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Abstract: The paper deals with influence of a single scalar positive tuning parameter on performance 
properties of the closed control loop which contains algebraically designed PI controller while the response 
quality is evaluated by the size of first under- or overshoots. The controller coefficients are calculated from 
general solutions of diophantine equations in the ring of proper and Hurwitz stable rational functions. 
Subsequently, these controllers can be tuned by the only parameter. The contribution brings simple tuning 
rules and, moreover, it presents their possible practical application during control of real laboratory model 
assumed as system with parametric uncertainty. 

 

1. INTRODUCTION 

The issue of appropriate controller parameters adjustment has 
been very momentous and attractive topic for an array of 
decades. It is obvious that a large amount of tuning methods 
with their own specifications has been developed during such 
a long time of interest. However, simple setting rules are still 
desired and valuable. From the practical applications point of 
view, still the most important role play the controllers of PID 
and PI type, which are well known, widespread and easily 
utilizable. 

An elegant and effective tool for control design is adopted 
from algebraic approach (Vidyasagar, 1985), (Kučera, 1993), 
(Prokop and Corriou, 1997). This technique is based on 
general solutions of diophantine equations in the ring of 
proper and Hurwitz stable rational functions (RPS). It 
supposes the utilization of the known Youla-Kučera 
parameterization, which allows generating infinite amount of 
possible stabilizing controllers, while the choice of final one 
depends on the desired properties mathematically represented 
by conditions of divisibility in the specific ring. Anyway, the 
selected controller can be further tuned. And one of 
advantages of this approach is that behavior of regulators can 
be influenced by the only scalar tuning parameter 0m > . 
There are some methods how to choose the appropriate m for 
obtaining a controller which fulfil requirements of 
robustness, but there is a conspicuous lack of rules for 
nominal systems. 

The contribution is focused on proper choice of single tuning 
parameter for simple PI controllers. The synthesis technique 
itself is adopted from above mentioned algebraic approach 
and the main aim of the paper is to study and investigate 
relations between a scalar tuning parameter 0m >  and the 
desired behavior of the control loop. The basic considerations 
and analyses are based on the first order stable SISO systems 
and its response in a closed loop. However, the practical part 

shows the utilization of the proposed method on the higher 
order systems, even with uncertain parameters. 

2. AN ALGEBRAIC APPROACH TO CONTROL DESIGN 

There are many traditional as well as modern methods for 
design of PI or PID-like controllers (Åström and Hägglund, 
1995). However, the fractional approach developed in 
(Kučera, 1993) and (Vidyasagar, 1985) enables relatively 
deep insight into control tuning and a more elegant 
expression of all suitable controllers. This synthesis supposes 
the description of linear systems in RPS as a ratio of two 
rational fractions: 
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The scalar positive parameter 0m >  can be later 
conveniently used as a “tuning knob” for control behavior. 

A general feedback system is shown in Fig. 1. It represents 

for ( )( )
( )

Q sC s
P s

=  a classical feedback one-degree-of-freedom 

(1DOF) control loop. Ergo, the signal u is generated 
according to the control law: 

 [ ]( ) ( ) ( )P s u Q s w y P s n= − +  (2) 

In a two-degree-of-freedom (2DOF) control system, the 

controller C(s) consists of two transfer functions ( )
( )

Q s
P s

 and 

( )
( )

R s
P s

. The control law is governed by: 
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 ( ) ( ) ( ) ( )P s u R s w Q s y P s n= − +  (3) 

The objective is to design controller transfer functions such 
that the feedback system is internally BIBO stable, the 
reference error tends asymptotically to zero and the 
disturbances v and n are asymptotically eliminated from the 
plant output. All transfer functions of the closed control 
system (Fig. 1) have common denominator AP BQ+ . One of 
the nice and convenient results of the algebraic philosophy is 
that this denominator should be a unit in the ring RPS. In other 
words, the term ( ) 1AP BQ −+  resides in RPS and the feedback 
system is BIBO stable. If the elements A and B are coprime in 
RPS then all stabilizing controllers are given through an 
arbitrary solution 0 0,P Q  of diophantine (Bézout) equation: 

 1AP BQ+ =  (4) 

in a parametric form: 

 0

0

Q ATQ
P P BT

−
=

+
 (5) 

where T varies over RPS while satisfying 0 0P BT+ ≠ .  
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Fig. 1. General feedback system 
 
From the practical point of view, it is often desirable to 
ensure more than stability. Probably the most frequent 
problem is that of reference tracking. Under assumption of 
zero disturbances ( )0n v= = , algebraic analysis results in 
the fact that the tracking error e tends to zero if 

a) Fw divides AP for 1DOF 
b) Fw divides ( )1 BR−  for 2DOF 

The last condition gives the second diophantine equation in 
the form: 

 1wF Z BR+ =  (6) 

This approach is described in detail for example in (Prokop 
and Corriou, 1997), (Prokop et al., 2002). 

The design process is demonstrated for first order system. A 
nominal transfer function is supposed as: 

 0

0
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b

G s
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Further, step-wise reference with w
sF

s m
=

+
 and no 

disturbances are assumed. The diophantine equation (4) takes 
the form: 

 0 0
0 0 1

s a b
p q

s m s m
+

+ =
+ +

 (8) 

Multiplying by ( )s m+  and comparing coefficients give the 
general stabilizing solution in the form: 

 0 0
0 0( ) ; ( )

b s a
P s p T Q s q T

s m s m
+

= + = −
+ +

 (9) 

where 0
0 0

0

; 1
m a

q p
b
−

= =  and T is free in RPS.  The 

asymptotic tracking for a stepwise reference w will be given 

by divisibility of w
sF

s m
=

+
 and AP. It is achieved for 

0
0

mT t
b

= = −  so that P(s) has zero absolute coefficient in the 

numerator. Then inserting t0 into (9) gives 

 1 0( ) ; ( )
q s qsP s Q s

s m s m
+
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where 
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Finally, the 1DOF controller has the transfer function: 

 1 0q s qQ
P s

+
=  (12) 

which is a traditional PI control law governed by: 

 [ ] [ ]1 0( ) ( ) ( ) ( ) ( )u t q w t y t q w t y t dt= − + −∫  (13) 

The 2DOF structure brings the second equation (6) in the 
form: 

 0
0 0 1

bs z r
s m s m

+ =
+ +

 (14) 

with the general solution: 

 0 0
0

( ) ,s mR s r T r
s m b

= + =
+

 (15) 

where T  is again free in RPS. The choice 0 0T t= =  gives the 

feedforward part as 0 ( )r s mR
P s

+
=  and yields a general 
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2DOF controller while the choice 0 0t r= −  represents the PI 
controller operating with control error in the integrating part 

(feedforward part is then described by 0r mR
P s

= ). 

3. TUNING OF PI CONTROLLERS 

From the methodology based on RPS representation follows 
the fact that controller parameters and control response can 
be simply tuned by a scalar parameter 0m > . The question 
how to select or reject this parameter from the available set is 
very topical. Moreover, the task what criterion should be 
chosen is also important. The analysis of both questions is 
proposed in this part. 

For the first outline and from the point of view of control 
engineers a reasonable criterion can be seen in the 
overshooting and undershooting of control responses. This 
analysis is visualized for three couples of { }0 0,b a  in transfer 
function (7), while 0 0a > , i.e. stable system is assumed: 

 0 01; 0.5b a= =  (16) 

 0 01; 1b a= =  (17) 

 0 01; 2b a= =  (18) 

Supposing the 1DOF configuration, PI controllers (12) with 
parameters (11) were designed and tuned by 0.05;15m ∈  
for these three systems. Fig. 2 shows relations between the 
parameter m and the percentage of the first undershoot. Fig. 3 
represents a similar dependence for the overshoots. Graph in 
Fig. 2 is zoomed for better view. Typical shapes of the 
control responses with first undershoot or overshoot can be 
seen in Fig. 4. 
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Fig. 2. Relations between m and undershoot for (16) – (18) 
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Fig. 3. Relations between m and overshoot for (16) – (18) 
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Fig. 4. Typical control responses with first undershoot or 
overshoot 
 
The deeper insight into this analysis gives an important 
result. If the ratio of m and a0 is a constant then the control 
loop produces response with the same size of undershoot or 
overshoot. In other words, the control results of “same 
quality”, from the point of view of selected criterion, can be 
obtained if: 

 
0

m k
a

=  (19) 

where k is a constant. 

The closed-loop system produces the control responses with 
first undershoot if: 

 0.5k <  (20) 

However, the bulk of industrial processes requires the 
regulation with shorter settling time (and without 
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undershoots). This requirement can fulfil a higher value of k. 
The corresponding constant k for several values of first 
overshoot in percentage can be found in Tab. 1. 

 
Tab. 1. Relation between k and overshoot 

Overshoot [%] k 
0 1.00 
1 1.62 
2 1.87 
3 2.14 
4 2.44 
5 2.80 
6 3.25 
7 3.81 
8 4.58 
9 5.67 

10 7.38 
 
Probably the most significant consequence from this analysis 
is that it exists some interval of m which does not produce 
any overshoot or undershoot. The “optimal” choice of m 
seems to be if the response is as fast as possible but still 
without overshoot. For this case, constant k from (19) equals 
to 1 (see also Tab. 1), thus: 

 0m a=  (21) 

By further simulations, it was found out that the value of 
parameter b0 does not influence the choice of 0m > . The 
curves in Fig. 2 and Fig. 3 would be the same for every b0. 

Putting (21) into (11) gives the “optimal” parameters of PI 
controller: 

 
2
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;
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q q
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= =  (22) 

If the controlled system is assumed in the form: 

 ( )
1

KG s
Ts

=
+

 (23) 

where 0

0

b
K

a
=  and 

0

1T
a

= , then equations (19), (21) and 

(22), respectively, change into: 

 Tm k=  (24) 

 1m
T

=  (25) 

 
 

 1 0
1 1;q q
K KT

= =  (26) 

These ideas and simulation results can be confirmed also by 
analysis of the closed loop transfer function (see Fig. 1 and 
suppose 1DOF configuration): 
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Assuming controller parameters (11), it holds for the 
numerator of (27): 

 ( )
2

0
0 1 0 0

0 0

2m a mb q s q b s
b b

⎛ ⎞−
+ = +⎜ ⎟

⎝ ⎠
 (28) 

For example, it can be seen, that the closed-loop system has 
non-minimum phase behaviour (first undershoot for input 
signal positive step change) if: 

 00.5m a<  (29) 

which concurs with equations (19) and (20). 

The simulation examples, which indicates applicability of the 
derived rules for first as well as higher order systems can be 
found in (Matušů et al., 2006). 

4. REAL LABORATORY EXPERIMENTS 

4.1 Model description 

The controlled plant has been represented by laboratory 
model of hot-air tunnel constructed in VŠB – Technical 
University of Ostrava (Smutný et al., 2002). Generally, this 
object can be seen as multi-input multi-output (MIMO) 
system, however, the experiments have been done on two 
selected SISO loops. The model is composed of the bulb, 
primary and secondary ventilator and an array of sensors 
covered by tunnel. The bulb is powered by controllable 
source of voltage and serves as the source of light and heat 
energy while the purpose of ventilators is to ensure the flow 
of air inside the tunnel. All components are connected to the 
electronic circuits which adjust signals into the voltage levels 
suitable for CTRL 51 unit. Finally, this control unit is 
connected with the personal computer (PC) via serial link 
RS232. The diagram of the plant and whole control system is 
shown in Fig. 5. 
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Fig. 5. Scheme of hot-air tunnel and whole control system 

 
The CTRL 51 unit has been produced by Institute of 
Information Theory and Automation, Academy of Sciences 
of the Czech Republic (Klán et al., 2003). All presented 
control experiments were performed using the notebook HP 
Compaq nc6120, Windows XP and MATLAB 6.5.1. The 
communication between MATLAB and CTRL 51 unit was 
arranged through four user function (for initialization, 
reading and writing of data and for closing) and the 
synchronization of the program with real time was done via 
„semaphore“ principle. To ensure the sufficient emulation of 
the continuous-time control algorithms, the sampling time 0.1 
s was set. The detailed information about utilization of serial 
link under MATLAB including mentioned user routines, 
program synchronization mechanism and several tests can be 
found in (Dušek and Honc, 2002). The discretization of 
integrative parts of control laws was carried out by left 
rectangle approximation method. 

4.2 Control experiments 

The first considered loop covers bulb voltage u1 (control 
signal), which influences temperature of the bulb y3 
(controlled variable). The other, at given moment unutilized, 
actuating signals were preset to constant values – primary 
ventilator voltage u2 to 2 V and secondary ventilator voltage 
u3 to 0 V. The designation of variables corresponds to real 
connection of input and output signals of CTRL 51 unit 
(Smutný et al., 2002). 

This controlled system can be described by mathematical 
model with parametric uncertainty, i.e. its parameters lie 
within given intervals: 
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The nominal system is obtained with selection of fixed 
parameters and subsequent simple approximation: 

 ( )
( )( )

0.5 100 1 0.5 0.003145 ( )
9 1 150 1 159 1 0.006289 N

s
G s

s s s s
+

≈ = =
+ + + +

 (31) 

The tuning parameter 0.01761m = , which correspond to 5% 
of first overshoot for the nominal case, has been selected (see 
Tab. 1). The 1DOF PI controller computed according to (11) is: 

 1 0 9.199 0.0986q s qQ s
P s s

+ += =  (32) 

Assuming the family of plants (30) and the controller (32), 
the family of closed-loop characteristic polynomials can be 
easily formulated as: 
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 (33) 

This polynomial is robustly stable (Ackermann et al., 1993), 
(Barmish, 1994), (Bhattacharyya et al., 1995), i.e. the whole 
system is robustly stable. The real closed-loop control 
behaviour of the bulb temperature can be seen in Fig. 6. The 
control signal is depicted only in 25% of its true size because 
of better perspicuity of controlled variable. 
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Fig. 6. Control of bulb temperature 
 
The second loop consists of primary ventilator voltage u2 
(control signal) and airflow speed measured by vane 
flowmeter y7 (controlled variable). The bulb voltage u1 and 
secondary ventilator voltage u3 have been set to 0 V. 

Again, the plant is considered as system with parametric 
uncertainty. Now, its transfer function is: 

 
( )

[ ]
[ ]( )2 2
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The nominal system equals to: 

PC 
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The chosen value 0.2632m =  (0% of overshoot for nominal 
plant) results in PI controller: 

 1 0 1.4289 0.3761q s qQ s
P s s

+ += =  (36) 

The system (34) and regulator (36) leads to the closed-loop 
characteristic polynomial: 

 
( ) ( ) ( )
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2
1 0

2 3 2
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, , 1

2

p s K T Ts s K q s q

T s T s K q s q s

= + + + =
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 (37) 

Analogously to the previous event, robust stability of (37) 
entails robust stability of the whole closed-loop system. It is 
practically confirmed by Fig. 7, which shows final control 
behaviour of the airflow speed in the end of the tunnel. 
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Fig. 7. Control of airflow speed 
 
As can be seen, the proposed methodology of simple PI 
controllers tuning can be practically applied not only for first, 
but also for second (or higher) order uncertain systems thanks 
to the robustness of the control algorithms. 

5. CONCLUSIONS 

Controller design based on general solutions of diophantine 
equations in the specified ring is one of the elegant tools 
which algebra brings to control theory. Among other things, 
it gives a scalar positive parameter 0m >  which deeply 
influences control behavior. Generally, controller parameters 
are nonlinear function of this tuning knob. The principal goal 
of the contribution has been to study and analyze relations 
between this parameter and the desired properties of the 
closed-loop control system for the case of first order stable 
systems. The experimental analysis was performed through a 
 
 

set of simulations and the simple dependence between m and 
the size of undershoot or overshoot has been achieved. Then, 
tuning rules for PI controller parameters have been 
established. The results were verified during control of bulb 
temperature and airflow speed in laboratory model of hot-air 
tunnel. The controlled plants have been considered as second 
order systems affected by parametric uncertainty. 
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