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Abstract: This paper considers real-time coordination of a mobile sensor network composed of 
heterogeneous resources with partially overlapping functionalities in charge of executing multiple 
sequences of interconnected tasks. A discrete event controller based on a matrix-based formalism is 
adopted to combine in a single framework task planning, dynamic resource assignment with look-ahead, 
and shared resource conflict resolution with utility-based method. The matrix based controller is modular 
and can be easily reconfigured if mission characteristics or network topology change. Simulations and 
preliminary results on an experimental platform are provided to illustrate the main features of the proposed 
control approach.  

 

1. INTRODUCTION 

A Mobile Sensor Network (MSN) is a network of mobile, 
heterogeneous devices that are able to perform a variety of 
tasks, including measuring, observing, tracking, finding or 
manipulating objects. Many MSNs use very sophisticated 
robots as single units, and borders between research areas 
such as mobile robotics (Gerkey and Mataric, 2004), multi-
robot coordination/cooperation (Lee et al., 2003, Burgard, et 
al., 2005, Tsalatsanis et. al., 2006), and sensor networks (Ren 
et al., 2006, Dharne et al., 2006) are rapidly vanishing. 
Mobility and multifunctionality are generally adopted as a 
means to reduce the number of nodes, at the cost of making 
the overall supervision and control task much more 
challenging. In fact, in this case, the control system of the 
MSN must simultaneously address task planning, dynamic 
resource assignment, resolution of conflicts for shared 
resources, and event-based feedback control. On the one 
hand, it is well-known that all of these sub-problems have 
been extensively investigated in related areas such as 
operation research and manufacturing system control. On the 
other hand, it can be still observed that the preponderance of 
the related literature focuses on one aspect only, disregarding 
(or strongly simplifying) the interactions with the other ones. 
Therefore, recent researches (Giordano et al., 2006) have also 
remarked that the effective exploitation of the capabilities of 
multifunctional MSNs calls for integrated approaches capable 
to properly describe and address all the problems within a 
unified modelling and decision-making approach. 

Recent research has identified the “Matrix-based Discrete 
Event Control” (M-DEC) formalism (Tacconi and Lewis, 
1997) as an effective tool to address this problem. This 
discrete-event modelling technique has been applied to a 
variety of complex, large-scale distributed systems, e.g. 
(Mireles and Lewis, 2002). In (Giordano et al., 2006) the M-
DEC is used to control a MSN for which it is assumed that 
task allocation is predetermined offline by decision-makers 

using a priori information. Since many MSN need to cope 
with (1) multiple competing missions issued at unpredictable 
times, and (2) dynamic network topologies deriving from 
mobility, faults and addition/removal of sensors, the 
integration of a dynamic resource assignment tool in the M-
DEC framework is a natural and significant extension of the 
work presented in (Giordano et al., 2006).  

Thus, in this paper the matrix-based DEC is not only in 
charge of implementing preconditions, postconditions, and 
interdependencies of the tasks and shared resource 
management, but it also dynamically determines task-to-
resource assignment. Considering the inherently turbulent 
nature of the MSN operation, we develop a task allocation 
algorithm that exploits estimates of task durations (when 
available) to improve the overall task allocation by means of 
“look-ahead” optimization. The algorithm is integrated within 
the M-DEC system so as to obtain a single, global description 
of the closed-loop control system of the MSN. Simulations 
results for a large MSN with up to 20 mobile sensors are 
provided and analyzed to evaluate the effectiveness of the 
proposed strategy. This paper also overviews the 
implementation of a laboratory-scale MSN with three mobile 
robots, videocameras and other sensors. The reminder of the 
paper is organized as follows. Sections 2 and 3 overview the 
main assumptions and the key-elements of the M-DEC, 
respectively. Section 4 describes the task assignment 
algorithm, and Section 5 summarizes the simulation results.  
Section 6 describes the MSN prototype and section 7 
concludes the paper with final remarks. 

 2. MAIN ASSUMPTIONS 

Consider a MSN composed of q resources (mobile, 
transportable or stationary sensors or group of sensors, 
hereafter simply called robots). Each robot has one or more 
functionalities, and the total number of different 
functionalities available in the MSN is s. The MSN has to 
accomplish a set of n missions. Each mission consists of a 
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predefined set of tasks, which may be subject to precedence 
constraints (the end of one task may be a necessary 
prerequisite for the start of some other ones), while each task 
needs exactly one functionality. For each couple (t,p), where t 
is a task and p is a robot, a predefined real-valued non-
negative Utility function U(t,p) is available to describe the 
desirability or effectiveness of the assignment of task t to 
resource p. Further, we make the following assumptions: 

• The robots may be heterogeneous (non-identical).  
• Missions are issued at unknown times, while the 

number and type of tasks composing a mission is 
known a priori. 

• The communication between robots and M-DEC is 
based on a wireless system, whose failures, congestion 
or limitations will not be considered.  

For scheduling purposes, it must be also considered that the 
speed of execution, or more generally the time needed by two 
or more robots to perform a given task, may vary (one robot 
may be faster, or closer to the target, than the other ones). In 
our framework, we assume that some tasks may have 
completely unpredictable execution times (e.g., finding a lost 
object), while other ones have a known duration which 
depends on the particular task-to-robot assignment. 
Following the taxonomy proposed in (Gerkey and Mataric, 
2004), our scenario is an instance of the Single-Task (ST) 
robot Single-Robot (SR) task case (ST-SR). The taxonomy 
classifies MSN problems also according to the nature of the 
information available for task assignment. Since we consider 
a turbulent and uncertain environment in which the available 
information does not permit offline scheduling of robots and 
tasks, our scenario falls in the class of Instantaneous 
Assignment (IA) problems. However, it can also be noted 
that the use of look-ahead evaluation in the task assignment 
algorithm can be viewed as a particular form of short-term 
planning. 

3. OVERVIEW OF THE MATRIX-BASED DEC 

The overall architecture of the M-DEC control system is the 
same adopted in (Giordano et al., 2006). Briefly, the M-DEC 
is a centralized supervision system which receives 
information about new missions as an external input, assigns 
the tasks to the robots and controls their execution, taking 
into account their priorities and synchronizing the activities 
accordingly. The M-DEC provides a rigorous, yet intuitive 
mathematical framework to represent the mission planning of 
a multi-robot system according to linguistic if-then rules as: 

Rule i: If <robot 1 has completed task 3 of mission 5 
and robot 2 is available> then <robot 2 starts task 4 of 
mission 5 and robot 1 starts task 3 of mission 2>. 

In particular within the matrix based formalism it is possible 
(1) to model the MSN discrete event dynamics and (2) to 
implement supervisory control policies to define resource 
assignment, conflict resolution and task priorities. 

3.1. Discrete-event system model 

Let us consider a MSN of q robots in charge of performing n 
missions, each one triggered by a predefined event and 

composed of a predefined sequence of tasks fired when 
certain logical conditions are met. In the matrix-based 
modelling formalism, the value of the logical conditions for 
the activations of q rules of a certain mission i composed of p 
tasks is summarized by the rule logical vector 

 (1) (2) ... ( )
Ti i i ix x x x q⎡ ⎤= ⎣ ⎦  (1) 

An entry of ‘1’ in the j-th position of vector xi denotes that 
rule j is currently fired (all the preconditions are true). 
The conditions of the tasks of each active mission are 
described by two vectors, the mission task-in-progress vector  
vIP

i, and the mission task-completed vector vi:  

 (1) (2) ... ( )
Ti i i i

IP IP IP IPv v v v p⎡ ⎤= ⎣ ⎦  (2) 

 (1) (2) ... ( )
Ti i i iv v v v p⎡ ⎤= ⎣ ⎦  (3) 

Each component of vIP
i (vi) is set to “1” when the 

corresponding task is in-progress (completed), and “0” 
otherwise. In particular, vector vi represents a fundamental 
precondition of many logical rules of the matrix-based model, 
while vector vIP

i is mainly necessary to complete the 
characterization of each mission (useful for the purpose of 
computer simulation). Hereinafter, for brevity, we will focus 
on vi only, and omit the further details about vPI

i and its 
dynamical update rules. 
Similarly, let us indicate with ui and yi, the Boolean input and 
output variables of mission i, respectively. Variable ui is set 
to “1” when the triggering event (fire alarm, intrusion, etc.) of 
mission i has occurred, and yi is set to “1” when mission i is 
completed. Finally let us define the Boolean resource vector r 
having q elements where an entry of ‘1’ represents ‘resource 
currently available’. In order to model n simultaneous MSN 
missions we define the global task vector 

 ( ) ( ) ( )1 2 ...
TT T Tnv v v v⎡ ⎤= ⎢ ⎥⎣ ⎦

, (4) 

obtained by stacking the n column task vectors. Similarly, we 
can define the global input vector  

 ( ) ( ) ( )1 2 ...
TT T Tnu u u u⎡ ⎤= ⎢ ⎥⎣ ⎦

, (5) 

the global output vector  

 ( ) ( ) ( )1 2 ...
TT T Tny y y y⎡ ⎤= ⎢ ⎥⎣ ⎦

, (6) 

and the global logical vector  

 ( ) ( ) ( )1 2 ...
TT T Tnx x x x⎡ ⎤= ⎢ ⎥⎣ ⎦

. (7) 

Vectors ,  ,   and v u y x  have a dynamic size depending on the 

number of tasks of each of the missions currently in progress. 
In particular, at each time a new mission is activated due to 
external circumstances, the vectors are resized accordingly, 
introducing new elements with appropriate values (e.g., the 
vector u is updated adding a new element set to “1”). 
All these vectors provide a static description of the conditions 
of the MSN at a given time. In the following we illustrate the 
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update laws defining the evolution of the system variables 
over time. The model is run in discrete-time, i.e. the effects of 
events are computed at the first sample time after their 
occurrence. When no event occurs between two sample 
times, all the system variables remain unchanged. Hereafter, 
except where noted differently, all matrix operations are 
defined in the or/and algebra, where ∨  denotes logical OR, 
∧  denotes logical AND, ⊕ denotes logical XOR, and 
overbar indicates negation [see (Tacconi and Lewis, 1997) 
for an introduction].  

Before the description of the update rules, it is convenient to 
introduce some fundamental matrices. Let i

vF  be the task 

sequencing matrix for an individual mission. i
vF  has element 

(j,h) set to “1” if the completion of task vi(h) is a necessary 
prerequisite for rule logical vector xi(j). Similarly, let i

rF  be 
the resource requirements matrix having element (j,h) set to 
“1” if the condition of h-th resource ( )r l  is an immediate 

prerequisite for rule logical vector xi(j). Moreover, let i
uF be 

the input matrix, having element (j,h) set to “1” if the 
occurrence of input h-th is an immediate prerequisite for rule 
logical vector xi(j).  
As for the vectors of variables, the matrices related to the list 
of n missions can be easily obtained by either stacking or 
concatenating together the matrix blocks corresponding to 
each individual mission. As an example, we report the task 
sequencing matrix Fv for n missions 

 ( )1 2, ,..., n
v v v vF diagblock F F F= . (8) 

The update of vectors are computed according to the 
following equations.  
After a task starts the corresponding resource becomes busy  
and the corresponding element of vector r is set to 0: 

 r=r-Fr
T

 ∧ x (9) 

(the “minus” operator applied to Boolean components 
should be interpreted as an XOR operation). At the end of a 
task, the controller will command the release of the 
corresponding robot and the MSN feeds the “resource 
released” input, which is directly used in the model to reset 
the value of r to the idle (“1”) condition.  

The update of vector v  occurs in two different cases. The 
first one is when the M-DEC model receives the “j-th task of 
i-th mission completed” message from the MSN. In such a 
case, the corresponding element of v  is set to one (vi(j)=1). 
The second case occurs when it is set to “0” the element of 
vector corresponding to previously completed tasks using the 
following equation 

 ( )T
vv v F x= ⊕ ∧ .  (10) 

Mission inputs and outputs vectors are updated with similar 
equations (Tacconi and Lewis, 1997). 

3.2. Supervisory controller 

At the supervisory level, the main function of the M-DEC is 
to determine which rules must be fired, which tasks must be 
started, and which resources are in charge of performing the 
tasks. These functions are processed by means of two 
different sets of logical equations, one for checking the 
conditions for the activation of a generic rule of a generic 
mission, and one for defining the consequent controller 
outputs. The updated value of the rule logical vector is 
computed with the following controller state equation  

 ( ) ( ) ( ) ( )
dv r u u dx F v F r F u F u= ∧ ∨ ∧ ∨ ∧ ∨ ∧ . (11) 

Matrix 
duF in equation (11) is called the MSN conflict 

resolution matrix and is used to model the influence of 
control input du  on the rule vector x . In particular, an entry 
of “1” (“0”) in du  disinhibits (inhibits) the activation of the 
corresponding task. The vector du  can be seen as one 
controllable input of the MSN. Depending on the way one 
selects the strategy to assign the control vector du , 
dispatching decisions can be implemented. Also, by 
dynamically updating matrices Fr (which basically defines 
which resource performs each task), different resource to task 
assignments can be performed.  
On the ground of the current value of the rule logical vector 
x, the controller determines which tasks to start and which 
resources to release by means of the matrix controller output 
equations. In particular, the command of a task start is 
performed by means of the task start vector sv (having the 
same structure of vectors v and vp) using the following 
Boolean matrix equation  

 s vv S x= ∧ , (12) 
where Sv is the task start matrix and has element (j,h) set to 
“1” if logic state x(h) triggers the start command vs(j) for the 
corresponding task. Similarly, the resource release command 
is performed by means of the Boolean MSN resource release 
vector rs using the following matrix equation 

 rs=Srx. (13) 

in which Sr is the resource release matrix, having element 
(j,h) set to “1” if logic state x(h) triggers the release command 
for the j-th nodes of the MSN. Therefore, vector rs has q 
elements, each set to “1” when the controller commands the 
release of the corresponding MSN unit. 
In typical operating conditions, each MSN has several active 
missions, and multiple tasks waiting for execution. The next 
section presents the policies used to select, at any given time, 
the most appropriate tasks and resources in order to avoid 
conflicts and meet operational requirements. In particular, at 
each sample time: 

• the dispatcher (see next section) implements task 
conflict resolution and task priorities (specified by ud 
and Fud) and resource assignment (specified by Fr),  
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• the controller sends to the MSN the task start and the 
resource release commands specified by vectors sv  and 
rs respectively. 

Fig.1 illustrates the architecture of the M-DEC, including the 
new task assignment module described in the next section. 
 

4. TASK ASSIGNMENT 

(Gerkey and Mataric, 2004) suggest that ST-SR-IA problems 
can be viewed as Optimal Assignment Problems (OAP), and 
solved with various centralized or distributed methods 
(Gerkey and Mataric, 2004). Among the possible methods, 
the assignment strategy used in this paper is inspired to the 
“Min Conflict with Happiness” (MCH) heuristics proposed in 
(Gage and Murphy, 2004). The MCH is an algorithm for IA 
in a preemptive environment, and can be summarized as a 
sequence of three steps: a first greedy search for an initial 
(feasible or unfeasible) assignment, followed by two different 
(local and global) repair procedures which eliminate, as 
much as possible, any unfeasible assignment generated in the 
first step. Our assignment algorithm is structured in the same 
sequence of three steps, but the procedures used in each step 
are significantly different. The algorithm works dynamically 
grouping tasks and resources in a number of sets, updated at 
each sampling time τnow of the M-DEC. On the ground of the 
M-DEC discrete event model variables, the dispatcher is 
essentially in charge of updating matrices Fr, Fud and vectors 
ud and r, and of feeding them to the supervisory controller. In 
particular, for this purpose, the dispatcher calculates all the 
following sets (which can be easily derived from M-DEC 
model by means of simple matrix operations that are omitted 
for brevity): 

 
• TCO (completed tasks). This is the set of completed 

tasks, which is obviously disregarded by the scheduling 
procedures.  

• TIP (tasks in progress). This is the set of the task in 
execution at time τnow(represented by vp in the M-DEC). 
As pre-emption is not allowed, also these tasks are not 
subject to scheduling decision. However, if their 

expected completion time is known, such 
information is used for pre-scheduling of other 
activities.  

• TPA pre-assigned tasks. This set includes all the 
tasks waiting for process (i.e. not yet started) 
but already pre-assigned to resources by look-
ahead assignment. For the assignment 
algorithm, the tasks in TPA are considered 
equivalent to those in TIP (i.e., decisions about 
preassigned tasks cannot be changed).  

• TNE non-executable. This set encompasses all 
the tasks that cannot be started at time τnow due 
to precedence constraints with other tasks (e.g., 
“measure temperature at location x0” needs task 
“reach location x0” to be in TCO before 
activation).  

• TUA un-assigned tasks. This set includes all the 
remaining tasks, which are not assigned to 
resources but ready for execution at time τnow.  

• PID (idle resources). This set includes all the resources 
idle at time τnow. (described by “1” elements of  r in the 
MDEC). 

• PPA (pre-assigned resources). This is the set of 
resources for which the following two conditions 
simultaneously occur: (1) at time τnow, the resource is 
processing one task in TIP which is expected to end 
before τnow+∆τ, where ∆τ is the width of the look-ahead 
time window; (2) the resource has already been 
preassigned to a new task in TPA by a previous iteration 
of the look-ahead algorithm.  

• PEJ (resources ending job). This is the set of resources 
for which only the first one of the conditions specified 
for PPA is true. In other words, this set includes all the 
resources that are available for pre-assignment at time 
τnow.  

• PBU (busy resources). This is the set of resources that 
are not included in any of the sets defined above. These 
resources are currently processing a task whose 
expected end is either unknown or exceeds the current 
look-ahead window τnow+∆τ. 

 
The decision algorithm executes the following sequence of 

steps: 
Step 1. Look-ahead precondition check. The look-ahead 

algorithm preliminary assigns resources on the ground of 
expected completion time of the tasks in TIP (see Fig. 2) by 
conveniently updating matrix Fr. The look-ahead algorithm is 
executed only when (1) the number of free resources is lower 
than a predefined threshold, i.e. |PID|<δID, and (2) the number 
of unassigned tasks is greater than a threshold, i.e. |TUA|>δUA. 
This condition prevents the execution of look-ahead when the 
number of idle resources is sufficiently large with respect to 
the number of unassigned tasks. Essentially, when the 
conditions for look-ahead hold true, the assignment algorithm 
considers the resources in PEJ as idle and preassigns them to 
tasks in TUA according to the rules described in the following. 

Step 2. Task assignment precondition check. At each 
sample time, the task assignment algorithm is executed only 
if the overall number of resources in PID (or PID∪PEJ if look-

MSN  DISCRETE-EVENT 
MODEL

- receives acknowledgements from 
controlled hardware
- updates system condition variables 
- sends updates to controller

M-DEC DISPATCHER

- Determines Task and Resource Sets 
defined in Section IV
- Updates resource matrices
- Performs look-ahead assigments (if 
active)

MOBILE SENSOR 
NETWORK u [new 

mission]

[Robot released]

[Task Completed]

v

x
u
r

fs 
[Release
 robot]

vs 
[Start Task]

MATRIX-BASED DISCRETE EVENT CONTROL SYSTEM

x [Logical Rules]

M-DEC 
SUPERVISORY CONTROLLER

- Computes controller and state 
equations (11), (112), and (13)

Fr, ud,Fud, r 

 

Fig. 1. MSN: General architecture of the M-DEC, including the discrete event 
model, the dispatcher and the supervisory controller 
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ahead is active) is above a predefined threshold δPC 
(significantly smaller than δID). Otherwise, if |PID|+|PEJ| < δPC 
the assignment is postponed: resources in PID (if any) are kept 
idle for few time samples in order to obtain a larger pool of 
alternatives for the assignment algorithm.  

Step 3. Initial assignment. Each task is assigned to the 
resource in PID (or PID∪PEJ if look-ahead is active) with the 
maximum utility, disregarding whether the resource has been 
already assigned to other tasks. If no assignment is possible, 
the task remains unassigned at the current sampling time. 

Step 4. Local Conflict Removal. Tasks in conflict (i.e., 
assigned to the same resource) are sorted by flexibility 
(number of alternate resources that can perform the task). For 
each task in the sorted list, the algorithm checks if it can be 
redirected to a resource in PID at the cost of a decreased 
utility. Moreover, similarly to (Gage and Murphy, 2004), 
several heuristic procedures are applied to further reduce the 
amount of conflicts in the assignment. At the M-DEC level, 
conflict resolution strategies are implemented by suitably 
updating vector ud and matrix Fud. 

Step 5. Global conflict removal. This step could be seen as 
an iterative refinement of the step 4. In this case, instead of 
redirecting tasks in conflict, the procedure tries to free some 
resource by redirecting tasks that are currently not in conflict, 
with the aim of making the freed resource available for tasks 
whose conflicts could not be removed in the previous step. 
Given the inherently combinatorial nature of this procedure, 
this step may become time-consuming even for relatively 
small numbers of tasks and sensors. For this reason, its 
execution is limited by a timeout (smaller than sampling time 
of the M-DEC). At the end of step 5, if conflicts remain, the 
M-DEC supervisory controller will command the start of the 
task with the highest utility, while all the other ones will be 
reconsidered at the next decision time.  

5. SIMULATIONS 

This section provides a summary of numerical simulations, 
directly obtained with the M-DEC implementation in Matlab 
platform, which have been performed to test and tune the free 
parameters of the task assignment algorithm, quantify the 
contribution of the look-ahead strategy and show the 

suitability of the M-DEC to be integrated with on-line 
dispatching strategies. The simulations consider a set of 294 
randomly generated scenarios with 20 resources, and up to 
400-500 tasks for each scenario. Each mission has a variable 
number of tasks which have randomly generated precedence 
constraints. Task characteristics and utility matrices (such as 
the one given as example in Table I) are also generated 
randomly. The scenarios describe problems with a variable 
degree of complexity, ranging from easy cases in which 
many homogeneous robots are available to perform few 
hardly overlapping missions, to more complex problems with 
many overlapping missions and heterogeneous robots). 
 

TABLE I 
EXAMPLE OF UTILITY TABLE. 

 P1 P2 P3 P4 P5 
L1 0.33 0 0 0.5 1 
L2 0 0.67 0 1 0 
L3 0 0 1 0 0 
L4 0.8 0 0.9 0.33 0 
L5 0 1 0 0 0.2 
L6 1 0 0 0.67 0 

 

Simulations are replicated altering one of the free parameters 
(thresholds δID, δUA etc., look ahead window ∆τ). Results 
suggest that parameters δID and ∆τ  are particularly critical 
for the effectiveness of the proposed task assignment 
algorithm. The sensitivity analysis with respect to δID is 
summarized in Fig.2a. The mean utility (normalized with 
respect to the utility obtained without look-ahead) is 
increasing with the value of δID (named look-ahead range). 
As a further example, Table II shows the data for a single 
simulation. It can be noticed that the increase of look-ahead 
range improves the overall utility at the cost of a slightly 
extended total makespan (time needed to complete all the 
missions in the scenario). Fig.2b summarizes the sensitivity 
of the results with respect to the look-ahead window ∆τ. 
Figures suggest that high values for both parameters permit 
to achieve the best combination of advantages related to look-
ahead inspections. Similar analyses lead to conclude that 
good results are generally obtained when δUA is one to two 
times larger than δID. (smaller values of δUA tend to leave too 
many resource unassigned; while larger values tend to 
increase resources’ idle time).  

 
Fig. 2. (a) The effects of look-ahead range: Total Utility for increasing look-ahead ranges (the results are normalized with respect to the TU 
obtained without look-ahead). (b) Effect of increased width of look-ahead window (in time units). Simulations suggest to use high values for 
both parameters.(c) Top view (from the video sensor) of the experimental arena.  
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6. EXPERIMENTS ON A MSN PROTOTYPE 

The M-DEC control system has been implemented on an 
experimental laboratory-scale prototype of MSN, developed 
at the Laboratory of Robotics, DEE, Polytechnic of Bari. The 
MSN is composed of five mobile robots (K-Team Khepera 
robots) equipped with infrared sensors and encoders, and a 
set of transportable fictitious sensors that can be moved or 
removed by one mobile robot equipped with a small gripper 
with a contact sensor (Fig.2c). All the sensors are controlled 
by the M-DEC implemented in Matlab, and both sensory and 
control signals are transmitted by either radio-communication 
for battery-operated Kheperas or serial wires. The MSN has 
several tasks, which include “reach position”, “seek for 
objects”, “place sensor”, “push obstacle”, “map obstacle 
shape”, “remove obstacle”, etc. Battery-operated Kheperas 
are wireless: they have higher utilities for some tasks (e.g. 
they can reach any point in the arena), and lower ones for 
power-consuming tasks as “pushing obstacles”. On the 
contrary, wired Kheperas have a navigation range limited by 
the wire, but can perform push or removal tasks with higher 
utilities. The approximated position of each sensor is 
obtained using a videocamera mounted on the top of the 
1m×1m sensor arena (see Fig.2c). The M-DEC includes a 
textual interface for mission assignment, and a number of 
monitoring interfaces, which include the top view monitor. 
The experiments performed on the prototype confirm the 
effectiveness of the integrated scheduling and control 
platform and its experimental feasibility. The M-DEC MSN 
completes autonomously all the missions issued through the 
textual interface, handling conflicts, synchronization of 
activities and feedback control in a unified modelling and 
control platform. Task assignments are generally performed 
with the highest utility and the control system tolerates very 
well the typical disturbances (noisy sensory data, delays due 
to image processing or communication through serial 
interfaces) of real-world devices. 
 

7. CONCLUSIONS 

This paper has presented a discrete-event coordination 
scheme for mobile heterogeneous sensor networks in the 
execution of multiple missions. The proposed control 
architecture integrates, in the same matrix-based formalism, a 
discrete event model, a dispatcher and a supervisory 
controller. In particular we have presented an effective 
dispatching algorithm that takes into account the estimated 
duration of a task (when available) to improve the overall 

utility of the assignment. As main result, this paper shows 
that the matrix formalism allows to (1) easily combine in a 
single framework task planning, dynamic resource 
assignment with look-ahead, and shared resource conflict 
resolution with utility-based method and to (2) easily 
optimize the controller parameters to cope with different 
scenarios, robot functionalities, MSN size. Also the use of a 
unified decision and control environment allows the designer 
to (1) model, (2) simulate, and (3) experimentally implement 
the closed loop system in a straightforward way.  
The M-DEC proposed in this paper is fully centralized (it is 
run on a single PC). Following current trends in sensors 
networks, the research activities in progress are focused on 
the distribution of the M-DEC controller across a set of 
independent processors to achieve a multi-agent sensory 
platform.  
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0 1243 195.69 4  
1 1243 195.69 4  
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3 1213 247.14 5  
4 1289 240.81 9  
5 1247 255.66 9  
6 1270 263.76 18  
7 1273 263.00 9  
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