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Abstract: A high redundancy actuator (HRA) is composed of a high number of actuation
elements, increasing both the travel and the force over the power of an individual element. This
provides inherent fault tolerance, because when an element fails, the capabilities of the actuator
may be reduced, but it does not become dysfunctional. This paper analyses the likelihood of
different reductions in capabilities, based on the reliability of the actuation elements used. The
result is a probability distribution that quantifies the capability of the high redundancy actuator.
Together with the required capabilities, this determines the fault tolerance of the actuator.

Keywords: high redundancy actuator, fault-tolerant control, fault accommodation, fault mode
and effect analysis (FMEA), failure probability.

1. INTRODUCTION

1.1 Fault Tolerant Control

Fault tolerant control is about dealing with faults in
technical systems [Blanke et al., 2006]. Its goal is to prevent
a component fault from becoming a system failure [Blanke
et al., 2001]. Whilst significant progress has been made for
sensor faults, many results are not applicable to actuators.
Because sensors are information systems, one sensor can
be (nearly) as good as many sensors. Actuators however
perform an energy conversion, and one actuation element
alone may be too weak for the task.

Most existing approaches are based on the information
view. For example, the observer based approach has been
extended to cover actuator faults in the form of the virtual
actuator [Steffen, 2005]. Likewise, the idea of analytical
redundancies in sensors [Frank, 1990] has its equivalent
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Figure 1. High Redundancy Actuator

for actuators in the form of dynamic gain scheduling and
control allocation [Oppenheimer and Doman, 2006].

The classical fault tolerant approach for actuation is
replication: 2 or 3 actuators are used in parallel, much
like redundant sensors. Each actuator is strong enough to
meet the performance requirements by itself. This leads to
a significant amount of over-engineering, and consequently
a less efficient system (e.g. because of a higher weight).

1.2 High Redundancy Actuator

The obvious way to improve efficiency is to use a greater
number of smaller actuation elements. For example, a
system with ten elements may still work with only eight
of them operational, and the overall capacity is only over-
dimensioned by 25 %.

The idea of the High Redundancy Actuator (HRA) is
to use a high number of small actuation elements both
in parallel and in series (see Figure 1). This increases
the available travel and force over the capability of an
individual element, and it makes the actuator resilient to
faults where an element becomes loose or locks up. These
faults will reduce the overall capability, but they do not
render the assembly functionless. The goal is to take this
into account during the design, and to maintain correct
operation even if some elements are at fault.

So far, the research has focused on the modelling and
control of simple configurations with four elements [Du
et al., 2006, 2007]. Previous studies on the reliability
of complicated electromechanical assemblies are rare: the
reliability of electro-mechanical steering is discussed by
Blanke and Thomsen [2006], and electrical machines and
power electronics are analysed by Ribeiro et al. [2004].

This paper presents a method to analyse the reliability
of a high redundancy actuator of any size, using parallel
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Figure 2. Basic Configuration

and series configurations. It is based on the concepts
developed using graph theory in [Steffen et al., 2007a,b].
The new contribution of this paper is the determination
of probabilities for the correct operation of the actuator.

2. QUANTIFYING RELIABILITY USING
CAPABILITIES

2.1 Probabilities

The idea of this approach is to deduce the reliability of
a high redundancy actuator from the reliability of the
actuation elements used. Hence, the information on the
reliability of an element is considered given. This paper
assumes that the reliability of the elements is known in
the form of probabilities at a certain point of time. 1

2.2 Capabilities

A high redundancy actuator consists of many elements,
and so it is possible that some of these elements are
operational and some are faulty. In this situation, the
actuator may still work, albeit with reduced performance.
So the reliability of a high redundancy actuator depends
on the required performance.

A way to capture this connection between performance
and reliability was developed in [Steffen et al., 2007b]. The
idea is to determine so called capabilities that describe
the performance of the high redundancy actuator in terms
of physical measures. For example, the force capability
q can be conveniently specified in multiples of the force
of an individual actuation element. Obviously using two
elements in parallel creates an actuator that can produce
twice the force, so the force capability is q = 2 (see
Figure 2). And if one of the elements fail so that it cannot
generate any force, the capability is reduced to q = 1. (If
one element locks up, the whole set of element is rendered
unusable, and series alternatives have to be found.)

The other important measure is the travel capability d,
which states how far the actuator can move. Using several
1 In practice, different ways can be used to describe the reliability
of an element, such as mean time to failure (MTTF), availability,
failure probability over a given time, or failure probability during
a specified mission. The relevant specification depends very much
on the application. However, all measures are based on probabilities
or probability densities over time. The change of these probabilities
over time can then be interpreted as any of the above measures.

Table 1. Duality of force and travel

Capability Force Travel

Increased by parallel series configuration

Unaffected by series parallel configuration

Reduced by loose locked-up element faults

Unaffected by locked-up loose element faults

elements in series increases the travel capability. If an
element gets stuck so that it cannot move, this reduces
the travel capability. (It is assumed that the mass of each
element is negligible compared to the load, so all elements
have to provide the same force.)

Force and travel capabilities follow similar laws, but for
different configurations and faults. An overview of this is
given in Table 1. Because of these symmetries, the force
and travel capabilities can be considered to be dual.

2.3 Distributions

The reliability depends on the required capabilities, and
thus both need to be considered together. The function
showing the reliability over the required capability is called
a capability distribution. This powerful statistical tool be-
comes very convenient with three simplifying assumptions:

• The capabilities are given in multiples of a single
element. Therefore, the capability distribution is dis-
crete, and not continuous.

• Only one capability is considered at a time. This is
possible because the force and travel capability are
independent: the loss of one does not affect the other.

• From a fault perspective, the elements are indepen-
dent: the capability of one does not correlate to the
capability of another. This means the one fault only
affects a single element. Common mode faults cannot
be analysed using this method.

After these simplifications, the distribution can be speci-
fied by calculating the probabilities for a number of dis-
crete capability values. An example is shown in Figure 3.
This distribution would be written as

n 0 1 2

Distribution P (c = n) 0.01 0.09 0.9
Cumulative values P (c ≤ n) 0.01 0.1 1

where c denotes a generic capability.

2.4 Specifying the Elements

Usually, the reliability of an element is specified by giving
probabilities for the different fault cases. However, to be
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consistent with the further processing, this paper will
assume that every element is specified by a probability
distribution over the possible capabilities. For example, if
an element has a 10 % chance of producing no force, the
force capability distribution is

P (c = 0) = 0.1

P (c = 1) = 0.9 .

3. BASIC AGGREGATION

The idea of the high redundancy actuator is that several
actuation elements are used together to perform a common
function or meet an overall requirement. Depending on
how the elements are connected, different capabilities can
result. For example, a serial connection increases the travel
compared to what a single element can achieve alone, but
it does not change the maximum force.

To study the influence on the connection in detail, it is
assumed that n elements with the capabilities c1, c2, . . . , cn

are being used together. To simplify the analysis, only one
capability is considered at a time (either force or travel).
It is further assumed that the capability distribution is
known for each element.

3.1 Additive Capabilities

When several actuation elements are used together, this
increases certain capabilities above the level of an indi-
vidual element. For example, two elements in parallel can
produce twice the force. This means that the individual
capabilities add up to the capability of the system:

cadd = c1 + c2 + . . . + cn . (1)

From a fault tolerant perspective, this is a very resilient
arrangement. Because a fault only affects one element,
it can reduce the capability of the system only by the
amount contributed by this element. This is called graceful
degradation, and it is an desirable property for many fault
tolerant applications.

The probability distribution of different capabilities can
be determined by summing up the joint probabilities of all
the combinations leading to the same system capability.
This is done with the following equation:

P (cadd = i) =
∑

c1,...,cn







∏

j

P (cj) if
∑

j

cj = i

0 otherwise
. (2)

If two elements or subsystems are combined, this operation
is a convolution of the capability distributions:

P (cadd = i) =

i
∑

j=0

P (c1 = j)P (c2 = i − j) . (3)

The convolution can also be used to combine more than
two distributions by applying it repeatedly. This reduces
the computational complexity significantly compared to
the multi-dimensional sum above. Because the addition is
a commutative operation, the convolutions can be applied
in any order, without changing the end result.

For expressing the same convolution in terms of cumulative
probabilities, the following replacement can be used:

P (cadd < i) =
i
∑

j=0

P (c2 ≤ i − j)P (c1 = j) .

If all n elements are identical and have only two distinct
capabilities, the resulting distribution is a binomial distri-
bution. Assuming that each element has a probability a
of no capability, and a probability b of capability 1, the
distribution of an individual element is

P (c = 0) = a (4)

P (c = 1) = b = 1 − a . (5)

The binomial distribution for the system is given by:

P (cadd = i) = an−ibi

(

n
i

)

= an−ibi n!

i!(n − i)!
. (6)

For most practical cases, it can be assumed that the prob-
ability of a fault is small compared to the probability of
normal operation a ≪ b ≈ 1. This leads to a binomial dis-
tribution with a strong skew, which can be approximated
by neglecting the factor b:

P (cadd = i) = an−ibi

(

n
i

)

≈ an−1

(

n
i

)

. (7)

Note that this is an over-approximation, so for the purpose
of determining the failure probability is it always on the
safe side. The cumulative probability for a capability below
i becomes:

P (cadd < i) =

i−1
∑

j=0

an−jbj

(

n
j

)

(8)

≈
i−1
∑

j=0

an−j

(

n
j

)

≈ an−i+1

(

n
i − 1

)

.

Note that the second approximation is not conservative,
because it underestimates the probability of a failure. So it
should be tested on a case by cases basis. If applicable, this
simple result turns out to be very useful for the comparison
of different configurations.

3.2 Limiting Capabilities

Some capabilities do not add up when subsystems are
combined. Instead, the capability of the resulting system
is determined by the capability of the weakest part. This
happens for example with the force capability q when
actuation elements are used in series.

The capability of such a combined system is the minimum
capability over all the subsystems or elements:

clim = min{c1, . . . , cn} . (9)

So the probability of a certain system capability depends
on a high number of capability combinations. All combi-
nations are relevant where one element has exactly the
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desired system capability, and all other elements have the
same or higher capabilities.

P (clim = i) =
∑

c1,...,cn







∏

j

P (cj) if min
j

cj = i

0 otherwise
.(10)

The calculation becomes significantly easier when cumu-
lative probabilities are used:

P (clim ≥ i) =
∏

j

P (cj ≥ i) (11)

P (clim < i) = 1 −
∏

j

(1 − P (cj < i)) . (12)

With n elements, each having a probability a of no
capability, and a probability b of capability 1, this results
in the following distribution:

P (clim = 0) =

n−1
∑

i=0

a(n−i)bi n!

i!(n − i)!
(13)

= 1 − bn = 1 − (1 − a)n (14)

P (clim = 1) = bn = (1 − a)n . (15)

Using the same assumption as before (a ≪ b), this
distribution can be approximated as

P (clim = 0)≈ na (16)

P (clim = 1)≈ 1 − na . (17)

For more complicated distribution, the following approxi-
mation usually holds:

P (clim < i) = 1 −
∏

j

(1 − P (cj < i)) (18)

≈
∑

j

P (cj = i − 1) . (19)

This is based on the assumptions P (c = i) ≪ P (c = i +
1) ≪ 1, which should hold for typical systems with a ≪ b.

3.3 Multiple Levels of Aggregation

For most practical purposes, a high redundancy actuator
will contain elements in series and in parallel. Thus it is
important to analyse the capability distribution of these
aggregations on multiple levels.

Such a system can be analysed using a bottom-up anal-
ysis. From the capability distribution of the individual
elements, it is possible to calculate the distributions for
the basic subsystems, which are either parallel or series
arrangements of elements. By repeatedly applying this
operation, the capability distributions of bigger and bigger
subsystems can be constructed, until finally the distribu-
tion for the whole system is derived.

To perform this iterative approach, the actuator configu-
ration needs to be described as a series-parallel network.
This is possible if the actuator can be broken down into
series and parallel configurations of subsystems, until the
level of individual actuation elements is reached.

Series in Parallel 
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Figure 4. 4x4 Configurations: SP and PS

4. GRID CONFIGURATIONS

Two possible grid configurations are shown in Figure 4.
For example, a high redundancy actuator may consist of n
actuation elements in series, used m times in parallel. This
is called the SP configuration, as shown on the left side of
Figure 4. Let the force capabilities of the elements in the
first subsystem be q11, . . . qn1, the capabilities of the second
q12, . . . , qn2, up until the last subsystem q1m, . . . , qnm. In
the deterministic case, the force capability of the overall
system is the sum of the capabilities of the columns, which
are each limited by the weakest element. This leads to:

qSP = qcol1 + qcol2 + . . . + qcolm =

m
∑

i=1

n

min
j=1

qji . (20)

The capability distribution for one column needs to be
determined first (bottom-up). Applying the results of
Section 3.2 to this system leads to:

P (qcol = 0) = 1 − bn, P (qcol = 1) = bn . (21)

In the next step, the capability of the whole actuator is
deduced. This is straight forward, because the distribution
of the subsystem contains only two different capabilities (0
and 1). Equation (6) can be used, if b is replaced with bn,
and a is replaced with 1 − bn, to represent the increased
probability of one of the subsystems failing. The result is:

P (qSP = i) = (1 − bn)
m−i

(bn)i

(

m
i

)

. (22)

Under the simplifying assumption a ≪ b, this probability
can be approximated as

P (qSP = i)≈ (na)
m−i

(

m
i

)

. (23)

The travel can also be analysed using the same approach.
In the deterministic case, the travel of the overall system
is limited by the travel capabilities of each subsystem:

dSP = min{dcol1, dcol2, . . . , dcolm} =
m

min
i=1

n
∑

j=1

dji . (24)
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Figure 5. Reliability of the 4x4 SP configuration

The travel of the elements in each column is additive,
so it follows the laws given in Section 3.1. The resulting
capability distribution is given in equation (6). For reasons
explained below, the cumulative form given in (8) is used.

The second step of the analysis is more complicated,
because the subsystems have five distinct possible travel
capabilities. Consequently, the simple solution from equa-
tions (14) and (15) cannot be used. Instead, it is necessary
to perform the operation defined in equation (12). Com-
bining (12) with (8) leads to:

P (dSP < i) = 1 −

m
∏

j=1

(

1 −

i−1
∑

k=0

an−kbk

(

n
k

)

)

(25)

= 1 −

(

1 −

i−1
∑

k=0

an−kbk

(

n
k

)

)m

. (26)

The resulting equation (26) can be simplified using the
assumption a ≪ b. This leads to:

P (dSP < i)≈ 1 −

(

1 − an−i+1

(

n
i − 1

))m

≈m(an−i+1)

(

n
i − 1

)

and therefore:

P (dSP = i)≈m(an−i)

(

n
i

)

. (27)
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Figure 6. Reliability for low fault rates

Compared to equation (23), the only difference apart from
the transposition of n and m is a factor of mn−i−1. They
produce identical results if the probability of a single fault
in a square configuration is considered.

The same analysis can be applied to a high redundancy
actuator with m parallel elements, used n times in series.
In this configuration, the force is calculated as

qPS =
m

min
i=1

n
∑

j=1

qij (28)

and the travel is determined by

dPS =

m
∑

i=1

n

min
j=1

dij . (29)

Essentially, the roles of force and travel are reversed. This
is not surprising, as travel and force are dual capabilities,
just as parallel and series are dual configurations. Conse-
quently, the capability distributions are also reversed:

P (dPS = i)≈ (ma)
n−i

(

n
i

)

(30)

P (qPS = i)≈ n(am−i)

(

m
i

)

. (31)

Comparing these equations with (23) and (27) reveals
the advantages and disadvantages of both configurations.
The parallel in series configuration (PS) has a low failure
probability for a given force, while the series in parallel
configuration (SP) is more likely to meet a certain travel
requirement. The difference between both configurations
increases as the requirements are reduced (or with the
number of faults).

5. QUANTITATIVE EXAMPLES

The general results derived above can be used to analyse
two specific high redundancy actuators in 4x4 configura-
tion (as shown in Figure 4). One actuator uses four series
elements in four parallel columns (SP), leading to the
results shown in Figure 5. Since lower failure probabili-
ties are preferable, it follows that this configuration deals
better with loss of travel faults (lock-up) than with loss of
force faults (loose).
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Table 2. Availability with travel faults (SP)

Element Availability in % by travel requirement

avail. 1/4 2/4 3/4 4/4

90 99.96 98 80 20

99 99.999 996 99.998 99.8 80

99.9 99.999 999 999 6 99.999 998 99.998 98

99.99 100 − 4 10−14 100 − 2 10−9 99.999 98 99.8
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Figure 7. Approximation of travel reliability (27)

For the parallel in series configuration (PS), the results
are exactly reversed: the PS configuration has the same
response to loss of travel (lock-up) faults as the SP
configuration has to loss of force (loose) faults, and vice
versa. Just as force and travel are dual variables in relation
to the energy flow, the two configurations are dual with
respect to their reliability. So the PS configuration is
preferable when the force capability is critical.

The improvement of the high redundancy actuator over
a non-redundant configuration increases with lower fault
probabilities. This is evident in Figure 6, which shows
the failure probability due to loss of travel faults for
the SP configuration at fault rates up to 1 %. A com-
parison between the exact failure probabilities and the
over-approximations according to Equation (27) is shown
in Figure 7 using a double logarithmic scale. For fault
and failure probabilities around 1 %, the approximations
(straight lines) are very accurate, but from 10 % on they
become increasingly conservative.

As stated in Section 2.1, the probabilities can be inter-
preted in a number of ways. For example, they can be
converted into the availability figures shown in Table 2
(assuming maintenance does not affect the availability).

6. CONCLUSIONS

This document has shown how to calculate the reliability
of a high redundancy actuator. Due to the high number
of actuation elements, a new approach needed to be
developed to achieve this. Using probability distributions,
the problem can be solved with a low computational effort,
and using well understood operations.

The results show that the selection of the best suitable
configuration has a significant influence on the reliability
of the high redundancy actuator. By starting with subsys-

tems of parallel elements, the actuator can be made more
resilient against loss of force faults, as other elements can
easily take over the load. On the other hand, building on
elements in series is superior in the case of loss of travel
(lock-up) faults.

Further studies are required to investigate more complex
configurations. It is also interesting to consider the dy-
namical behaviour, as defined by robustness, gain margin,
speed or accuracy. However, since these are not simple
physical variables, but properties of a controlled system,
the treatment is necessarily much more involved.
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