designed by applying a deterministic gain 
scheduling. A neural-fuzzy algorithm was developed in 
(Rodrigo et al., 1999) in order to apply gain scheduling for 
standard PID controller. 
The nonlinear predictive control was proposed by Brdys and 
Konarczak (2001) for the removal of nitrogen and 
phosphorus and further developed in (Chotkowski et al., 
2005).  
A hierarchical predictive two - level controller for the 
optimised DO tracking was recently presented in (Piotrowski 
et al., 2007). The upper level controller (ULC) prescribes 
trajectories of desired airflows to be delivered into the 
aerobic biological reactor zones. The ULC uses the 
manipulated variable ( )airQ t  as its control outputs forcing 

( )DO t  to follow ( )refDO t . A nonlinear multivariable model 
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predictive control algorithm is applied to design this 
controller unit. The lower level controller (LLC) forces the 
aeration system to follow these set point trajectories. The 
LLC acts as an actuating system and takes the ULC output 
asthe reference trajectory ( )ref

airQ t  of the airflow to be 
provided. The LLC uses the aeration system control handles 
in order to produce the airflow trajectories ( )airQ t  that 

follow the trajectories ( )ref
airQ t  prescribed by the ULC and to 

minimize the electrical energy cost due to blowing the air. 
Due to a mixed integer structure of the aeration system 
blowers a hybrid model predictive controller (MPC) at the 
lower control level has been derived in (Piotrowski et al., 
2007).  
The MPC is very attractive solution, but highly dependent on 
the accuracy of the plant model and accuracy of the influent 
flow rate and pollutant concentrations. In reality, complex 
dynamics of biological processes make the task of model 
construction and identification and the disturbance input 
prediction difficult, leading to significant uncertainties. This 
and a cost of implementation of the hybrid model predictive 
controller make the use of nonlinear control scheme such as 
an intelligent fuzzy control the competitive alternative.  
The paper is organised as follows. The control problem 
analysis is presented in Section 2. Section 3 presents the 
controller design. The simulation results are described in 
Section 4. Finally, the conclusions are drawn. 

2. CONTROL PROBLEM ANALYSIS 

The simplified but still realistic mathematical model of the 
WWTP (see Fig. 2) can be given by the following mass 
balance equations (Nejjari et. al., 1999): 
 
 

( ) ( ) ( ) (1 ) ( ) ( ) ( )r
dX t X t D t r X t r D t X t
dt

μ= − + +  (1)

( ) ( ) ( ) (1 ) ( ) ( ) ( )in
dS t X t D t r S t D t S t
dt Y

μ
= − − + +  (2)

0

max

( ) ( )
( ) (1 ) ( )

( ) ( ( )) ( ) ( )air in

K t X tdDO D t r DO t
dt Y

Q t DO DO t D t DO t

μ

α

= − − + +

+ − +
 (3)

( ) (1 ) ( ) ( ) ( ) ( )r
r

dX
D t r X t D t r X t

dt
β= + − +  (4)

max
( ) ( )( )

( ) ( )s DO

S t DO tt
K S t K DO t

μ μ= ⋅
+ +

 (5)

with: 

( ) ; ; ;in r w a

a in in s

Q Q Q V
D t r V

V Q Q V
β= = = =  

where ( )X t , ( )S t , maxDO , ( )rX t , ( )D t , inS , inDO , Y , 

μ , maxμ , sK , DOK , α , airQ , 0K , r , β  denote biomass 
concentration, substrate concentration, maximum dissolved 
oxygen concentration, recycled biomass concentration, 
dilution rate, substrate concentration in the influent, dissolved 
oxygen concentration in the influent, biomass yield factor, 
biomass growth rate, maximum specific growth rate; affinity 

constant, saturation constant, oxygen transfer rate, aeration 
rate, model constant, recycled sludge rate, removed sludge 
rate, respectively. 

inQ , outQ , rQ , wQ  are the influent, effluent, recycle and 

waste flow rates, respectively. aV  and sV  represent the 
aerator and settler volumes. It is assumed that 1V = . 
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Fig. 2. Scheme of the wastewater treatment plant 

The aeration rate ( )airQ t  is the control input while the 

dilution rate ( )D t , influent substrate concentration ( )inS t  

and influent dissolved oxygen concentration ( )inDO t  are the 
plant disturbance inputs that can significantly vary in time. 
This model links these  inputs to the dissolved oxygen 
concentration in the biological reactor ( )DO t  that is plant 
controlled output. The dissolved oxygen concentration 
controller is expected to maintain good tracking of the 
prescribed trajectory in spite of these unmeasurable and time 
varying disturbances.  
The scheme of the overall control system follows the 
hierarchical architecture presented in (Piotrowski et al., 2007) 
and it is shown in Fig. 3, where ( )refDO t  and ( )ref

airQ t  

denote the set point trajectories of the ( )DO t  and ( )airQ t , 
respectively.  
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Fig. 3. A structure of the overall control system 

In the paper the aeration control system is not investigated 
and it is considered as an actuator system with the rate and 
magnitude constraints imposed on the airflow ( )ref

airQ t . As 
the DO dynamics is highly nonlinear a fixed parameter linear 
controller is not able to maintain a satisfactory tracking 
performance under the full range of operating conditions. An 
adaptive PI controller was proposed in (Yoo et al., 2002). 
The controller parameter adaptation algorithm in spite of its 
complexity was capable of achieving only limited overall 
controller performance.  
The proposed controller is designed, including off-line tuning 
the PI controllers, entirely based on the experimental data. A 
softly switched nonlinear Takagi-Sugeno Fuzzy PI controller 
for DO tracking is derived and validated by simulation using 
the plant model given by the equations (1)-(5). No on-line 
explicit controller parameter tuning is required. 
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3. CONTROLLER DESIGN 

Designing an intelligent controller in order to achieve the DO 
tracking at WWTP when the accurate model of the plant is 
unknown and under unknown and time varying disturbance 
inputs can be approached in different ways. A Fuzzy Expert 
Control System can be used with Recursive Least Square 
(RLS) on-line training method (Wang, 1994; Qi and Brdys, 
2007). This Fuzzy Expert Control System could make 
decision like a human expert and generate control rules 
through on-line training. The on-line training is a general 
method which has been widely applied to automatically 
generate a fuzzy system online. However, this has been 
verified not suitable in our case as the RLS algorithm has not 
been fast enough to follow the time varying disturbances. In 
the approach employed in the paper a steady – state 
relationship between the control input and controlled output 
is piecewise linearized as illustrated in Fig. 4.  
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Fig. 4. DO concentration versus the aeration rate and 
piecewise linearization 

The intervals are revealed on the DO axis over each of which 
the steady-state plant model can be considered linear. 
Therefore, the PI controllers would be applied to efficiently 
control the DO over each of the intervals. Tuning of a single 
PI controller can be done first by locating the DO value 
within the corresponding operating interval and then applying 
manual adjustment of its parameters so that the desired 
transient of moving the DO to the prescribed set point within 
the interval (step input response) is achieved. Hence, an 
overall tuning process can be done experimentally without 
necessity of employing the plant model.  
The experiment performed as described above has shown that 
suitable PI controller gains are the same for several adjacent 
intervals produced by geometrical piecewise linearization. 
Hence, these intevals have been integrated to produce new 
enlarged intervals. The final results of tuning are illustrated in 
Table 1.   
It is noticed that the DO operating region has now been 
partitioned into seven subregions shown in the Table 1. There 
are seven associated fixed parameter ,P IK K  PI controllers 
that are achieving desired tracking performance over each of 
these subregions. Values of the controller parameters ,P IK K  

are shown in the Table 1. The Table 1 can then serve a 
lookup table to change the controller parameters based on 
current value of DO in the plant. The resulting controller 
would be the gain scheduled nonlinear PI controller. 
Changing the PI controller parameters when DO is leaving 
one operating subregion and is entering another one produces 
unwanted switching transients. In order to smooth these 
transients the Takagi – Sugeno control system is introduced 
(Yen and Langari, 1999). First, the crisp DO subregions are 
fuzzified by applying the following membership functions: 
 

Table 1. Selected partitioning of the original experimental 
data 

DO ref  K P K I DO 
ref  K P K I 

0.05 ~ 0.10 
0.10 ~ 0.15 25 300 

6.0 ~ 6.5 
6.5 ~ 7.0 
7.0 ~ 7.5 
7.5 ~ 8.0 

350 8000 

0.15 ~ 0.20 
0.20 ~ 0.25 
0.25 ~ 0.30 
0.30 ~ 0.35 

50 650 

8.0 ~ 8.2 
8.2 ~ 8.4 
8.4 ~ 8.6 
8.6 ~ 8.8 

 

1000 9000 

0.35 ~ 0.40 
0.40 ~ 0.45 
0.45 ~ 0.50 
0.50 ~ 0.60 
0.60 ~ 0.70 
0.70 ~ 0.80 
0.80 ~ 0.90 
0.90 ~ 1.00 
1.00 ~ 1.50 
1.50 ~ 2.00 
2.00 ~ 2.50 
2.50 ~ 3.00 
3.00 ~ 3.50 

200 3500 

8.8 ~ 9.0 
9.0 ~ 9.2 
9.2 ~ 9.4 
9.4 ~ 9.6 
9.6 ~ 9.8 
9.8 ~ 10.0 

1500 15000 

3.50 ~ 4.00 
4.00 ~ 4.50 
4.50 ~ 5.00 
5.00 ~ 5.50 
5.50 ~ 6.00 

250 7000    

 
2 2(( 0.5( 0.2) ) /1.0501 )

1( ) e xf x − −=  

2
2 2(( 0.5( 1.0) ) /1.0501 )( ) e xf x − −=  
2 2(( 0.5( 3.5) ) /1.0501 )

3( ) e xf x − −=  
2 2(( 0.5( 5.5) ) /1.0501 )

4 ( ) e xf x − −=  
2 2(( 0.5( 7.5) ) /1.0501 )

5 ( ) e xf x − −=  
2 2(( 0.5( 8.4) ) /1.0501 )

6 ( ) e xf x − −=  
2 2(( 0.5( 9.4) ) /1.0501 )

7 ( ) e xf x − −=  

(6)

The membership functions are illustrated in Fig. 5. 
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Fig. 5. Graphs of the membership functions 1f ,…, 7f  

The Takagi – Sugeno nonlinear PI controller is shown in Fig. 
6. The seven regional PI controllers operate in parallel 
producing the control input signals , ( ), 1,...,7ref i

airQ t i = . 
These control inputs are fuzzy blended to produce the control 
input ( )ref

airQ t  that is applied to the plant via the aeration 
control system. The fuzzy blending operates as follows: 
 

7 ,

1
( ) ( ( )) ( )

iref ref i
air i air

i
Q t f DO t Q t

=

=
= ∑  (7)
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Fig. 6. Softly switched Takagi-Sugeno fuzzy PI control 
system 

Hence, the control input ( )ref
airQ t  is a weighted sum of the 

control signals produced by the regional PI controllers. Their 
contribution to the overall control input depends how well the 
current ( )DO t  operating point fits into the corresponding 
subregions. This is evaluated by the grades of memberships 
of the ( )DO t  in the fuzzy subregions. Let us notice that a 
new PI controller is now activated not as in the case of 
lookup table approach in a hard manner but this is done 
gradually smoothing the corresponding transients. Indeed, 
when the ( )DO t  values are in an overlapping range of a two 
adjacent subregions both of the regional PI controllers are 
active and the strengths of contributions of the control signals 
produced by the PI controller representing the subregion from 
which the ( )DO t  values are moving away are decaying 
while the strengths of contributions of the control signals 
produced by the PI controller representing the subregion the 

( )DO t  values are moving into gradually increase (see Fig. 5 
and (7)). Finally, the new PI becomes the only one active 
controller in the new subregion and a switching to this 
controller is soft. 

4. SIMULATION RESULTS 

The proposed controller was applied to the plant model 
described in Section 2. The model coefficients have the 
following values: max 10DO mg l= , 200inS mg l= , 

0.5inDO mg l= , 0.65Y = , max 0.15 mg lμ = , 0.6r = , 

100sK mg l= , 2DOK mg l= , 0.018α = , 0 0.5K = ,  
0.2β = . The digital PI controllers of the pulse transfer 
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function ( ) 1
11 , 1,7

1
i

P IPIG z K K i
z −

⎛ ⎞= ⋅ + ⋅ ∈⎜ ⎟−⎝ ⎠
 were 

tuned manually as described in Section 3. The tuning 
procedure has started with parameters obtained by digitizing 
the continuous time PI controllers with the parameters listed 
in Table 1 by applying the backward rectangular rule of 
integration. The rate and magnitude limiters were applied to 
model the aeration control system. Fig. 7 illustrates a 
performance of the fixed parameter regional PI controller 
covering the subregion [1 5 3 0]DO . , .∈  where 

200 3500p IK ,K= = .  
It can be seen that the regional controller robustly track the 
set point varying within the subregion in spite of the 
significant variations of the influent and the tracking 
performance is good. 

 

Fig. 7. Simulation results of a regional PI controller under 
time varying disturbances: a). influent substrate; b). influent 
dilution rate; c). DO set point and the tracking performance; 
d). tracking error 

Performance of the overall multiregional controller is 
illustrated in Fig. 8 where the DO set point varies over a 
whole operating range. The tracking performance is 
comparable with the regional PI controller performance. 

 

Fig. 8. Simulation results of a multiregional PI controller 
under time varying disturbances; a). influent substrate; b). 
influent dilution rate; c). DO set point and the tracking 
performance; d). tracking error 

Fig. 9. Changing the weights over time for the subregions 1, 
4 and 7 during the multiregional controller operation 

An operation of the softly switched mechanism during the 
controller operation over a whole DO operating range is 
illustrated in Fig. 9 by presenting the regional PI controller 
weights over time for selected subregions. 
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5. CONCLUSIONS 

The paper has addressed an important and difficult control 
problem. A novel approach to the dissolved oxygen 
concentration tracking has been presented. The softly 
switched Takagi-Sugeno nonlinear PI controller has been 
derived and its performance has been validated by simulation. 
Good tracking performance has been observed. The closed 
loop system stability analysis is under research. 
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