
Modelling and Simulation of Robot Arm

Interaction Forces Using Impedance

Control
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Abstract: In this paper we present the implementation of a Cartesian impedance control
method to regulate the interaction forces between a robotic arm and the environment. A
complete description of the procedure to model and control both a two-link planar robot arm
and its interaction with the environment is detailed and simulated using MATLAB/Simulink;
from the generation of a mechanical model in SimMechanics (MATLAB), the description and
tuning of a dynamic model-based controller to cancel-out the non-linearities present on the
dynamic model of the robot, the modelling of an environment, and finally the control of the
interaction forces making use of a Cartesian impedance control method. This type of control
adjusts the dynamic behaviour of the robot manipulator when contacting the environment,
basically controlling stiffness and damping of the interaction rather than the precise contact
forces. Its implementation in the Cartesian Space permits future use of the results in an industrial
robot, whose internal joint and torque controllers are commonly not accessible.
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1. INTRODUCTION

For a robot manipulator to interact safely and human-
friendly in unknown environments, it is necessary to in-
clude an interaction control method that reliably adapts
the forces exerted on the environment in order to avoid
damages both in the environment and in the manipulator
itself. A force control method, or strictly speaking, a direct
force control method, can be used on those applications
where the maximum or the desired force to exert is known
beforehand. In some industrial applications the objects to
handle or work with are completely known as well as the
precise moment on which these contacts are going to hap-
pen. In a more general scenario, such as one outside a well-
defined robotic workcell, sometimes neither the objects nor
the time when a contact is ocurring are known.

In such case, indirect force control methods find their
niche. These methods do not seek to control maximum
or desired force, but they try to make the manipulator
compliant with the object being contacted. The major
role in the control loop is given to the positioning but
the interaction is also being controlled so as to ensure a
safe and clear contact. In case contact’s interaction forces
have exceeded the desired levels, the positioning accuracy
will be diminished to account and take care of the (at this
moment) most important task: the control of the forces.

Impedance control [1] is one of these indirect force control
methods. Its aim is to control the dynamic behaviour of the
robot manipulator when contacting the environment, not

by controlling the exact contact forces but the properties
of the contact, namely, controlling the stiffness and the
damping of the interaction. Moreover, the steady-state
force can be easily set to a desired maximum value. The
main idea is that the impedance control system creates a
virtual new impedance for the manipulator, which is being
able to interact with the environment as if new mechanical
elements had been included in the real manipulator.

First industrial approaches were focused on controlling the
force exerted on the environment by a direct force feedback
loop. A state-of-the-art review of the 80s is provided in
[2] and the progress during the 90s is described in [3]. In
many industrial applications, where objects are located
in a known position in space and where the nature of
the object is also familiar, the approach is well-suited
since it prevents the robot from damaging the goods.
If a detailed model of the environment is not available,
the strategy is to follow a motion/force control method
obtained by closing a force control loop around a motion
control loop [4]. If controlling the contact force to a desired
value is not a requirement, but rather the interest is to
achieve a desired dynamic behaviour of the interaction,
indirect force control methods find their application. This
would be the case when the environment is unknown
and the objects to manipulate have non-uniform and/or
deformable features. In this strategy, the position error is
related to the contact force through mechanical stiffness
or with adjustable parameters. This category includes
compliance (or stiffness) control [5], [6] and impedance
control [1], [11], [9] and [10].
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This paper presents a case study where impedance control
is used to control the interaction forces of a simulated two-
link planar arm. To achieve this goal, first a mechanical
model of the robot will be created using SimMechanics.
A model-based controller will be used that requires of
a mathematical description of the mechanical system in
order to linearise and decouple it. If the mathematical
description matches the mechanical system described in
SimMechanics, the non-linearities of the system will be
cancelled-out. Once the system is linear, a simple PD
controller can be used to implement a joint control. As
final step the environment is modelled and a Cartesian
impedance controller is used to control the forces exerted
for the robot. To test the control system, the robot is
given a reference input trajectory that causes the robot to
hit a wall so as to observe the performance of the robot-
environment interaction.

2. DESCRIPTION

2.1 Mechanical Model

The first step is to create a model of a simple two-link
planar arm to test our approach. Figure 1 shows the me-
chanical model of the two-link planar arm described with
SimMechanics. The model is composed by two revolute
joints and two bodies. The module receives torques as in-
put and outputs joint angles, torques and end-effector po-
sition in Cartesian coordinates. The masses are considered
to be concentrated at the end of each link, to simplify the
modelling tasks. In SimMechanics this is realised setting
the inertias as: ’zeros(3,3)’, a 3-by-3 matrix that defines
point masses and defining the Center of Gravity (CG) on
the edge of each link, since Matlab computes the inertias
at the CG.

The model of the system is non-linear and highly coupled.
For the control system, there are two alternatives: either
to use non-linear control techniques or to linearise the
system and apply well-known linear control techniques.
The second is usually the option adopted and will also
be used here. An elegant way is described in literature
to linearise and decouple the system [8]. The method
makes use of the dynamic model of the system, and that
means that the more accurate the dynamic model is, the
better will be the linearisation/decoupling process and its
posterior control success. The next section will describe
the dynamical model of the mechanical manipulator.

2.2 Dynamical Model

The dynamic model of a robot manipulator relates the
forces acting on the mechanical structure with the re-
sulting displacements, velocities and accelerations. These
forces can have different sources: the torques delivered by
the motors, the inertia of the mechanical links, the gravity,
Coriolis and centripetal forces, the friction forces and the
possible forces exerted for the environment on the robot.
Given an initial state of the mechanical structure and the
time history of torques τ(t) acting at joints, the direct
dynamic model allows to predict the resulting motion θ(t)
(and its derivatives) in joint space. With this information
and the direct kinematic model, a prediction of the trajec-
tory x(t) in Cartesian coordinates can be performed.

The dynamic model of a n-joint robot manipulator can be
written in the Lagrangian form as

M(θ)θ̈ + B(θ, θ̇) + G(θ) = u, (1)

where θ is the joint variable n-vector and u is the vector of
generalized forces acting on the robot manipulator. M(θ)

is the inertia matrix, B(θ, θ̇) are the Coriolis/centripetal
forces, and G(θ) is the gravity vector. In Equation (1)
we are not taking into account the friction torques that
are always to be found in a real robot manipulator. The
dynamic model of the two-link planar arm [7] following the
Lagrangian formulation is:

M(θ)

[

θ̈1

θ̈2

]

+ B(θ, θ̇) + G(θ) =

[

u1

u2

]

(2)

where

B(θ̇, θ̈) =

[

−m2a1a2(2θ̇1θ̇2 + θ̇2

2

) sin θ2

m2a1a2θ̇1

2

sin θ2

]

(3)

G(θ) =

[

(m1 + m2)ga1 cos θ1 + m2ga2 cos(θ1 + θ2)
m2ga2 cos(θ1 + θ2)

]

(4)

M(θ) =

[

h i
j k

]

(5)

with

h = (m1 + m2)a
2

1
+ m2a

2

2
+ 2m2a1a2 cos θ2 (6)

i = m2a
2

2
+ m2a1a2 cos θ2 (7)

j = m2a
2

2
+ m2a1a2 cos θ2 (8)

k = m2a
2

2
(9)

The terms a1 and a2 are the lengths of links 1 and 2,
respectively and m1 and m2 their masses. In our example,
a1 = a2 = 0.2m and m1 = m2 = 10kg.

2.3 Linearisation and Decoupling

Let’s describe now the technique to linearise and decouple
the system. Let’s define a controller such as

αu′ + β (10)

being u′ the new control input, and define

α = M(θ) (11)

β = B(θ, θ̇) + G(θ) (12)

Combining the controller with the dynamic model M(θ)θ̈+

B(θ, θ̇)+G(θ) = αu′ +β and simplifying that leads to the
system

θ̈ = u′ (13)

Our control input will have to deal with a linear and
very simple model. This solution will work as long as
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Fig. 1. Mechanical model in SimMechanics

it is possible to accurately represent and implement α
and β. As we will see later with the simulations in
MATLAB, the analytical solution for α and β matches
precisely the dynamics described by the mechanical model
in SimMechanics. The new control input u′ might be then
easily implemented as a typical PD controller:

u′ = −KP (θd − θ) − KV (θ̇d − θ̇) (14)

In other words, Equations (11) and (12) describe a dy-
namic model-based controller for the manipulator that will
be used to cancel the non-linearities of the manipulator in
order to achieve a model to control as simple as a double
integrator represented in (13). The general structure of the
dynamic model-based controller can be seen in Figure 2.

Fig. 2. General structure of the dynamic model-based
controller

Its implemenation in Simulink can be seen in Figure 3.

2.4 Inverse Kinematics

In most of the industrial manipulators, the possibility
to send torque commands directly to the robot is not
available. To simplify the tasks of the control engineer,
these industrial robots include an internal joint controller
together with the necessary inverse kinematics algorithms.
In other words, the designer can choose either to send
direct joint angle commands to the robot or an end-effector
position/orientation command in Cartesian coordinates.

In this case and in order to be able to easily port some
of the results of this work to an industrial manipulator,
an inverse kinematics module has been also integrated
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Fig. 3. Dynamic model-based controller in Simulink

in Simulink. In this way, the mechanical model of the
manipulator, the dynamic model-based controller and the
inverse kinematics module can be considered the ”black
box” that industrial robots are. From this point on, our
strategies can build up outer control loops that will be
easily tested on a real manipulator, namely, concentrating
on Cartesian impedance controllers rather than on internal
joint controllers.

Figure 4 shows the trajectory tracking performance of
the system under control for a given ramp trajectory in
Cartesian space. The parameters KP and KV were found
empirically (KP = 10000N/m,KV = 100Nms/rad) but
it is easy to demonstrate how to choose them depending
on the desired dynamical response. If the error is defined
as e = θd − θ, combining (13) and (14), the system’s error
equation is that of a second order system with the format
s2 + 2ξωn + ω2

n = 0 where the resonant frequency ωn and
the damping coefficient ξ are computed as ωn =

√

KP

and ξ = KV

2
√

KP

. As the results show, after cancelling the

non-linearities of the mechanical model with the use of
the model-based part of the controller, it is fairly easy
to tune the PD parameters so as to achieve the desired
performance of the control system.
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2.5 Modelling the Environment

So far, our design includes a manipulator model and its
control system, a system that is able to track a desired
trajectory in Cartesian space. Our dynamic model does
not take into account possible external forces acting on
the robot that would definitively change the dynamic
behaviour of our manipulator. To account for this sit-
uation, a model of the environment will be included in
our system whose interaction force will act on our robot.
Often a simple linear spring model is used as model for
the environment:

f = Ke(x − xe) (15)

where f is the contact force, Ke is the stiffness of the
environment, x is the end-effector position at the contact
point and xe is the static position of the environment. We
assume that the environmental stiffness can be modelled
as a linear spring with a spring constant Ke. Figure 5
depicts such a concept, where a manipulator of mass m
contacts the environment at position xe trying to reach
the desired end-effector position xd. In our case, we will
include a damping coefficient Be such as the environment
is modelled as

f = Ke(x − xe) + Be(ẋ − ẋe) (16)

Fig. 5. Manipulator in contact with the environment

2.6 Modelling Contact Forces

The dynamic equation describing the behaviour of our
system was defined in (1). In that case, u was considered
to include the effects of all the forces acting on the robot,
i.e. also the external contact forces. To make it clearer, we

will modify (1) to show the effect of those forces and will
compensate for them in our model. The dynamic equation
governing the robot’s behaviour might be defined as

M(θ)θ̈ + B(θ, θ̇) + G(θ) = u − JT (θ)f (17)

where now u defines the driving torques and the term
JT (θ)f translates the task-space forces f acting on the
end-effector to the joint space making use of the traspose
of the Jacobian. Our next Simulink model will include
Equation (17) in order to take account for contact forces
on the dynamic response. In the case of a two-link planar
arm, and knowing that the relation between torques and
forces is defined as τc = JT f , the following relation can be
written:

τ1c = J11fx + J21fy (18)

τ2c = J12fx + J22fy (19)

where τc are the contact torques, Jij are the elements of
the traspose of the 2x2 Jacobian matrix and fx and fy

are the forces along the X and Y directions, respectively.
Since we assume that no forces are acting along the Y
axis, because its path in this direction is free and we don’t
consider friction forces, we can assume that fy = 0 so that

τ1c = J11fx (20)

τ2c = J12fx (21)

These torques are to be included in equation (17).

2.7 Impedance Controller

So far we have modelled and controlled the dynamics of
a two-link planar arm and created a simple model for
the environment. The next step is to design a controller
that regulates the interaction when the robot contacts the
environment. In the current state, if the robot follows a
trajectory that finds on its way an object, the robot will
collide with it, trying to reach the final end position of
the given trajectory, and likely exerting such a huge forces
into the environment that would likely cause damages to
a real robot (and/or the object of collision). To avoid this
situation, an impedance controller will be designed so that
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its input is the reference trajectory at each time step.
Additionally, the measured contact forces will be included
on the controller so as to get an immediate feedback of the
contact state. The output will be a modified trajectory
that takes into account the contact forces. That means,
if no forces are sensed, the trajectory will be followed
strictly. Otherwise, when forces are measured, the tra-
jectory will be modified in order to limit the maximum
steady-state forces and to dynamically behave as the mass-
spring-damper system described in the control law given
with (22). Thus the impedance controller is modelled as

MT ët + DT ėt + KT et = f (22)

where MT , DT and KT are the inertia, damping and the
stiffness coefficients, respectively, et is the trajectory error,
defined as et = pd − pr where pd is the desired trajectory
input and pr will be the reference trajectory for the next
module (the inverse kinematics), corrected depending on
the value of the contact force f . MT , DT and KT will
define the dynamic behaviour of the robot that could be
compared to the effect of including physical springs and
dampers on the robot. Figure 6 shows the structure of
the impedance controller. The controller parameters were
MT = 5kg, DT = 1000Ns/m and KT = 10N/m.

Fig. 6. Impedance controller diagram

3. RESULTS

Figure 7 shows the complete MATLAB model of the con-
trol system. It includes the mechanical model, the dynamic
model-based controller, the model of the environment, the
impedance controller and the desired input trajectories.

In order to test the performance of the control system, the
robot is given a desired trajectory to follow. The input
trajectory for the X axis is a ramp starting at X = 0
with slope = 0.3/15. The reference for the Y-axis is a
ramp starting a Y = 0.4 with slope = −0.2/15. At X =
0.3 we installed a wall modelled as defined in (16) with
Ke = 500000N/m and Be = 0.1Ns/m. Figure 8 shows the
response of the system while approaching and contacting
the environment. The upper two plots on Figure 8 show
how at the contact point (X = 0.3) the contact force f
increases dramatically and how the impedance controller
reacts to redefine a new position trajectory that limits
the steady-state forces to a value of around 20N by
limiting, in this case, the X reference position to a value

of 0.3. In Figure 9 we can see the results of the same
experiment without using the impedance controller. The
manipulator tries to follow the given input trajectory
and after contacting the wall surface, the contact forces
increase exponentially as the robot travels ”inside” the
wall.
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4. CONCLUSIONS

This paper describes the process of modelling a simple
robotic manipulator and its interaction with the environ-
ment. The use of SimMechanics as a tool to model the me-
chanics of the robot allows the possibility to verify model-
based control algorithms. The precise mechanical model,
as in a real application, is unknown for the designer so that
the ability of the algorithm to match the real model can be
easily proven. That would allow the testing of techniques
like the proposed (dynamic model-based control) but also
learning techniques that extract the model of the plant
under consideration. On the other hand, a first insight into
the use of Cartesian impedance control shows its adequacy
to control the robot-environment interaction, especially in
those applications where the environment is completely or
partially unknown and where a major concern is the robot
compliance rather than controlling the exact forces exerted
into the environment.

5. OUTLOOK

Once the theoretical aspects have been verified in a simu-
lated environment and the results have shown the validity
of the approach, some experiments are to be performed on
a real platform. An experimental setup is being prepared
where a Mitsubishi PA-10, a seven degrees of freedom
industrial robot arm, is used to test the impedance control
in a real scenario. The robot will make use of force sensors
on its wrist to sense the contact forces and adapt its grasp
to the object being manipulated.
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