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Abstract: This paper deals with the robust stability of soft variable-structure controls. More
precisely, the control of linear plants subject to parametric uncertainty and actuator saturation
is considered. Earlier works are summarized and new results are presented in this paper. It is
shown that for all considered types of soft variable-structure controls, the robustness analysis
leads to parameter-dependent Lyapunov inequalities. An overhead crane control is given as an
illustrating example.
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1. INTRODUCTION

First, we would like to emphasize that soft variable struc-
ture controls are completely different from the so-called
sliding mode controls. The latter are generally known to
utilize sliding modes to meet certain robustness require-
ments, see e.g. Utkin (1992). These sliding modes occur as
a consequence of discontinuous switching between different
control laws.
Conversely, soft variable structure controls (SVSC) adjust
the control signal continuously, see Adamy and Flemming
(2004) for a survey of SVSC. Thus, SVSC avoid stressing
the actuator heavily because of high-frequency switching.
Although they have been developed from discontinuous
VSC and piecewise linear controls, the underlying ideas
are different from those of sliding mode controls. The
general intention of using SVSC is to achieve nearly time-
optimal control performance. So far, there are three types
of SVSC known: SVSC with variable saturation (type A);
SVSC employing implicit Lyapunov functions (type B);
and dynamic SVSC (type C).
This paper aims to show how SVSC can cope with certain
robustness problems. We summarize, extend, and improve
the results from other authors regarding type B and C,
which were published only in German (Niewels and Kiendl,
2003; Franke, 1983). Furthermore, we present a new result
for type A, and show that for all the three types parameter-
dependent Lyapunov inequalities can be used to solve the
problem.
The specific control problem is the robust control of a
linear plant subject to actuator saturation and paramet-
ric uncertainty. Both actuator saturation and parametric
uncertainty are common phenomena in practical control
problems. Hence both areas have gained a great deal of
attention during the last years, see e.g. the monographs
Tarbouriech and Garcia (1997); Kapila and Grigoriadis
(2002); Amato (2006).

⋆ This work was supported by the government of the state Hesse,
Germany, under Grant 0070009173.

2. PRELIMINARIES

2.1 Problem statement

We consider a state space representation of an uncertain
linear plant:

ẋ = A
(
q(t)

)
x + b

(
q(t)

)
u, x(t0) = x0, (1)

where x ∈ R
n is the state vector and u ∈ R is the

control input. The vector function q : R → Q denotes
unknown, possibly time-varying parameters and maps the
set of real numbers to the bounded subset Q ⊂ R

ν .
The matrix function A and the vector function b are
of appropriate dimensions and the pair (A(q),b(q)) is
completely controllable for all q ∈ Q. Furthermore, the
control u and the set of initial states X0 ⊂ R

n are subject
to the following constraints:

|u| ≤ u0, (2)

X0 = {x0 ∈ R
n| x0 ≤ x0 ≤ x0}, (3)

where x0,x0 ∈ R
n, u0 ∈ R

+, and the inequalities are
intended component wise.

The control task is to design a controller that leads to
a well performing nominal system at constant q(t) = q0

while the closed-loop system has to meet two additional
conditions:

(A1) For all possible q(t) asymptotic stability of the closed-
loop system should be assured in a region G contain-
ing the equilibrium state x = 0 and all possible initial
states x0 ∈ X0.

(A2) The control constraint, |u| ≤ u0, should be satisfied
for all possible x(t), where t ≥ t0 and x0 ∈ X0.

Below, the argument t of the function q(t) is omitted to
improve readability.

2.2 Soft variable-structure control

The basic concept of SVSC is to vary a parameter-
dependent state feedback during the control action so that
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the available control range is utilized as advantageously
as possible. Roughly speaking, the loop gain is increased
as the control deviation decreases. This approach leads
to nearly time-optimal performance if the control law is
suitably chosen.
A mathematically precise description along the lines of
Adamy and Flemming (2004) is as follows: the controller

u = F (x, p), (4)

where F is a general operator, which depends on the state
vector of the plant and a continuous selection parameter,
p ∈ R, which is computed by a selection strategy. This
selection strategy is defined by

S (x, p(n), . . . , p) = 0, (5)

where S denotes a continuous real-valued function and
p(n) the n-th time derivative of p. Eq. (5) is the general
case, which includes the simple case p = S (x), implicit
definitions, and differential equations.

ẋ = Ax + buu = F (x, p)

S (x, p(n), . . . , p) = 0

x x

p

u

Fig. 1. Block schematic of soft variable structure controls.

3. SOFT VSC WITH VARIABLE SATURATION
(TYPE A)

Firstly, we consider Albers’ SVSC with variable saturation
(Albers, 1983). Since this type of SVSC is described in
(Adamy and Flemming, 2004) in detail, we consider only
the basics of this control in the following subsection.
Afterwards, we focus on robust stability conditions of the
closed-loop system.

3.1 Basic definitions

The control law (4) of SVSC with variable saturation is

u = −(k1 + p · k2)
T x, (6)

where the state feedback vectors k1 and k2 are in R
n

and the selection parameter is bounded by p ∈ [0, 1]. The
selection strategy (5) is determined by

p =
us(x)

kT
2 x

sat

(
kT

2 x

us(x)

)
, (7)

where sat(·) denotes the standard saturation function
sat(y) = sign(y) · min{1, |y|} and

us(x) = u0 −
√

v(x)kT
1 R−1k1,

v(x) = xT Rx, (8)

where R is a positive definite matrix in R
n×n. The function

v is a Lyapunov function of the closed loop system.
Moreover, we consider a positively invariant set,

G = {x | v(x) < vG}, (9)

where the positive real parameter vG is chosen so that

X0 ⊆ G. (10)

The control constraint (A2) is satisfied if the inequality

u0 ≥
√

v(x)kT
1 R−1k1 (11)

holds for all possible states x. This issue is independent of
the uncertainty; thus, it is not of our main interest.

3.2 Robust Stability

We focus on the robust stability conditions, which have not
been investigated before and are easily obtained by using
the notion of quadratic stability (Amato, 2006). From (1)
and (6) we derive the system matrix of the overall closed-

loop system ẋ = Â(q, p)x:

Â(q, p) = A(q) − b(q) (k1 + pk2)
T . (12)

We use v from (8) as a Lyapunov function of the closed-
loop system within the ellipsoid G from (9). The condition
v̇(x) < 0 for all x 6= 0 leads to

xT
(
ÂT (q, p)R + RÂ(q, p)

)
x < 0, (13)

or the Lyapunov matrix inequality

ÂT (q, p)R + RÂ(q, p) < 0, (14)

where the notation M<0 implies the negative definiteness
of a symmetric matrix M. This condition must be satisfied
for all q ∈ Q and p ∈ [0, 1].
Finally, we summarize the conditions that are sufficient
for robust stability of SVSC with variable saturation in a
theorem.

Theorem 1. Let the system (1) subject to the constraints
(2) and (3) be controlled by a SVSC according to (6) and
(7). Then, the closed-loop system satisfies conditions (A1)
and (A2) if the inclusion (10) and the inequalities (11) and
(14) hold.

4. SOFT VSC EMPLOYING IMPLICIT LYAPUNOV
FUNCTIONS (TYPE B)

We describe SVSC that employ implicit Lyapunov func-
tions. After assembling some basic definitions (see Adamy
and Flemming (2004) for details), we provide the robust
stability conditions for the closed-loop system.

4.1 Basic definitions

The control law (4) of the implicit SVSC is

u = −kT (p)x, (15)

where p ∈ (0, 1] is the selection parameter and k : (0, 1] →
R

n is a vector-valued function. Without loss of generality it
is assumed that the nominal system has been transformed
into controllable standard form. The controller gain is
defined by

k(p) = D−1(p)â − a0, (16)

where aT
0 = [a0, · · · , an−1] is a vector containing the coeffi-

cients of the characteristic polynomial of the uncontrolled
nominal system, âT = [â0, · · · , ân−1] is a vector containing
coefficients of the (desired) closed-loop nominal system at
p = 1, and

D(p) = diag(pn, . . . , p2, p). (17)
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Moreover, the selection strategy of (5) is defined by the
implicit equation

g(p,x) = 0, (18)

where

g(p,x) = e(p)xTR(p)x − 1, (19)

e(p) =
1

u2
0

kT (p)R−1(p)k(p),

R(p) = D−1(p)R1D
−1(p). (20)

R1 is a positive definite Matrix in R
n×n and e(p) > 0

holds for all p ∈ (0, 1]. Apart from its role as a selection
parameter the parameter p also acts as an implicitly de-
fined Lyapunov function, and thus guarantees the stability
of the implicit SVSC. Finally,

G = {x | g(1,x) < 0} (21)

denotes a Lyapunov region that satisfies

X0 ⊆ G. (22)

We use the set G subsequently to bound a region wherein
the closed-loop system is asymptotically stable. Inclusion
(22) is independent of the uncertainty because the defini-
tion of the set G does not contain the uncertain parameters
q(t). Condition (A2) concerning the actuator saturation is
related to the aforementioned choice of the control law (15)
and the selection strategy (18), and therefore, this issue is
independent of the uncertainty as well.

4.2 Robust stability

The selection parameter p = v in (18) also acts as an
implicitly defined Lyapunov function v(x) of the closed-
loop system to guarantee stability, that is, the closed-loop
system is asymptotically stable if v̇(x) < 0 for all x 6= 0.
Using the implicit Lyapunov function theorem from
Adamy (2005), it can be shown that (18) implicitly defines
a Lyapunov function v(x) for all x in G if

v̇(x) = −
∂g(v,x(t))/∂t

∂g(v,x)/∂v
< 0, (23)

which holds if

−∞ <
∂g(v,x)

∂v
< 0 and

∂g(v,x(t))

∂t
< 0. (24)

The first part of (24) leads to two conditions, namely

max
v∈(0,1]

e′(v) ≤ 0 (25)

NR1 + R1N < 0, (26)

where N = diag (−n, . . . ,−1). The stability conditions
(25) and (26) are independent of the robustness issue;
therefore, it is not our main interest in this paper. How-
ever, the second part of (24),

∂g(v,x(t))

∂t
= ẋT grad

x
g(v,x) < 0, (27)

is affected by the uncertainty. In the following, we extend
and improve the results of Niewels and Kiendl (2003).
From (1) and (15) we obtain the system matrix of the

closed-loop system ẋ = Â(q, v)x:

Â(q, v) = A(q) − b(q)kT (v). (28)

Inserting ẋ = Â(q, v)x and (19) into (27), we get

e(v)xT [ÂT (q, v)R(v) + R(v)Â(q, v)]x < 0, (29)

which is equivalent to

ÂT (q, v)R(v) + R(v)Â(q, v) < 0 (30)

for all (q, v). This is the crucial condition concerning the
robustness.
We now simplify Condition (30). For this purpose the plant
(1) will be split into a constant nominal and a parameter
dependent part

ẋ = [A0 + ∆A(q)]x + [b0 + ∆b(q)]u, (31)

where A0 = A(q0) and b0 = b(q0). Using (15), (16), and
(31), the system matrix (28) may be written in the form 1

Â(q, v) =v−1D(v)Â1D
−1(v) + ∆A(q)

− ∆b(q)[âT D−1(v) − aT
0 ],

(32)

where Â1 = A0 − b0k
T (v = 1). Then, applying (20) and

(32) to (30) we obtain an equivalent version:

ÃT (q, v)R1 + R1Ã(q, v) < 0, (33)

where

Ã(q, v) =Â1 − vD−1(v)
[
∆b(q) âT

−
(
∆A(q) + ∆b(q)aT

0

)
D(v)

]
.

(34)

Note that if matrix Ã does not depend on q, that is ∆A ≡

0 and ∆b ≡ 0, we have Ã ≡ Â1. Thus inequality (33)
reduces to the simple parameter independent expression

ÂT
1 R1 + R1Â1 < 0, which was intended in the original

works as one of the stability conditions.

Thus, we conclude this subsection with a theorem that
summarizes the four conditions that are sufficient for
robust stability of implicit SVSC.

Theorem 2. Let the system (1) subject to the constraints
(2) and (3) be controlled by a SVSC according to (15)
and (18). Then the closed-loop system satisfies conditions
(A1) and (A2) if the inclusion (22) and the inequalities
(25), (26), and (33) hold.

5. DYNAMIC SVSC (TYPE C)

In the following, we consider dynamic SVSC from Franke
(1983). Again, we only briefly deal with the basic defini-
tions (see Adamy and Flemming (2004) for details) before
we return to robustness.

5.1 Basic definitions

The control law (4) of dynamic SVSC is

u = −(k1 + p · k2)
Tx, (35)

where the state feedbacks k1 and k2 are vectors in R
n and

p is the selection parameter in R.
The selection strategy (5) is determined by a differential
equation,

ṗ = γ−1
(
xT Rb0k

T
2 x − p · r(p,x)

)
, (36)

where b0 = b(q0), R is a positive definite matrix in R
n×n,

γ is a positive real number, and r(p,x) is a positive real
function.

1 Since A0 and b0 are in controllable standard form we have A0 +
b0k

T (v) = A0 + b0a
T
0

− b0â
T D−1(v) = v

−1D(v)[A0 + b0a
T
0

−

b0â
T ]D−1(v) = v

−1D(v)Â1D
−1(v).
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Fig. 2. Load position y of the overhead crane example for minimal, nominal, and maximal load. The subfigures on the
left-hand side display the whole range. Close-ups on the tolerance band |y| ≤ 2 cm are shown on the right-hand
side. Each subfigure contains the linear control (dashed) and the time optimal feedforward control (dash-dotted)
for comparison. The solid lines indicate the SVSC.

Eq. (36) is similar to an anti-windup system that con-
strains the selection parameter p. This anti-windup system
guarantees that Condition (A2) is fulfilled, if

|kT
1 x0| ≤ u0 for all x0 ∈ X0 (37)

holds.

5.2 Robust stability

Starting with the considerations from Franke (1983), we
simplify them in order to get an easier examination
method.
From the definitions above, we obtain the following de-
scription of the overall closed-loop system:

[
ẋ
ṗ

]
=

[ (
Â(q) − p · b(q)kT

2

)
x

γ−1
(
xTRb0k

T
2 x − p r(p,x)

)
]

, (38)

where Â(q) = A(q) − b(q)kT
1 . The proposed robust

stability proof of system (38) is subject to two restrictions
on the parameter dependency of the input vector b(q):

(B1) The parameter dependency of the input vector of
system (1) is summarized in a single positive scalar
function κ(q), that is

b(q) = κ(q)b0, (39)

where κ(q)>0.
(B2) The input vector of system (1) is not time-varying,

that is κ̇(q) = 0.

The first restriction is not very hard because in the vast
majority of practical cases the input gain of a plant does
not change its sign. The second one is more demanding
and excludes time-varying input vectors. Nevertheless, the
class of the remaining systems is large.
Now, a quadratic Lyapunov function defined by

v(p,x) = xT Rx + γκ(q)p2 (40)

is utilized to guarantee robust stability of the closed-loop
system (38). The system’s equilibrium point (p,x) = (0,0)
is asymptotically stable if v̇(p,x) < 0 for all (p,x) 6= (0,0).
Computing v̇(p,x) yields
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v̇(p,x) =ẋT Rx + xT Rẋ + γ κ(q)2p ṗ

=xT
[
ÂT (q)R + RÂ(q)

]
x

− 2p2κ(q) r(p,x) < 0. (41)

Since r(p,x)>0 and κ(q)>0, inequality (41) is satisfied if

ÂT (q)R + RÂ(q) < 0. (42)

Again, we summarize the conditions that are sufficient for
the robust stability of dynamic SVSC in a theorem.

Theorem 3. Let the system (1) subject to the constraints
(2) and (3) and confined by the additional restrictions (B1)
and (B2) be controlled by a SVSC according to (35) and
(36). Then the closed-loop system satisfies conditions (A1)
and (A2) if the inequalities (37) and (42) hold.

6. A UNIFYING FRAMEWORK

The preceding sections revealed that robust stability with
respect to parametric uncertainty of all types of SVSC can
be proved by parameter-dependent Lyapunov inequalities
of the form:

ÂT (q̃)P + PÂ(q̃) < 0, (43)
where P is a constant positive definite matrix and q̃ is a
vector of real parameters. This inequality is similar to (14),
(33), and (42). The matrix P corresponds to matrices R
and R1. The vector q̃ contains the uncertain parameters
q and the selection parameter p or v in case of type A or
B, respectively, for example q̃T = [qT , v].
Generally, ensuring the negative definiteness of the matrix
on the left-hand side of (43) is difficult because we cannot
check it for each possible q̃. However, this task can be
simplified by reasonable assumptions on the parametric
uncertainty. If, for instance, vector q̃ ranges within a

convex polytope QP and the entries of matrix Â depend
multi-affinely on q̃, then (43) holds for all q̃ ∈ QP if and
only if

ÂT (q̃(i))P + PÂ(q̃(i)) < 0, (44)

holds for all q̃(i), i = 1, . . . , k, where q̃(i) are the vectors
of the k vertices of QP (Horisberger and Belanger, 1976;
Garofalo et al., 1993). Thus, checking the definiteness of a
finite number of matrices in (44) is sufficient. The litera-
ture oh the stability of uncertain linear systems provides
a great variety of similar numerically tractable methods
to test (43), see e.g. (Barmish and Kang, 1993; Amato,
2006) and the linear matrix inequalities (LMI) standard
reference from Boyd et al. (1994).
On this basis, we may say that for practical cases a pos-
teriori analysis of stability robustness against parametric
uncertainty of all types of SVSC can be reduced to a
numerically tractable problem: It is sufficient to check the
negative definiteness of a finite number of matrices.
Remark: In LPV control the Lyapunov equalities are often
extended by introducing a parameter-dependent Matrix
P(q̃) to obtain less conservative results. Since the corre-
sponding matrices R and R1 are used during the online
calculation of the control input and the parameters are
unknown this extension is not possible here.

7. ILLUSTRATING EXAMPLE: AN OVERHEAD
CRANE CONTROL

The plant to be controlled is the well-known model of an
overhead crane taken from Ackermann (2002). In this case,

0
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T
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3000 kg
10000 kg
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Fig. 3. Comparison of the settling time, TS , of the dif-
ferent controllers for minimal, nominal, and maximal
load. The settling time is defined by the time that
the control loops require to drive the load into the
tolerance band |y| ≤ 2 cm from the initial state x0 =
[12 m, 0, 0, 0]T .(A): variable saturation, (B): implicit,
(C): dynamic.
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Fig. 4. Control action of the different controllers for
nominal load. (A): variable saturation, (B): implicit,
(C): dynamic, (dashed): linear, (dash-dotted): time
optimal feedforward control.

the crab mass is 1 tonne, the rope length is 10 meters, and
the load mass q can vary over the range of 1...10 tonnes
with a nominal value q0 = 3 tonnes. The resulting system
is

ẋ =




0 1 0 0
0 0 9.81q 0
0 0 0 1
0 0 −0.981(q + 1) 0


x +




0
10−3

0
−10−4


u,

where x1 and x2 are the position and the velocity of the
crab whereas x3 and x4 are the angle and the angular ve-
locity of the rope, respectively. The constraints regarding
(2) and (3) are specified by

|u| ≤ 104 N and

X0 = {x0 ∈ R
4| |x1,0| ≤ 12 m, |x2,0| ≤ 1 m/s,

|x3,0| ≤ 2◦ π
180◦

, |x4,0| ≤ 0.5◦ π
180◦·s}.

The control task is to drive the position of the load,

y = [1 0 10 0]x, (45)

from the initial state x0 = [12 m, 0, 0, 0]T to the tolerance
band |y| ≤ 2 cm in minimum settling time TS . The position
y must not undershoot −2 cm in order to avoid accidents.
Additionally, the controls have to meet the conditions (A1)
and (A2) as stated in Section 2.
The controller parameters for all three types of SVSC
were obtained by an evolutionary algorithm (Schwefel,
1995), where the optimization problem consists of i) con-
straints resulting from the corresponding theorems and
ii) a quadratic cost functional, which is calculated by
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numerical simulations. For this purpose the problem is
reformulated as an unconstrained one be means of a barrier
function. The obtained parameters can be found in the
appendix.
For comparison, we use a robust linear control u = −kTx,
whose parameters are also given in the appendix. By using
LMI-techniques, it can be proven that this control also
meets the conditions (A1) and (A2), Boyd et al. (1994).
Fig. 2 shows the output for the three different types of
SVSC. The subfigures on the left-hand side depict the
whole range while the ones on the right focus on the
tolerance band |y| ≤ 2 cm. Additionally, in the same figure
the results using a robust linear control u = −kT x and the
time-optimal feedforward control are plotted. As it can be
seen from Fig. 2 the performance of all three types of SVSC
is significantly higher than that of the linear control. To
quantify this result, Fig. 3 considers the achieved settling
times, TS, obtained from the simulations. The SVSC’s
control is ”soft” – in contrast to the time optimal control
input. This is exemplarily shown in Fig. 4 for the nominal
case. For an assessment of the computational burden for
calculating the control input we refer the reader to the
survey paper (Adamy and Flemming, 2004).

Appendix A. PARAMETERS OF SIMULATION
EXAMPLE

Soft VSC with variable saturation:

R =



0.1364 0.8095 −3.97 7.461
0.8095 7.453 −37.87 69.01
−3.97 −37.87 2108 −180
7.461 69.01 −180 873.7


 · 10−3,

kT
1 = [239.9 2019 −29790 2389] ,

kT
2 = [634.3 4197 −16880 −107300] .

Soft VSC employing implicit Lyapunov functions:

R1 =




1.59 18.49 20.25 0.6329
18.49 255.1 248.8 16.95
20.25 248.8 831.6 131.5
0.6329 16.95 131.5 124.8


 · 10−3,

âT = [0.1593 1.997 9.543 2.526] .

Dynamic SVSC:

R =




6.996 11.51 −90.01 82.07
11.51 52.34 −238 450.1
−90.01 −238 10500 −433.8
82.07 450.1 −433.8 4690




kT
1 = [466.3 3509 −2739 −31030] ,

kT
2 = [−121.1 −510.1 5260 2544] · 103,

µ = 109, µ0 = 10−3, γ = 2 · 106, P = 1.

Linear controller:

kT = [187.35 2869.3 −26048 2455.3] .
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