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∗

Michel FLIESS
∗∗

Cédric JOIN
∗∗∗

∗ LGI2A (E.A. 3926), Université d’Artois,
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Abstract: The main traffic parameters such as the critical density and the free flow speed
of a motorway segments are subject to changes over time due to traffic conditions (traffic
composition, incidents, . . . ) and environmental factors (dense fog, strong wind, snow, . . . ).
As such parameters have an impact on the performance of the traffic control strategies, they
must be estimated on-line. Our approach, which is of algebraic flavor and avoids asymptotic
and statistical techniques, yields fast implementable formulae in closed form. Some convincing
computer simulations are provided. Copyright 2008 IFAC.
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1. INTRODUCTION

Intelligent transportation systems were introduced to en-
sure an optimal infrastructure utilization and to improve
the driving safety, by alleviating congestion phenomena.
All proposed control strategies rest on the use of mod-
els particularly the macroscopic one (Papageorgiou, Haj-
Salem & Blosseville (1991)). However, some of the impor-
tant parameters of such a model are usually unknown and
are subject to frequent changes over time (Ozbay, Ilgin &
Kachroo (2006)). The success of traffic control strategies
depends therefore on the capacity to calibrate the control
parameters as soon as one is able to track changes in
the main traffic model characteristics (Wang & Ioannou
(2006)). The model parameters calibration is generally
done off-line using simulation software as in Zhang, Boitor
& Ioannou (2005) or estimated off-line as in Karaaslan,
Varaiya & Walrand (1990). Nevertheless, as the parame-
ters are subject to changes over time owing traffic condi-
tions (traffic composition, incidents, ...) and environmental
factors (dense fog, strong wind, snow, ...), their estima-
tion must be achieved on-line. In this context, several
parameter estimators are available. Bellemans, Schutter
& Moor (2002) have proposed a nonlinear optimization
algorithm that refits the most sensitive traffic flow model
parameters. The approach is based on a regular set of data.
Whereas the method is very powerful, it requires more
computation, and the fitting with one set of data may not
guarantee a good results with another set of data. Ozbay,
Ilgin & Kachroo (2006) have used an extended Kalman
filter (EKF) to estimate the critical density considered as

state variable. Wang & Ioannou (2006) have developed a
parallel adaptive least-squares parametric estimator for a
second-order macroscopic model. Several other works (see,
e.g., Wang & Papageorgiou (2005), Wang, Papageorgiou
& Messmer (2006)) are utilizing the same principle of
EKF to estimate together traffic parameters and states.
This paper 1 is proposing a new fast parametric estimation
method resulting from algebraic technics first introduced
in Fliess & Sira-Ramı́rez (2003, 2008) 2 . This new setting,
which avoids statistical and asymptotic techniques, yields
fast implementable algebraic formulae, in closed form.
Excellent estimates of the most sensitive traffic flow model
parameters, like the critical density and the free flow speed,
are obtained in this way.

After recalling in Section 2 a basic macroscopic model,
Section 3 demonstrates that the basic parameters may
be estimated thanks to this new setting, which is briefly
reviewed. Convincing numerical simulations 3 are provided
in Section 4.

1 See also Abouäıssa & Join (2008). See Villagra, d’Andréa-Novel,
Fliess & Mounier (2008) for applications to another traffic control
problem via analogous methods.
2 See Fliess, Join & Sira-Ramı́rez (2004) for applications to lin-
ear diagnosis. See Fliess, Fuchshumer, Schöberl, Schlacher & Sira-
Ramı́rez (2008) for the corresponding parameter identification in
the discrete-time case.
3 Lack of space is preventing us to detail the com-
puter implementation. It may be obtained from H.
Abouäıssa (hassane.abouaissa@univ-artois.fr) and C. Join
(cedric.join@cran.uhp-nancy.fr).
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Fig. 1. A freeway stretch subdivided into segments

2. TRAFFIC FLOW MODELLING

We assume for the dynamics of the traffic flow a first
order macroscopic model (LWR) (Lighthill & Whitham
(1955); Richards (1956)), which is briefly presented below.
Consider a freeway stretch subdivided into n segments as
shown in Figure 1. The macroscopic first order model is
based on the following mass conservation law:

∂ρ

∂t
+

∂q

∂x
= 0

For a space discrete representation, define the traffic
density ρi as the number of vehicles in segment i at time t,
divided by the segment length Li. The traffic volume qi−1

in veh/h, is defined as the number of vehicles entering the
segment i; qi is the number of vehicles leaving the segment
i. The equation of the nonlinear model for each freeway
segment reads:

ρ̇i(t) =
1

Li

(qi−1(t) − qi(t) + airi(t) − bipi(t)) (1)

where, ai and bi are binary variables which indicate
respectively the presence or the absence of an on-ramp
ri(t) and off-ramp pi(t). Note that another space discrete
model (Mammar, Mammar & Netto (2006)) that take into
account the shock waves phenomena may also be utilized.
Eq. (1) is supplemented by the following two equations:

qi(t) = ρi(t)vi(t) (2)

vi(t) = vf,i

(

1 −
ρi(t)

ρm,i

)

(3)

Here, one considers the Greenshields fundamental diagram
(Greenshields (1935)) based on Eq. (3), where, vf,i is the
free flow speed or the speed of the vehicle in the segment i
when there are no interactions between vehicles. Write ρm,i

the jam density of the segment i. Note that each segment
is characterized by a capacity defined by the maximum
flow qm,i corresponding to the critical density ρcr,i. There
is a linear relation between this density and the maximal
density ρm,i:

ρcr,i =
ρm,i

2
As stated in Ozbay, Ilgin & Kachroo (2006), the segment
capacity is not constant. It may change over time owing to
circumstances such as traffic condition and driver behav-
ior, traffic composition and external factors (environmen-
tal conditions and segment geometry, . . . ). Strong wind
and dense fog, for example, do also affect the flow-density

and the speed-flow relationships. This means that both
the critical density and the free flow speed are subject to
changes, which may be quite abrupt. Due to their impact
on the control strategies performances, these two main
parameters ought to be estimated on-line.

3. ON-LINE PARAMETER ESTIMATION

Let us start with an elementary academic example for
explaining the basic principles of our techniques (see Fliess
& Sira-Ramı́rez (2003, 2008) for details).

3.1 An elementary academic example

Consider the first-order monovariable input-output system

ẏ(t) = Ky(t) + u(t) (4)

for t ≥ 0, where:

• u(t) and y(t) are respectively the control and output
variables,

• the constant gain K is unknown.

Rewrite Eq. (4) in the usual operational form (see, e.g.,
van der Pol & Bremmer (1955); Yosida (1984)), which is
most often introduced via the classic Laplace transform:

sŷ = Kŷ + û + y(0)

Apply to both sides the derivative d
ds

, which corresponds in
the time domain to the multiplication by −t (van der Pol
& Bremmer (1955); Yosida (1984)), in order to eliminate
the initial condition y(0), the measurement of which might
be corrupted by noises:

ŷ + s
dŷ

ds
= K

dŷ

ds
+

dû

ds
(5)

It yields the linear identifiability (Fliess & Sira-Ramı́rez
(2003, 2008)) of K:

K =
ŷ + sdŷ

ds
− dû

ds
dŷ
ds

In order to get rid of time derivatives, multiply both
sides of Eq. (5) by s−N , where N ≥ 1 is large enough.
Remember that negative powers of s corresponds in the
time-domain to iterated time-integrals (van der Pol &
Bremmer (1955); Yosida (1984)). Those iterated inte-
grals are classic instances of low pass filters, which are
attenuating corrupting noises, when considered as highly
fluctuating phenomena 4 .
4 See Fliess (2006) for more details. Let us emphasize that no
statistical tools are needed.
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Remark 3.1. The above calculations were for simplicity’s
sake assuming noises of zero mean. This is not the case in
the numerical experiments of Section 4, where there is a
constant mean equal to 150. Let us indicate very briefly
how to modify our previous calculations 5 . Replace Eq.
(4) by ẏ(t) = Ky(t) + u(t) + C where C is an unknown
constant. Eq. (5) becomes sŷ = Kŷ + û + y(0) + C

s
. We

are eliminating y(0) and C by multiplying both sides of

the last equation by the differential operator d2

ds2 s. The
remaining estimation of K is quite similar to what we have
already done.

Remark 3.2. An excellent estimated value of K, which is
derived via iterated time integrals, may be obtained by
utilizing quite short time windows (Fliess & Sira-Ramı́rez
(2003, 2008)). This is why we may speak of a fast or on-line
parametric estimation technique.

3.2 Traffic flow parametric estimation

The speed vi is easily obtained via Eq. (2) by utilizing the
measured signals qi and ρi 6= 0. In what follows vi is thus
supposed to be known.
Set θ1,i = vf,i and θ2,i =

vf,i

2ρcr,i
for estimating the

parameters vf,i and ρcr,i, which are linearly identifiable.
Eq. (3) reads here:

vi(t) = θ1,i − θ2,iρi(t)

It becomes in the operational domain:

v̂i(s) =
θ1,i

s
− ρ̂i(s)θ2,i

if the unknown parameters θ1,i and θ2,i are assumed to be
constant. Multiplying both sides of the preceding equation
by Π1 = 1

s2

d
ds

s and Π2 = 1
s

yields:

v̂i(s)

s2
+

1

s

d

ds
v̂i(s) = −θ2,i(

ρ̂i(s)

s2
+

1

s

d

ds
ρ̂i(s))

v̂i(s)

s
=

θ1,i

s2
− θ2,i

ρ̂i(s)

s

where only iterated integrals appear in order to get a good
noise attenuation. The well known Cauchy rule yields in
the time-domain the following estimators:

[θ2,i]e = −

∫ T

0
(T − 2τ)vi(τ)dτ

∫ T

0 (T − 2τ)ρi(τ)dτ

[θ1,i]e =
1

T

(

[θ2,i]e

∫ T

0

ρ(τ)dτ +

∫ T

0

vi(τ)dτ

)

where [0, T ] is the time window, which is necessary for
achieving reliable calculations. This time window, which is
quite short, permits on-line estimations of [vf,i]e = [θ1,i]e

and [ρcr,i]e =
[θ1,i]e
2[θ2,i]e

.

Remark 3.3. See, for instance, Fliess & Sira-Ramı́rez
(2003) when the denominators in the above formulae are
close to zeros and yield numerical instabilities.

5 See Fliess (2006) and Fliess & Sira-Ramı́rez (2003, 2008) for more
details.

4. NUMERICAL EXPERIMENTS

4.1 First results

Consider a simple section of 1 km length. The nominal
traffic flow changes between 1800 and 1400 veh/h. Set

{

vf = 60 km/h for t < 0.4h

vf = 72 km/h for t ≥ 0.4h

and
{

ρcr = 60 veh/km for t < 0.7h

ρcr = 48/km for t ≥ 0.7h

Figure 2 demonstrates that, without corrupting noises,
good estimates are obtained almost immediately after
the parameter variations. A very small integration time
window, here 10 samples 6 , is sufficient.

The output measurements qin, ρ are now corrupted by
an additive non-Gaussian noise, of mean 150, which is
fluctuating between 0 and 300. Without pre-filtering 7 ,
this noise is degrading the reconstruction of v. Compare
Figures 2-(c) and 3-(c). We have to increase the integration
time window from 10Te to 600Te, in order to ensure good
and robust estimates.

4.2 Application to a ramp metering

The equation for the same section as above, with an on-
ramp, reads:

ρ̇(t) =
1

L
(qin(t) − qout(t) + r(t))

where L and r(t) are the length and the control variable.
Combining it with Eq. (2), (3) yields:

ρ̇(t) =
1

L
(qin(t) − ρ(t)[vf ]e

(

1 −
ρ(t)

2[ρcr]e
) + r(t)

)

(6)

where [•]e denotes the estimated value. The objective of
the control, is to maintain the traffic density below a
critical one ρ < ρcr. Let us define the maximal density
ρm = 120veh/km. For a free-flow speed of vf = 60km/h
and a critical density ρcr = 60, the section capacity
expressed in term of traffic flow qm = 1800veh/h. The
initial density ρ(0) = 10veh/km, which means that the
traffic is in an un-congested regime.

As already noticed by Abouäıssa, Iordanova & Jolly
(2007), Eq. (6) defines a controllable linear system which
is therefore flat (see Fliess, Lévine, Martin & Rouchon
(1995); Fliess & Marquez (2000); Rotella & Zambettakis
(2007); Sira-Ramı́rez & Agrawal (2004)); y = ρ is a flat
output. It yields the closed-loop control

r(t) = Lẏ∗ − K1(y − y∗) + y[vf ]e

(

1 −
y

2[ρcr]e

)

− qin

where the gain K1 is to be tuned. We do not consider the
queue length that can be formed at the on-ramp and may
provide negative ramp flow values. The results reported in
Figure 4 confirm the adaptive capabilities for tracking any
change of the reference density. To avoid abrupt changes
of the reference, [ρcr]e and [vf ]e are filtered by a low pass
filter and becomes [ρcr]f and [vf ]f .

6 The sampling period Te is equal to 1s.
7 Filtering those two measurements would increase the estimation
performances. We did not do it here in order to test our approach.
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Fig. 2. Simulation results with noise-free measurements
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Fig. 3. Simulation results in the noisy case
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Fig. 4. Simulations in closed-loop, with noisy measurements

5. CONCLUSION

Future works will present more realistic scenarios for traffic
control. The new on-line nonlinear estimation and identi-
fication techniques (Fliess, Join & Sira-Ramı́rez (2008))
should play an important role.
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H. Abouäıssa, V. Iordanova and D. Jolly. Integrated control of
highway systems using flatness-based concept, Proc. SCS-IFAC,

Int. Modeling Simulation Multiconf. - Int. Conf. Advances Vehicle

Control and Safety, Buenos Aires, 2007.
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H. Sira-Ramı́rez. An introduction to algebraic discrete-
time linear parametric identification with a concrete
application, J. europ. syst. automat., 2008 (available at
http://hal.inria.fr/inria-00188435/en/).

M. Fliess, C. Join and H. Sira-Ramı́rez. Robust residual generation
for linear fault diagnosis: An algebraic setting with examples. Int.

J. Control,, vol. 77, pp. 1223–1242, 2004.
M. Fliess, C. Join and H. Sira-Ramı́rez. Non-linear estimation is easy,

Int. J. Modelling Identification Control, vol. 3, 2008 (available at
http://hal.inria.fr/inria-00158855/en/).
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J. Villagra, B. d’Andréa-Novel, M. Fliess and H. Mounier. Estima-
tion of longitudinal and lateral vehicle velocities: An algebraic
approach, Proc. Amer. Contr. Conf. – ACC’08, Seattle, 2008.

Y. Wang and M. Papageorgiou. Real-time freeway traffic state
estimation based on extended kalman filter: a general approach,
Transportation Research, vol. 39B, pp. 141–167, 2005.

Y. Wang, M. Papageorgiou, and A. Messmer. A real-time freeway
network traffic surveillance tool, IEEE Trans. Control Systems

Technology, vol. 14, pp. 18–32, 2006.
Y. Wang and P.A. Ioannou. Real-time parallel parameter estimators

for a second-order macroscopic traffic flow model Proc. 9th

IEEE Intelligent Transportation Systems Conf., pp. 1466–1470,
Toronto, 2006

K. Yosida. Operational Calculus, Springer, 1984.

J. Zhang, A. Boitor and P.A. Ioannou. Design and evaluation of

roadway controller for freeway traffic, Proc. 8th IEEE Intelligent

Transportation Systems Conf., Vienna, 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13045


