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Abstract:
We present explicit formulas for ellipsoids bounding reachable sets for linear control dynamic
systems with geometric bounds on control. We study both locally and globally optimal ellipsoidal
estimates with regard to different optimality criteria. In particular, we solve some essentially
nonlinear boundary problems related to the search for globally optimal ellipsoids with regard
to the volume criterion. It is shown that by using the explicit formulas one can efficiently pass
to limits in several asymptotic problems, including passing to the limit when the phase space
dimension goes to infinity.
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1. INTRODUCTION.

Reachable set is a central notion of the control theory. A
good knowledge of these sets would allow us to solve easily
basic optimization problems. For instance, the terminal
functional optimization problem reduces to a problem
of nonlinear programming. Unfortunately, usually this
knowledge is missing for a simple reason: the reachable sets
are complicated. In particular, their complete description
requires infinite number of parameters, which is surely
impractical. Therefore, it is natural to look for a simple
substitute for reachable sets. Now it is well-known that,
at least for linear control problem, one can efficiently
find upper and lower ellipsoidal bounds for these sets.
In what follows we’ll discuss certain new properties of a
class of upper ellipsoidal bounds. Still, up to section 6
we remind foundations of the ellipsoidal analysis as they
can be found in, e.g., Chernousko, Ovseevich (2004). The
new trends presented here include analytic and numerical
study of globally volume-optimal ellipsoidal estimates, and
asymptotics of ellipsoidal estimates as the number N of
degrees of freedom of studied systems tends to infinity.
Some of these developments are applicable to general
linear systems as, e.g., numerical method for the search
for globally volume-optimal ellipsoids, but others as, e.g.,
asymptotic theory as N → ∞ are related to particular
quite simple linear systems, and extension to a more
general setup is out of reach at present. It should be
stressed, that in spite of the simplicity of some linear
systems considered, the study addresses rather refined and
complicated analytical issues.
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2. EVOLUTIONAL ESTIMATORS.

We deal with a linear control system of the following form
ẋ(t) = Ax(t) + Bu(t) + c(t), x(s) ∈ M ⊂ Rn,

u ∈ U(t) ⊂ Rm, t ≥ s,
(1)

where matrices A and B might depend on time.

The problem is to bound from above the family of reach-
able sets

D(t) = D(t, s, M) =

{x(t) ∈ Rn : x(·) — admissible trajectory},
(2)

The reachable sets possess the following important evolu-
tional property:

D(t) = D(t, τ, D(τ)) τ ∈ [s, t]. (3)
Definition. A family Ω(t), t ≥ s of sets Ω(t) ⊂ V is
called superreachable (superattainable) for system (1), if
the inclusion holds

Ω(t) ⊃ D(t, τ ; Ω(τ)), s ≤ τ ≤ t (4)

It is clear that the superreachable sets give upper bounds
for reachable sets, provided that this is the case at the ini-
tial time instant. In other words, they are are evolutional
estimators for reachable sets.

3. ELLIPSOIDAL ESTIMATION.

In what follows we are looking for ellipsoidal superreach-
able sets. An ellipsoid can be conveniently described by
parameters a,Q

E(a,Q) =
{
x ∈ V = Rn :

(
Q−1(x− a), x− a

)
≤ 1
}

,

E(Q) = E(0, Q),
(5)
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where a is a vector, and Q is a positive definite symmetric
matrix.

The control system (1) takes form
ẋ = Ax + Bu + c, u ∈ E(G), x(s) ∈ E(a0, Q0), (6)

i.e., the bounds for control and initial position are ellip-
soidal

The condition of superreachability (3) for ellipsoids E(t) =
E(a(t), Q(t)) takes the following analytic form Ovseevich
(1997):

ȧ = Aa + c,

Q̇ ≥ {A,Q}+ λQ + λ−1H, H = BGB∗,
(7)

{α, β} = αβ + β∗α∗, λ > 0, the matrix inequality means
that the difference of the left- and right-hand sides is a
positive definite symmetric matrix.

4. OPTIMAL ELLIPSOIDS

Suppose we are given a functional E 7→ L(E) of ellipsoids,
which depends smoothly on a,Q. A superreachable family
of ellipsoids E(t) is

• locally optimal, if for any τ ≥ s

d

dt
L(E(t))

∣∣∣∣
t=τ

→ min, (8)

• globally optimal, if
L(E(T )) → min . (9)

For linear control system (6) one can write down explicitly
the equations of motion for optimal ellipsoids by optimiz-
ing wrt the parameter λ in relations (7) (see Chernousko
(1994), Ovseevich (1997)).

5. EQUATIONS FOR OPTIMAL ELLIPSOIDS

Suppose that the criterion L = L(Q) and ∂L/∂Q ≥ 0.
Then the parameters of optimal ellipsoids satisfy the
equations

ȧ = Aa + c, a(s) = a0

Q̇ = {A,Q}+ λQ + λ−1H, Q(s) = Q0,

λ =
√

Tr(PH)/Tr(PQ),

(10)

• In the locally optimal case
P = ∂L/∂Q. (11)

so that (10) is an initial value problem
• In the globally optimal case

Ṗ = −{P,A}, P (T ) = ∂L/∂Q(Q(T )) (12)
so that (10), (12) is a boundary value problem

Equations (12) are based on the Pontryagin maximum
principle for the extremal problem (9).

6. A SPECIAL CLASS OF ESTIMATING
ELLIPSOIDS.

The following notion was introduced by A.B. Kurzhansky
and P. Varaiya:

Definition. A family of (upper) bounds E(T ) of reachable
sets D(T ) is tight if it touches D(T ) for each T .

It turns out that globally optimal superreachable ellip-
soids, which minimize the projection upon a fixed straight
line are tight:

Theorem. Globally optimal ellipsoids wrt criterion L(Q) =
(Ql, l) are tight (Chernousko, Ovseevich (2003))

Thus, the notion of tight ellipsoids does not go beyond the
class of optimal superreachable ellipsoids.

7. APPROXIMATION QUALITY.

We suggest to assess the approximation quality by using
the Banach-Mazur distance between the ellipsoid and the
reachable set. When we consider symmetric (wrt 0) convex
bodies Ω1, Ω2 the Banach-Mazur distance between them
is

d(Ω1,Ω2) = log(t(Ω1,Ω2)t(Ω2,Ω1)), (13)
where t(Ω1,Ω2) = inf{t ≥ 1; tΩ1 ⊃ Ω2}. In the language
of support functions

h(Ω1,Ω2) = sup
|ξ|=1

HΩ2(ξ)
HΩ1(ξ)

, (14)

where HΩ(ξ) = supx∈Ω(x, ξ) for any subset Ω ⊂ Rn.

8. GENERAL ASYMPTOTIC RESULTS

Suppose the system (6) is time-invariant and the Kalman
controllability criterion holds. Then the reachable sets
D(T ) are convex bodies for T > 0 (0 is initial time) and

(1) There exist affine transformations C(T ) such that
there is a limit lim

T→∞
C(T )D(T )

(2) If L(E) = TrRQ ia a linear criterion, R being a fixed
positive-definite symmetric matrix, Et = E(at, Qt)
are globally optimal superreachable ellipsoids wrt
the criterion L(C(T )E(T )), then there exists a limit
lim

T→∞
E(T )

(3) The Banach-Mazur distance between ellipsoids E(T )
and the reachable sets D(T ) remains bounded as
T →∞

(4) Conjecturally, the same is true for the volume crite-
rion

9. EXPLICIT FORMULAS FOR GLOBALLY
OPTIMAL ELLIPSOIDS

The basic formula for globally optimal ellipsoid at the
terminal instant T is as follows:

Q(T ) =

〈P (s), Q0〉1/2 +

T∫
s

〈P,H〉1/2dτ

×(
ρ(Φ(T, s))Q0

〈P (s), Q0〉1/2
+
∫ T

s

ρ(Φ(T, τ))H(τ)
〈P (τ),H(τ)〉1/2

dτ

)
= Λ(P (T ))

(15)
where Φ(t, s) is the fundamental matrix of ẋ = Ax,

ρ(A)B = ABA∗, 〈A,B〉 = Tr AB∗, (16)
where A and B are square matrices of the same size.

For Q0 = 0 we get

Q(T ) =
∫ T

s

〈P (τ),H(τ)〉1/2dτ

∫ T

s

ρ(Φ(T, τ))H(τ)
〈P (τ),H(τ)〉1/2

dτ.

(17)
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The equation (15) reduces the two-point boundary prob-
lem for globally optimal ellipsoids to solving a transcen-
dental matrix equation.

10. SOLUTION OF EQUATION (15)

Equations (15), (12) are equivalent to the search for a fixed
point

P =
∂L

∂Q
(Λ(P )), (18)

where P is a symmetric positive definite matrix. It is not
at all clear in advance whether the fixed point is unique.
In the case of volume optimization

P = Λ(P )−1 (19)
one can show that this is indeed the case. Define the
“Banach-Mazur distance in the projective space”

ρ(P1, P2) = log(t(P1, P2)t(P2, P2);

t(P1, P2) = inf{t ≥ 0 : tP1 ≥ P2},
(20)

ρ(P1, P2) depends only on rays P i = {λPi}, i = 1, 2 and

ρ(Λ(P1)−1,Λ(P2)−1) ≤ 1
2
ρ(P1, P2) (21)

the contraction mapping principle proves that (18) has a
unique solution = limit of iterations Pn+1 = Λ(Pn)−1 with
an arbitrary initial point P0

11. EXAMPLE: HARMONIC OSCILLATOR.

Consider the harmonic oscillator with unit frequency
ẋ1 = x2, ẋ2 = −x1 + u, |u| ≤ 1 (22)

and zero initial condition. The globally and locally optimal
ellipsoids wrt trace criterion coincide:

Qglob(t) = Qloc(t) = 1
2

t (t− sin t cos t)
1
2

t sin2 t

1
2

t sin2 t
1
2

t (t + sin t cos t)

 (23)

The reachable set behaves like a disk of radius (2/π)t as
t → ∞. The ellipsoidal estimate (23) also behaves like
a disk of radius t/

√
2 as t → ∞. The Banach-Mazur

distance between the ellipsoid and the reachable set tends
to log(π/2

√
2) = 0.1050 . . .

12. SYSTEM OF OSCILLATORS.

Consider a system of pendulums with a common controlled
suspension point:
ẍk + ω2

kxk = u, |u| ≤ 1, xk(0) = ẋk(0) = 0, k = 1, . . . , n.
(24)

The point is to estimate the difference between the optimal
(wrt trace) ellipsoid E(T ) and the reachable set D(T )
for large T and n. Different ways of passing to double
limit might lead to different problem statement and final
answers. Let us first study the limit wrt T , and then wrt
n. General asymptotic theory says that there exist a limit
convex body D = Dn = limT→∞D(T )/T and the limit
ellipsoid E = En = limT→∞E(T )/T as T →∞. Then, we
compare Dn and En as n →∞.

Suppose the system (24) is nonresonant, i.e., there are no
relations

∑
mkωk = 0, where 0 6= m = (m1, . . . ,mn) ∈ Z

is integral vector. Then, the limit Banach-Mazur distance
dn = d(Dn, En) between the ellipsoid and reachable set
depends only on dimension n: dn = − log(

√
2sn), where

sn = min
|a|=1

sn(a) = min
|a|=1

∫
−

∣∣∣∣∣
n∑

k=1

ak sinφk

∣∣∣∣∣ dφ, (25)

where a = (a1, . . . , an) ∈ Rn, |a| =
(∑

a2
k

)1/2, and∫
−f(φ)dφ stands for the average of a multiply periodic
function f . Since 0 < sn+1 ≤ sn, there exists a limit
s∞ = limn→∞ sn. A nontrivial result is that s∞ > 0
which says in other words that the Banach-Mazur distance
between the ellipsoid and reachable set remains bounded
as n →∞.

Many evidences, both theoretical and numerical, witness
in favor of the following Conjecture:

s∞ = 2π−1

∫ ∞

0

(1− e−
x2
4 )x−2dx = 1/

√
π. (26)

If this is true, then the limit Banach-Mazur distance be-
tween the limit ellipsoid and reachable set is limn→∞ dn =
log
√

π
2 = 0.2258 . . .

13. MASS POINT: THE VOLUME CRITERION.

One can explicitly describe superreachable ellipsoids for
the system

ẋ1 = x2, ẋ2 = u, |u| ≤ 1, x(0) = 0 (27)
which are globally optimal wrt volume. The boundary
problem is reduced to determination of the momentum
matrix at terminal instant:

P (T ) = Q(T )−1, Q(T ) =
2u2

9
(
u2 − 1

4

)
 u2T 4 1

2
T 3

1
2
T 3 T 2

 .

(28)
where u = 0.5621535 . . . is a unique solution > 1/2 of the
transcendental equation

3
(

u2 − 1
4

)
log
(

2u− 1
2u + 1

)
+ u = 0, (29)

Curious results come out of comparison of optimal ellip-
soids wrt different criteria, if one uses the volume (area) of
the ellipsoids in normalized coordinates in order to assess
the approximation quality. The area of ellipsoid (28) is

V1 =
2
9
πu2

(
u2 − 1

4

)−1/2

= 0.8587 . . .

The area of ellipsoid which is globally optimal wrt to trace
is

V2 ≈ 0.9068
The area of ellipsoid which is globally optimal wrt to
projection to the axe x2 is

V3 ≈ 0.9069
The area of ellipsoid which is locally optimal wrt to volume
is

V4 ≈ 1.2489
The area of the reachable set is

VD = 2/3 ≈ 0.6667
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14. EQUATION X(N) = U.

The control system x(n) = u, |u| ≤ 1 corresponds to

A =


0 1 0

0
. . .
. . . 1

0 0

 , b =


0
...
0
1

 , c = 0

The initial condition is zero, the optimality criterion is
linear L(Q) = TrCQ, where

C(T ) = ρ(F )I,

where F is the diagonal matrix, Fkk = T−(n−k). Vectors
ξ ∈ Rn can be identified with polynomials

p = pξ(t) =
n∑

k=1

ξk
tn−k

(n− k)!

of degree n − 1. The quadratic form 〈Q(T )ξ, ξ〉 for the
globally optimal ellipsoid is given by

〈Q(T )Fξ, Fξ〉 = Cn

1∫
0

p(t)2jn(t)−1/2dt, (30)

where

jn(t) =
n−1∑
k=0

t2k

(k!)2
, Cn =

1∫
0

jn(t)1/2dt.

Note that
∑∞

k=0
t2k

(k!)2 = J0(2it), where J0 is the Bessel
function of order 0, i =

√
−1. The normalized reachable set

FD(T ), when regarded as consisting of polynomials, has
the L1-norm on the interval [0, 1] as the support function:

HFD(T )(ξ) =

1∫
0

|pξ(t)|dt.

The problem of comparison of the reachable set D(T ) with
the approximating ellipsoid reduces to the comparison of
L2(dµ)-norm and L1(dt)-norm in the space of polynomials
of degree (n−1), where dµ = Cnjn(t)−1/2dt. The Banach-
Mazur distance dn = d(D(T ), E(Q(T ))) between the
reachable set D(T ) and the approximating ellipsoid and
E(Q(T )) does not depend on T and is equal to

d(D(T ), E(Q(T ))) =
1
2

log sup
p6=0

Cn

∫ 1

0
p(t)2jn(t)−1/2dt(∫ 1

0
|p(t)|dt

)2

where sup is taken over nonzero polynomials of degree
≤ (n−1). Unlike the case of many oscillators this distance
goes to infinity as n →∞:

dn ∼ log n (31)
The proof of (31) uses the theory of Legendre polynomials.
According to the F. John theorem (John (1948)) the
Banach-Mazur distance from any given symmetric convex
body to the closest ellipsoid does not exceed 1

2 log n. For
large n the reachable set D(T ) is far from the globally
optimal ellipsoid E(Q(T )), which, in turn, is far from being
closest to D(T ). This is not surprising, because the body
D(T ) does not look like an ellipsoid, e.g., its boundary has
complicated singularities (Ovseevich (1998)).

15. CONCLUSION.

We present exact solutions to equations of optimal el-
lipsoids approximating reachable sets. It is shown, that
contrary to the first impression it is often easier to find
natural globally optimal ellipsoids than the locally optimal
ones. In particular cases we explicitly indicate optimal
ellipsoids which approximate the reachable sets in an as-
ymptotically correct fashion. It is shown that the problem
of assessment of the ellipsoidal approximation quality leads
to interesting analytic problem, including averaging over
multidimensional tori and the theory of the Legendre and
Bessel functions.
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