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Abstract: This paper works on the collective behavior of multi-agent systems under digital
networks. It is assumed that the agents are distributed on a plane and communicate through
a digital network. The location coordinates of each agent are measured by some remote sensor
and transmitted digitally to its neighbors. The topology of communication network is described
by an undirected graph and control protocol is designed by a linear decentralized law. In our
setting the whole dynamics of the multi-agent system is described by a hybrid system. We
explore the relationship between the collective behavior of agents and the properties of agent
and network. It is shown that the agents under digital communication network may display
different collective behaviors: aggregation, divergence, and periodic oscillation, under different
conditions. Examples show the effectiveness of our theoretical results.

1. INTRODUCTION

In recent years distributed coordination for multi-agent
systems has emerged as a hot research area. This is mainly
because of the demand of engineering applications such
as cooperative control of unmanned air vehicles (UAVs),
formation control, distributed sensor networks, attitude
alignment of clusters of satellites, congestion control in
communication networks, flocking of biological swarm,
etc. [1] - [13]. One of interesting research topics is to
find the conditions under which the dynamic agents in
network achieve aggregation, or called consensus stability.
Consensus control has been discussed systematically by
Saber and Murray [5], where the consensus means to
reach an agreement (or aggregation of agents) regarding
a certain quantity of interest that depends on the initial
states of all agents in network (or dynamical multi-agent
system). In their work the dynamics of the agents is
modeled by a simple scalar continuous-time integrator
ẋ = u. Following the work of [5], Xie and Wang [13] studied
the average-consensus problem where the agent is a point-
mass located in a line, and its dynamics is described by the
Newton’s law ma = F . A linear consensus control protocol
is established for solving such a consensus problem in their
works.

In our paper the dynamics of all agents are identical and
considered Lyapunov stable if the agents are control-free.
The dynamics of the agent may describe the approximate
behavior of an unmanned vehicle. Different from the
framework given in [1, 5, 13], the agent communicates with
its neighbors through a digital communication network
⋆ This work was supported by the NSFC under Grant No. 60674046,
Australia Research Council(ARC) and NSF Grant 06KJB120088
from the Jiangsu Provincial Department for Education.

in our setting. Thus, under a linear control protocol the
agents in network are formulated as a hybrid decentralized
networked control system (NCS).

We show that the dynamic multi-agent system under
digital communication network possesses very different
properties from that studied in [5, 13]. The agents under
digital network may exhibit aggregation, divergence and
periodic oscillation, under different conditions depending
on such as dynamic behavior of agent, the sampling time
period T , as well as the algebraic characterization of
network graph.

The paper is organized as follows. Section 2 presents
some properties on graph theory and describe the problem
formulation. Section 3 provides main results of this paper
and gives their proof. The simulation results are presented
in section 4. Finally we conclude this paper in section 5.

2. PRELIMINARIES AND PROBLEM DESCRIPTION

By G = (V, E ,A) we denote an undirected graph with an
adjacency matrix A = [aij ], where V = {p1, p2, · · · , pM} is
the set of nodes, E ⊆ V × V is the set of edges. The node
indices belong to a finite index set M := {1, 2, · · · ,M}. An
edge of G is denoted by eij = (pi, pj) for some i, j ∈ M .
The adjacency elements aij are defined in the following
way: eij ∈ E ⇔ aij = 1 and eij /∈ E ⇔ aij = 0. Moreover,
we assume aii = 0 for all i ∈ M . The set of neighbors of
node pi is denoted by Ni = {pj ∈ V; (pi, pj) ∈ E}.
A path between a pair of distinct nodes, pi and pj , is
meant by a sequence of distinct edges of G in the form
(pi, pk1

), (pk1
, pk2

), · · · , (pkl
, pj). A graph is called con-

nected if there exists a path between any two distinct
nodes of the graph. The node set V consists of M identical
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continuous-time dynamic agents, which may represent un-
manned vehicles wildly distributed in a plane. The commu-
nication among the agents is defined in the following way:
if eij ∈ E , then it implies that the agent pi receives the
message from pj and eij /∈ E implies there is no message
from pj to pi.

The mathematical model of dynamic agent is described

as follows. By xi =

(

xi1

xi2

)

∈ R2 we denote the location

coordinate of the i-th agent and vi =

(

vi1

vi2

)

represents its

velocity. By pi we denote the i-th agent and the dynamical
equation of agent pi is described by

ẋi =

(

ẋi1

ẋi2

)

=

(

vi1

vi2

)

miv̇i =

(

v̇i1

v̇i2

)

= ρ

(

vi1

vi2

)

+

(

ui1

ui2

)

yi = F

(

xi

vi

)

(1)

where yi is the measured output of agent i from some
remote sensor and transmitted by communication network
to other agents. We assume the sensor can get the informa-
tion of agents’ locations, rather than their velocity. Thus,
let F = (I 0) and yi = xi.

The ui =

(

ui1

ui2

)

is the control input of pi. For dynamics

(1) ρ is the speed feedback gain and ρ < 0 implies that
the dynamics of the vehicle are Lyapunov stable, i.e. the
agent will gradually stop if there is no input control signal.
The dynamical response of the agent is affected by the
ρ. It is obvious that the larger ρ is (i.e. the ρ tends 0),
the slower the dynamical response of the agent (1) is.
Without the loss of generality, we assume that mi = 1
for all i ∈ M := {1, 2, · · · ,M}.
The sensors measure the state at time instants with
constant interval {t0, t1, · · · , tk, · · · }, i.e. tk+1−tk = T ; k ≥
0 and transmit the data through communication network
to its neighbors. Then we write xi(k) = xi(kT ), vi(k) =
vi(kT ), k ≥ 0. A zero-order holder (ZOH) is used and we
have ui(k) = ui(t) = constant when t ∈ [kT, (k + 1)T ),
k = 0, 1, 2, · · · . Denoting

ξi(k) = (xτ
i (k), vτ

i (k))τ , i ∈ M,

the discretized version of (1) with sampling period T is

ξi(k + 1) = Adξi(k) + Bdui(k) (2)

where

Ad =





I2 −1

ρ
(1 − eρT )I2

0 eρT I2



 ,

Bd =







[−T

ρ
+

1

ρ2
(eρT − 1)]I2

1

ρ
(eρT − 1)I2







The control protocol for each agent in network is defined
as follows.

ui(k) =
∑

j∈Ni

aijF (ξj(k) − ξi(k))

=
∑

j∈Ni

aij(xj(k) − xi(k))

(3)

where Ni is the set of neighbors of agent pi and F = [I 0].

This paper works on the collective behaviors of multi-agent
system described by (1), graph G = (V, E ,A) under control
protocol (3).

3. CONDITIONS OF CONSENSUS STABILITY FOR
MULTI-AGENT SYSTEM

Denoting ξ(k) = [ξτ
1 (k) ξτ

2 (k) · · · ξτ
M (k)]τ , ξ(k); k =

0, 1, 2 · · · , describe the collective behavior of the agents.
The controlled dynamic agents in network are of the fol-
lowing form:

ξ(k + 1) = Ωξ(k) (4)

where
Ω = IM ⊗ Ad − L ⊗ BdF (5)

and L is the Laplacian associated with the graph G.

Assume the M eigenvalues of the Laplacian L for the graph
G are denoted as 0 = λ1 < λ2 ≤ · · · ≤ λM (see [15]).

With initial condition ξ(0) one has

ξ(k) = Ωkξ(0)

Let J1 be the Jordan form associated with L, there exists
an orthogonal matrix W such that W τLW = W−1LW =
J1. It follows that

(W τ ⊗ I2)Ω(W ⊗ I2)

= IM ⊗ Ad − J1 ⊗ BdF
= diag{Ad, Ad − λ2BdF, · · · , Ad − λMBdF}

Therefore, the behavior of the agents largely depends on
the eigenvalues of Ad − λiBdF , i ∈ M .

Lemma 1. Given ρ < 0 and T > 0, the matrix Ad of (2)
has only two eigenvalues equal to 1, the other two are less
than 1. In other words, dynamics (2) is Lyapunov stable
with control free.

Proof: The eigenvalues of the matrix Ad are

s11 = s12 = 1, s13 = s14 = eρT < 1.

We now discuss the eigenvalues of Ad − λiBdF for i ∈
{2, · · · ,M}. We write

Ad − λiBdF

=







1 +
λiT

ρ
+

λi

ρ2
(1 − eρT )

1

ρ
(eρT − 1)

λi

1

ρ
(1 − eρT ) eρT






⊗ I2

and denote

Ai =







1 +
λiT

ρ
+

λi

ρ2
(1 − eρT )

1

ρ
(eρT − 1)

λi

1

ρ
(1 − eρT ) eρT







Thus, we focus on discussing the eigenvalues of Ai.
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Consider the characteristic polynomial of Ai,

fi(s) = det(sI − Ai)
= s2 + ai1s + ai0

(6)

where i ∈ {2, · · · ,M} and

ai1 = −[eρT + 1 +
λi

ρ2
(ρT + 1 − eρT )]

ai0 = eρT +
λi

ρ2
(1 + ρTeρT − eρT )

(7)

For any λi > 0 the eigenvalues of Ad − λiBdF are located
inside the unit circle centered at the origin if and only if
the following inequalities hold

{

fi(1) = 1 + ai1 + ai0 > 0
fi(−1) = 1 − ai1 + ai0 > 0

|ai0| < 1
(8)

Using (7), one can obtain the equivalent inequalities as the
following











1 − eρT − λi

ρ2
(ρTeρT + 1 − eρT ) > 0

2(1 + eρT ) +
λi

ρ2
(2 + ρT + ρTeρT − 2eρT ) > 0

(9)

It is well known that the matrix Ad − λiBdF is Schur
stable if and only if (8) hold. Thus, the inequalities (9)
are fundamental tools for us to study the behaviors of the
agents.

3.1 How Sampling Period Affects Collective Behavior of
Multi-Agents?

We discuss how the sampling period T affect the collective
behavior of the multi-agent system?

Lemma 2. Given ρ < 0 and λ > 0, the first inequality in
(9) holds if one of the following conditions holds.

(1) ρ ≤ −
√

λ;

(2) there exists an unique T1 > 0 such that T ∈ (0, T1)
where T1 satisfies

1 − eρT1 − λ

ρ2
(ρT1e

ρT1 + 1 − eρT1) = 0. (10)

Proof: Denoting p(T ) = 1 − eρT − λ
ρ2 (ρTeρT + 1 − eρT ),

one can obtain its derivative

p′(T ) = −(ρ + λT ) · eρT .

If T <
−ρ

λ
, then p(T ) is an increasing function of T > 0.

If T >
−ρ

λ
, then p(T ) is an decreasing function of T > 0.

Consider

p(0) = 0, p(+∞) = lim
T→+∞

p(T ) = 1 − λ

ρ2
.

Therefore, if ρ ≤ −
√

λ, which implies p(+∞) > 0, then the
first inequality in (9) holds for all T ∈ (0,+∞). Otherwise,

there exists an unique T1 >
−ρ

λ
such that p(T1) = 0 and

the first inequality in (9) holds for all T ∈ (0, T1).

Lemma 3. Given ρ < 0 and λ > 0, there exists an unique
T2 > 0 such that the second inequality in (9) holds for all
T ∈ (0, T2) where T2 satisfies

2(1 + eρT2) +
λ

ρ2
(2 + ρT2 + ρT2e

ρT2 − 2eρT2) = 0. (11)

Proof: Denoting

q(T ) = 2(1 + eρT ) +
λ

ρ2
(2 + ρT + ρTeρT − 2eρT ),

one can obtain

q′(T ) = 2ρeρT +
λ

ρ
(1 + ρTeρT − eρT ).

Let r(T ) = 1 + ρTeρT − eρT , one can obtain r′(T ) =
ρ2TeρT > 0 for all T > 0. Consider r(0) = 0, it is
hold that r(T ) > 0 for all T > 0. Thus, one can obtain
q′(T ) = 2ρeρT + λ

ρ
· r(t) < 0, which implies that q(T ) is an

decreasing function of T > 0. Consider

q(0) = 4, q(+∞) = lim
T→+∞

q(T ) = −∞.

Therefore, there exists an unique T2 such that q(T2) = 0
and the second inequality in (9) holds for all T ∈ (0, T2).

From above analysis, we can get the following result.
We assume that the dynamics (1) with ρ < 0 and the
topology G of communication network are given. Thus, the
M eigenvalues, 0 = λ1 < λ2 ≤ · · · ≤ λM , of the Laplacian
L for the graph G are fixed.

Proposition 4.

(1) If ρ ≤ −
√

λM , then there exists an unique TM > 0
such that the inequalities in (9) holds for i ∈ M and
T ∈ (0, TM ), where TM > 0 satisfies

2(1+eρTM )+
λM

ρ2
(2+ρTM +ρTMeρTM −2eρTM ) = 0; (12)

(2) If ρ > −
√

λM , then there exists an unique T̄M =

min{TM , T̃M} > 0 such that the inequalities in (9) holds

for all T ∈ (0, T̄M ) where T̃M satisfies

1 − eρT̃M − λM

ρ2
(ρT̃MeρT̃M + 1 − eρT̃M ) = 0 (13)

Then we have the following theorem.

Theorem 5. Under linear control protocol (3), the agents
in network is described by (4)-(5). If the sampling period
T satisfies

0 < T < T ∗ (14)

where

T ∗ =

{

TM if ρ ≤ −
√

λM

T̄M if −
√

λM < ρ < 0
(15)

λM denote the biggest eigenvalue of the Laplacian matrix
L, TM and T̄M are defined in Proposition 4. Then it hold
that

limk→∞Ωk = wrw
τ
l (16)

where
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wr =
1√
M

1M ⊗
[

ρ−1I2

0

]

wl =
1√
M

1M ⊗
[

ρI2

−I2

] (17)

and wτ
l wr = I2.

Proof: From Proposition 4, all eigenvalues of Ad−λiBdF ,
for i ≥ 1, are not located outside the unit circle centered
at origin when 0 < T < T ∗. There are 4M − 2 eigenvalues
of Ω are located inside a unit circle and two eigenvalues
are 1.

By (5) one has

Ω · 1√
M

1M ⊗
[

ρ−1I2

0

]

=
1√
M

1M ⊗
[

ρ−1I2

0

]

Thus, wr =
1√
M

1M ⊗
[

ρ−1I2

0

]

are the two right-

eigenvectors of Ω with respect to eigenvalue λ = 1.

In a similar way,

1√
M

1τ
M ⊗ [ρI2 − I2] · Ω =

1√
M

1τ
M ⊗ [ρI2 − I2],

It is obvious that wl =
1√
M

1M ⊗
[

ρI2

−I2

]

are the two

left-eigenvectors of Ω with respect to eigenvalue λ = 1.

Furthermore, as there are 4M − 2 eigenvalues of Ω locate
inside a unit circle, one can check

limk→∞Ωk = wrw
τ
l

It is also easy to check that wτ
l wr = I2.

Now we give the main result of our paper.

Theorem 6. Under linear control protocol (3) consider
dynamic agents (1) in digital communication network
described by G.

(1) If the sampling period T satisfying T < T ∗, where the
T ∗ is defined in (15), then the agents will achieve consensus
stability;

(2) If T = T ∗, then the dynamic agents appear globally
asymptotically stable periodic trajectories;

(3) If T > T ∗ , then the dynamic agents appear divergent
trajectories.

Proof: If 0 < T < T ∗, by Lemma 5 we get

ξ(k) = Ωkξ(0) and limk→∞Ωk = wrw
τ
l

It follows that

limk→∞ξ(k) = limk→∞Ωkξ(0)

= wrw
τ
l ξ(0)

=
1

M
1M ⊗

[

ρ−1I2

0

]

1τ
M ⊗ [ρI2 − I2]ξj(0)

=
1

M
1M1τ

M ⊗
[

I2 −1

ρ
I2

0 0

]

·













x1(0)
v1(0)

...
xM (0)
vM (0)













Therefore, as k → ∞,

xij(k) → 1

M
{

M
∑

l=1

[xlj(0) − ρ−1vlj(0)]}

and it is obvious that

limk→∞vij(k) = 0, i ∈ {1, 2, · · · ,M}
This implies the agents in network globally asymptotically
achieve the consensus stability.

When T = T ∗, one can show that Ad − λMBdF has
two eigenvalues located on the unit circle, and all other
eigenvalues of Ad−λjBdF , j ∈ {2, . . . ,M−1} locate inside
the unit circle. Thus all Ad − λiBdF i ∈ {2, . . . ,M − 1}
are Lyapunov stable. By Lemma 1 the Ω has only four
eigenvalues being 1 when T = T ∗. According to the results
of linear control theory, the agents tend to asymptotically
periodic trajectories centered at same fixed point.

If T > T ∗, then the system matrix Ω is not Lyapunov
stable. Thus, the agents may have divergent trajectories.

3.2 How Feedback Gain ρ Affects on Collective Behavior
of Multi-Agent Systems

Now we discuss how the negative feedback gain ρ affects
on the collective behavior of the multi-agent systems when
the sampling period T is fixed.

Lemma 7.

(1) Given λi > 0; i ∈
underlineM there exists an unique ρi < 0 such that the
inequalities (9) hold for all ρ ∈ (−∞, ρi);

(2) All eigenvalues of Ad − λiBdF (i ∈
underlineM) are Schur stable if and only if ρ < ρ∗ =
ρM (< 0).

Proof: Denoting g(ρ) = 1 − eρT − λi

ρ2 (ρTeρT + 1 − eρT ),

one can obtain

g′(ρ) = −TeρT +
λi

ρ3
(2 + 2ρTeρT − 2eρT − ρ2T 2eρT ).

Let h(ρ) = 2 + 2ρTeρT − 2eρT − ρ2T 2eρT , the derivation
of h(ρ) can be written as h′(ρ) = −2ρ2T 3eρT < 0, which
implies that h(ρ) is an decreasing function of ρ < 0. For
given T > 0 and λi > 0, one easily get

h(0−) = lim
ρ→0−

h(ρ) = 0,

h(−∞) = lim
ρ→−∞

h(ρ) = 2.

Then 0 < h(ρ) < 2 for all ρ < 0. Furthermore, one can
obtain that g′(ρ) < 0 for all ρ < 0. We conclude that g(ρ)
is an decreasing function of ρ < 0. One also get

g(0−) = lim
ρ→0−

g(ρ) = −λiT
2

2
,

g(−∞) = lim
ρ→−∞

g(ρ) = 1.

Therefore, there exists an unique ρi < 0 such that the
inequality g(ρ) > 0 hold for all ρ ∈ (−∞, ρi), which implies
that the first inequality of (9) hold for all ρ ∈ (−∞, ρi).
When given the sampling period satisfying T ∈ (0, TM )
where TM defined in (12), it is obvious that the second
inequality of (9) hold if ρ < 0. Therefore, For given
λi > 0 and proper sampling period T there exists an
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unique ρi < 0 such that the inequalities (9) hold for
all ρ ∈ (−∞, ρi). Moreover, all eigenvalues of Ad −
λiBdF (i ∈ {2, 3, · · · ,M}) are Schur stable if and only
if ρ < ρ∗ = ρM (< 0).

Theorem 8. Consider dynamic agents (1) in digital net-
work G with sampling period T ∈ (0, TM ), where TM

is defined in (12). Under linear control protocol (3), the
agents in network G will achieve consensus stability if the
ρ in the dynamical equation (1) satisfies

ρ < ρ∗ < 0 (18)

where ρ∗ satisfies

1 − eρ∗T − λM

(ρ∗)2
(1 + ρ∗Teρ∗T − eρ∗T ) = 0. (19)

Moreover, if ρ = ρ∗, the dynamic agents appear globally
asymptotically stable periodic trajectories.

If ρ > ρ∗, then the dynamic agents appear divergent
trajectories.

Proof: Based on the Lemma 7, the proof of the theorem
follows the similar line as that of Theorem 6, omitted to
save the space.

4. SIMULATION

We study a simple example to show that our results are
effective. The network of dynamic agents is described in
Figure 1.

±°
²¯

1 ±°
²¯

4

±°
²¯

2
©

©
©

©
©

©
©

©
©

©
©

©
©©

±°
²¯

3

Fig.1. An undirected graph G with M = 4 nodes.

Its Laplacian is

L =







1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2







with eigenvalues λ1 = 0, λ2 = 1, λ3 = 3, λ4 = 4.

First, we consider that the gain ρ is fixed and the sampling
period T is varying. In order to implement the consensus
stability we have to find the up bound T ∗ of the sampling
period. Let

q(T ) =2(1 + eρT ) +
λ4

ρ2
(2 + ρT + ρTeρT − 2eρT )

p(T ) =1 − eρT − λ4

ρ2
(ρTeρT + 1 − eρT )

One can obtain the different sampling periods TM and T̃M

(refer to Section III) using Maple computation.
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Fig. 1. State and Velocity trajectories of agents with
T = 0.1,ρ = −0.8.
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Fig. 2. State and Velocity trajectories of agents with
T = 0.5, ρ = −0.8.
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Fig. 3. State trajectories of agents with T = 0.4239146850,
ρ = −0.8.

ρ TM T̃M T ∗

-0.8 2.130588974 0.4239146850 0.4239146850
-1.99 1.960174297 3.255052884 1.960174297
-2.5 2.040311827 arbitrary 2.040311827

We choose ρ = −0.8 and T = 0.1 < T ∗, which sat-
isfy (14). Figure 1 demonstrates that with initial condi-
tions x1(0) = [10 − 15]τ , x2(0) = [−6 13]τ , x3(0) =
[15 − 4]τ , x4(0) = [−15 , 8]τ and the initial velocities
v1(0) = [12 10]τ , v2(0) = [18 6]τ , v3(0) = [16 18]τ ,
v4(0) = [6 6]τ , respectively, the state trajectories of
agents aggregates to x∗ = [17.25 13]τ , and velocites of
agents tend to zero.

But if one chooses T̄ = 0.5 > T ∗, ρ = −0.8 under the same
initial conditions as before, Fig.2 shows the divergence of
the agents.

Under the same initial condition and ρ = −0.8, the
asymptotically stable periotic trajectories of states of the
agents appear when T = 0.4239146850 = T ∗, see Figure
3. Their velocity trajectories appear in periodic orbits,
showing in Figure 4.

Next we study the behavior of dynamic agents under a
fixed sampling period T and varying ρ. Without the loss
of generality let T = 1, one gets ρ∗ = −1.513705800.
Under the same initial condition as above when ρ = −2 <
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Fig. 4. Velocity trajectories of agents with T =
0.4239146850, ρ = −0.8.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x
i1

x
i2

agent1
agent2
agent3
agent4

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

v
i1

v
i2

agent1
agent2
agent3
agent4

Fig. 5. State and Velocity trajectories of agents with T = 1,
ρ = −2.
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Fig. 6. State trajectories of agents with T = 1, ρ =
−1.513705800.
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Fig. 7. Velocity trajectories of agents with T = 1, ρ =
−1.513705800.

ρ∗, Figure 5 shows that the agents aggregate together,
meantime their velocities tend to zero.

In Figure 6 the asymptotically stable periotic state trajec-
tories of the agents appear when ρ = −1.513705800. Their
velocity trajectories are shown in Figure 7.

5. CONCLUSION

This work shows that the dynamical agents in a digi-
tal communication network demonstrate quite different
behaviors from that of time-continuous communication
networks. The collective behaviors of agents depend on the

sampling period and the dynamical property of dynamic
agent. In order to implement consensus stability of the
agents in such network the sampling period has to be
smaller than certain value. The agents could have period
trajectories centered at same point or divergent in a plane
if the sampling period meets some conditions. Moreover,
when the sampling period is fixed in an proper range,
we discuss how the dynamic property of agents affects on
collective behavior of agents.
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