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Abstract: This paper develops a new tool to study stability of interconnection of integral
input-to-state stable (iISS) systems. A sort of freedom is introduced into Lyapunov inequalities
each system is to satisfy in addition to small-gain-type conditions. The purpose of this paper is
to extend the technique of “flexible Lyapunov inequalities” developed previously for input-to-
state stable(ISS) systems. The achievement is threefold. One is the employment of flexibility for
both the systems connected with each other. The former technique only allows the flexibility to
appear in one of the mutually connected systems. The second accomplishment is to cover iISS
systems. The third is unification of the treatment of iISS and ISS systems. Establishment of
stability is based on explicit construction of smooth Lyapunov functions.

1. INTRODUCTION

In the framework of dissipative theory(seeWillems (1972)),
one can derive dissipative properties of interconnected sys-
tems from dissipativity of individual subsystems (see, e.g.,
Hill & Moylan (1977)). One of useful dissipative properties
is input-to-state stability(ISS) proposed in Sontag (1989).
Its storage functions are ISS Lyapunov functions. The ISS
small-gain theorem proposed by Jiang et al. (1994) and
Teel (1996) deals with feedback interconnections of ISS
systems and establishes their stability based on nonlinear
gain when nonlinear loop gain is less than identity. The
nonlinear gain is computed from dissipation inequalities
of individual subsystems. The inequalities are sometimes
referred to as Lyapunov inequalities or Hamilton-Jacobi
inequalities. There are two ways to look at the inequalities.

• Given a supply rate, solve a dissipation inequality for
a storage function.

• Given a storage function, modify the dissipation in-
equality maintaining eligible dissipation.

The latter fits the idea of Lyapunov redesign. The former
view is essentially the direct approach to optimal control.
In both the situations, when one applies the ISS small-
gain theorem, obtaining a successful Lyapunov inequality
conforming to a small-gain condition is not a straightfor-
ward task. This fact motivated the author to develop his
own idea of flexible Lyapunov inequalities, which provides
many Lyapunov inequalities with which a single small-
gain-type condition can establish stability of an inter-
connection of ISS systems (see Ito (2003, 2005a)). The
technique introduces flexibility in choosing supply rates.

This paper is the fundamental upgrade of flexible Lya-
punov inequalities. The essential progress is threefold.

(1) Introduction of flexibility into both the systems con-
nected with each other
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Σ0 : ẋ0 =f0(t, x0,x1,r0)

Σ1 : ẋ1 =f1(t, x1,x0,r1)
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Fig. 1. Interconnected system Σ

(2) Covering integral input-to-state stability(iISS) prop-
erty

(3) Complete unification of the treatment of iISS and ISS
systems

All of the previous studies only allows the flexibility to
be included in one of the mutually connected systems.
The second point was partially achieved in Ito (2005b,
2006b). This paper removes all restrictive and artificial
assumptions required there, which enables the third point.
The class of iISS is broader than ISS. An ISS system
is always iISS. The converse does not hold. The class
of iISS systems encompasses more systems of practical
importance than the ISS (see Angeli et al. (2000)).

In this paper, the interval [0,∞) in the space of real
numbers R is denoted by R+. Euclidean norm of a vector
in Rn of dimension n is denoted by | · |. A function
γ : R+ → R+ is said to be of class K and written as
γ ∈ K if it is a continuous, strictly increasing function
satisfying γ(0) = 0. A function γ : R+ → R+ is said to
be of class K∞ and written as γ ∈ K∞ if it is a class K
function satisfying limr→∞ γ(r) = ∞. The symbols ∨ and
∧ denote logical sum and logical product, respectively.

2. INTERCONNECTED SYSTEM

Consider the nonlinear interconnected system Σ shown in
Fig.1. Suppose that the subsystems are described by

Σ0 : ẋ0 = f0(t, x0, u0, r0) (1)

Σ1 : ẋ1 = f1(t, x1, u1, r1) (2)
These two systems are connected with each other through
u0 = x1 and u1 = x0. Assume that f0(t, 0, 0, 0) = 0
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and f1(t, 0, 0, 0) = 0 hold for all t ∈ [t0,∞), t0 ≥
0. We also assume that the functions f0 and f1 are
piecewise continuous in t, and locally Lipschitz in the other
arguments. The state vector of the interconnected system
Σ is x = [xT

0 , xT
1 ]T ∈ Rn where xi ∈ Rni , i = 1, 2.

The exogenous signals r0 ∈ Rb0 and r1 ∈ Rb1 form a
vector r = [rT

0 , rT
1 ]T ∈ Rb. We will exploit dissipative

property of each system instead of using fi directly.
When we investigate global asymptotic stability of the
interconnection, we suppose that ri(t) ≡ 0, i = 1, 2.

3. BILATERALLY FLEXIBLE LYAPUNOV
INEQUALITIES

The main result is stated in the following theorem, which
establishes stability of the interconnected system Σ based
on Lyapunov inequalities of the subsystems. The functions
λ̂i’s below provide flexibility in the Lyapunov inequalities.
Theorem 1. For i=0, 1, consider the following functions:

αi, σi, σri ∈ K (3)

λ̂i, λ̂ri : R+ → R+, C0 (4)

λ̂i(s) > 0, ∀s ∈ (0,∞) (5)

Vi : R+ × Rni → R, C1 (6)

αi(|xi|) ≤ Vi(t, xi) ≤ αi(|xi|), ∀xi ∈ Rni , t ∈ R+ (7)

αi, ᾱi ∈ K∞ (8)
For each i = 0, 1, assume that

dVi

dt
≤ λ̂i(Vi(t, xi)) [−αi(|xi|) + σi(|x1−i|)]

+λ̂ri(Vi(t, xi))σri(|ri|) (9)
holds along the trajectories of the system Σi for all x ∈ Rn,
ri ∈ Rbi and t ∈ R+. Suppose that there exist real numbers
c0 > 1 and c1 > 1 such that

c1σ1◦ α−1
0 ◦ α0 ◦ α−1

0 ◦ c0σ0(s)
≤ α1◦α−1

1 ◦α1(s), ∀s∈R+ (10)
is satisfied, then the following facts hold.

(a) If
lim

s→∞
α1(s) < ∞ ⇒ lim

s→∞
λ̂1(s) < ∞ (11)

holds, the equilibrium x = 0 of Σ is uniformly globally
asymptotically stable (UGAS).

(b) If (11),
lim

s→∞
α0(s) < ∞

lim
s→∞

α1(s) < ∞

}
⇒ lim

s→∞
λ̂0(s) < ∞ (12)

lim sup
s→∞

λ̂ri(s)

λ̂i(s)
< ∞ (13)

and one of
[A1] lim

s→∞
α0(s) = ∞ ∧ lim

s→∞
σ0(s) < ∞

[A2] lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ0(s) < ∞
are satisfied, the interconnected system Σ is iISS with
respect to input r and state x.

(c) If (11), (12), (13) and
[A3] lim

s→∞
α0(s) = ∞ ∧ lim

s→∞
α1(s) = ∞

are satisfied, the interconnected system Σ is ISS with
respect to input r and state x.

It is stressed that (10) requires

lim
s→∞

α0(s) = ∞ ∨ ∞> lim
s→∞

α0(s)> lim
s→∞

σ0(s) (14)

When we take λ̂i = λ̂ri = 1, i = 0, 1, i.e., no flexibilities,
Theorem 1 can be viewed as a nonlinear small-gain theo-
rem. The dissipation inequality (9) implies that each Σi is
iISS with respect to input (x1−i, ri) and state xi. In the
case of [A3], the two systems Σi, i = 0, 1 are ISS (see
Sontag & Wang (1995)). If lims→∞ αi(s) < ∞, the system
Σi is not necessarily ISS (see Sontag (1998); Angeli et al.
(2000)). The choice λ̂i = λ̂ri = 1, i = 0, 1 in Theorem 1
includes the results of Ito (2006a) as special cases. In the
case of (c), Theorem 1 with λ̂i = λ̂ri = 1, i = 0, 1 reduces
to the ISS small-gain theorem in Jiang et al. (1994) and
Teel (1996). Indeed, the condition (10) associated with (9)
for λ̂0 = λ̂1 =1 is a nonlinear small-gain condition.
Remark 2. The above theorem cannot be explained by
individual Lyapunov functions in the form of V̂i =∫ Vi

0
1/λ̂i(s)ds since they are not guaranteed to be inte-

grable and radially unbounded. It is also mentioned that
the technique of changing supply functions proposed in
Sontag & Teel (1995) is not applicable to iISS systems.
Remark 3. When

lim
s→∞

α1(s) = ∞ ∨ ∞> lim
s→∞

α1(s)> lim
s→∞

σ1(s) (15)

holds, the inequality

c0σ0◦ α−1
1 ◦ α1 ◦ α−1

1 ◦ c1σ1(s)
≤ α0◦α−1

0 ◦α0(s), ∀s∈R+ (16)
held with a pair of c0, c1 > 1 is implied by the existence
of another pair of c0, c1 > 1 achieving (10). Therefore,
when (14) and (15) hold, the inequalities (10) and (16)
are equivalent in the sense of the existence of c0, c1 > 1.
Remark 4. The primitive idea of flexible Lyapunov in-
equalities first appeared in Ito (2003) for ISS systems in
a restrictive setting. It was extended to a general case
of ISS systems by Ito (2005a). The result was, however,
unilateral, i.e., it is the (c) case with λ̂1 = 1 in Theorem
1. The concept of unilateral flexible Lyapunov inequalities
was first extended to iISS system in Ito (2005b) with tech-
nical assumptions and a small-gain-type condition which
were more complex than (10). Ito (2006b) was able to
simplify that condition into (10) without paying attention
to construction of Lyapunov functions. It, however, only
covers [A2] of Theorem 1 with λ̂1 = 1. In addition, Ito
(2006b) imposes global smoothness and local analyticity.
Remark 5. Arcak et al. (2002) considers an time-invariant
cascade interconnection in which an iISS system is driven
by a globally asymptotically stable (GAS) system. In-
stead of constructing Lyapunov functions, they take a
trajectory-based approach to prove GAS of the cascade
under the assumption of trade-off between the convergence
rate of the driving subsystem and the growth rate of iISS
gain of the driven subsystem. This paper continues pursu-
ing the stability problem of interconnections involving iISS
subsystems in order to tackle feedback interconnections.
However, the focus is not simply on the extention of their
philosophy, but rather on the introduction of flexibilities
λ̂i and λ̂ri and the construction of Lyapunov functions for
the whole system in the presence of external signals.
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4. STATIC SYSTEMS

This section supposes that one of the subsystems in Σ of
Fig.1 is static. For this purpose, replace (1) by

Σ0 : v0 = h0(t, u0, r0) (17)
which is connected with Σ1 through u0 = x1 ∈ Rn1 and
u1 = v0 ∈ Rn0 . Assume that h0(t, 0, 0) = 0 holds for all
t ∈ [t0,∞), t0 ≥ 0. Piecewise continuity in t and locally
Lipschitzness in (u0, r0) are also assumed for h0. The state
vector of the interconnected system Σ becomes x=x1∈Rn,
where n = n1. The following theorem demonstrates that
(10) can be relaxed slightly in the static case.
Theorem 6. Consider the following functions:

αi, σi, σri ∈ K, i = 0, 1 (18)

λ̂0, λ̂r0 : Rn0 → R+, C0 (19)

λ̂0(v0) > 0, ∀v0 ∈ Rn0 \ {0} (20)

λ̂1, λ̂r1 : R+ → R+, C0 (21)

λ̂1(s) > 0, ∀s ∈ (0,∞) (22)

V1 : R+ × Rn1 → R, C1 (23)

α1(|x1|)≤V1(t, x1)≤α1(|x1|), ∀x1∈Rn1 , t∈R+ (24)

α1, ᾱ1 ∈ K∞ (25)
Assume that the system Σ0 satisfies

0 ≤ λ̂0(v0) [−α0(|v0|) + σ0(|x1|)] + λ̂r0(v0)σr0(|r0|)(26)
for all x1 ∈ Rn1 , r0 ∈ Rb0 and t ∈ R+, and that

dV1

dt
≤ λ̂1(V1(t, x1)) [−α1(|x1|) + σ1(|u1|)]

+λ̂r1(V1(t, x1))σr1(|r1|) (27)
holds along the trajectories of the system Σ1 for all x1 ∈
Rn1 , u1 ∈ Rn0 , r1 ∈ Rb1 and t ∈ R+. Suppose that there
exist real numbers c0 > 1 and c1 > 1 such that

c1σ1 ◦ α−1
0 ◦ c0σ0(s) ≤ α1◦α−1

1 ◦α1(s), ∀s∈R+ (28)
is satisfied, then the following facts hold.

(a) If (11) holds, the equilibrium x = 0 of Σ is UGAS.
(b) If (11), (12),

lim
s→∞

sup
s≤|v0|

λ̂r0(v0)

λ̂0(v0)
< ∞ (29)

lim sup
s→∞

λ̂r1(s)

λ̂1(s)
< ∞ (30)

and one of [A1] and [A2] are satisfied, the intercon-
nected system Σ is iISS with respect to input r and
state x1.

(c) If (11), (12), (29), (30) and [A3] are satisfied, the
interconnected system Σ is ISS with respect to input
r and state x1.

The right-hand side of (26) plays the role of a supply rate of
Σ0 although energy is never stored in static systems. Note
that (28) again requires (14). The local Lipschitzness of
h0(t, ·) guarantees the existence of a triplet {α0, σ0, σr0 ∈
K} fulfilling (14) whenever the static system Σ0 satisfies
(26). The following shows that the stability condition for
the interconnected system can be simplified further when
the external signal r0 affecting the static system is absent.

Theorem 7. Consider functions satisfying

α0, σ0, α1, σ1, σr1 ∈ K (31)

λ̂0 : Rn0 → R+, C0 (32)

λ̂0(v0) > 0, ∀v0 ∈ Rn0 \{0} (33)

λ̂1, λ̂r1 : R+×Rn1 → R+, C0 (34)

inf
t∈R+

λ̂1(t, x1) > 0, ∀x1 ∈ Rn1 \{0} (35)

and (23), (24) and (25). Assume that Σ0 satisfies

0 ≤ λ̂0(v0) [−α0(|v0|) + σ0|x1|)] (36)

for all x1 ∈ Rn1 and t ∈ R+, and that

dV1

dt
≤ λ̂1(t, x1) [−α1(|x1|) + σ1(|u1|)]

+λ̂r1(t, x1)σr1(|r1|) (37)

holds along the trajectories of the system Σ1 for all x1 ∈
Rn1 , u1 ∈ Rn0 , r1 ∈ Rb1 and t ∈ R+. Suppose that there
exist real numbers c0 > 1 and c1 > 1 such that

c1σ1 ◦ α−1
0 ◦ c0σ0(s) ≤ α1(s), ∀s∈R+ (38)

is satisfied, then the following facts hold.

(a) The equilibrium x = 0 of Σ is UGAS.
(b) If there exists k ∈ (−∞, 1] such that

lim
s→∞

sup
s≤|x1|,t∈R+

λ̂r1(t, x1)
[α1(|x1|)]k < ∞ (39)

is satisfied, the interconnected system Σ is iISS with
respect to input r1 and state x1.

(c) If there exists k ∈ (−∞, 1] such that (39) and

lim
s→∞

inf
s≤|x1|,t∈R+

λ̂1(t, x1)α1(|x1|)
[ᾱ1(|x1|)]k = ∞ (40)

are satisfied, the interconnected system Σ is ISS with
respect to input r1 and state x1.

It is worth mentioning that the flexibility in the inequality
(36) of the static system Σ0, has no effect, i.e, (36) implies
0 ≤ −α0(|v0|) + σ0(|x1|).

5. PROOFS AND LYAPUNOV FUNCTIONS

5.1 Proof of Theorem 1

First, suppose that lim sups→∞ λ̂i(s) = 0 and define

Bi(s) =

s∫

0

1
Ai(t)

dt, Ai(s) =
{

λ̂i(T ), s ∈ [0, T )
λ̂i(s), s ∈ [T,∞)

Wi(t,xi)=Bi◦Vi(t,xi), β
i
(s)=Bi◦αi(s), βi(s)=Bi◦αi(s)

for someT >0. We can transform lim sups→∞ λ̂i(s)=0 into

lim sup
s→∞

λ̂i(s) > 0, i = 0, 1 (41)

via the following substitution.
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Vi → Wi, αi → β
i
, αi → βi

λ̂i(s) → λ̂◦B−1(s)
Ai◦B−1

i (s)
, λ̂ri(s) → λ̂ri◦B−1(s)

Ai◦B−1
i (s)

Note that (13) remains the same under this operation. The
rest assumes (41). Suppose that

lim
s→∞

α0(s)= lim
s→∞

σ0(s)=∞ ∧ ∞> lim
s→∞

α1(s)> lim
s→∞

σ1(s)(42)

does not hold. In the case of

lim
s→∞

α0(s) = ∞ ∧ lim
s→∞

α1(s) = ∞ (43)

and the case of

∞= lim
s→∞

α0(s)> lim
s→∞

σ0(s) ∧ lim
s→∞

α1(s)> lim
s→∞

σ1(s) , (44)

there exist σ̂1 ∈ K and ĉ0, ĉ1 > 1 such that

ĉ1σ̂1◦α−1
0 ◦ ᾱ0 ◦α−1

0 ◦ ĉ0◦ σ0(s) ≤ α̂1◦ᾱ−1
1 ◦ α1(s),∀s∈R+(45)

σ1(s) ≤ σ̂1(s), α̂1(s) ≤ α1(s), ∀s ∈ R+ (46)

lim
s→∞

σ̂1(s) ≥ lim
s→∞

α̂1(s) (47)

are satisfied with

α̂1 = α1 (48)
In the case of

lim
s→∞

α0(s) < ∞ , (49)

there exist α̂1 ∈ K and ĉ0, ĉ1 > 1 such that (45), (46), and
(47) are satisfied with

σ̂1 = σ1 (50)
If none of (43), (44) and (49) holds, the inequalities (45),
(46) and (47) are fulfilled with

α̂1 = α1, σ̂1 = σ1, ĉi = ci, i = 0, 1 . (51)
Pick real numbers τ1, φ ≥ 0 satisfying

1 < τ1 < ĉ1, (τ1/ĉ1)
φ ≤ (τ1 − 1)(ĉ0 − 1) (52)

Define ζ̂0, ζ̂1 ∈ K as

ζ̂0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
]φ+1

(53)

ζ̂1(s)=
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
α̂1◦α−1

1 (s)
][

1
τ1

α̂1◦α−1
1 (s)

]φ

(54)

For each i = 0, 1, we can always select a continuous
function Fi : s ∈ R+ → R+ such that

Fi(s) > 0, ∀s ∈ (0,∞)

Fi(s)λ̂i(s), Fi(s)ζ̂i(s) : non-decreasing on R+

lim
s→∞

α̂1(s) < ∞ ⇒ lim
s→∞

Fi(s) < ∞ (55)

hold. Here, (41) is used for (55). Let Ui, i = 0, 1, denote

U0(s)=
[
F0◦α0◦σ̂−1

1 (s)
][

λ̂0◦α0◦σ̂−1
1 (s)

]
, s∈ [0, σ̂1(∞))

U1(s)=





[
F1 ◦ α1 ◦ α̂−1

1 (τ1s)
] [

λ̂1 ◦ α1 ◦ α̂−1
1 (τ1s)

]

, s ∈ [0, α̂1(∞)
τ1

)

F1(∞)λ̂1(∞) , s ∈ [ α̂1(∞)
τ1

, σ̂1(∞))

The properties (11) and (55) for i = 1 together with (46),
(48) and (51) make ensure that U1 is well-defined. Note
that σ̂1(∞) ≥ (1/τ1)α̂1(∞) holds since (47). Define

ν(s) = U0(s)U1(s) : s ∈ [0, σ̂1(∞)) → R+

which is non-decreasing. Let λ0, λ1, λM ∈ K be given by

λ0(s) =
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
ν ◦ σ̂1◦ α−1

0 (s)
] [

σ̂1◦ α−1
0 (s)

]φ+1
(56)

λ1(s) =
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
α̂1◦α−1

1 (s)
]

×
[
ν◦ 1

τ1
α̂1◦α−1

1 (s)
] [

1
τ1

α̂1◦α−1
1 (s)

]φ

(57)

λM.0(s) =F0(s)ζ̂0(s)
[
U1◦σ̂1◦α−1

0 (s)
]

λM.1(s) =F1(s)ζ̂1(s)
[
U0◦ 1

τ1
α̂1◦α−1

1 (s)
]

The pair of (10) and (52) yields
[
σ̂1 ◦ α−1

0 ◦ ᾱ0 ◦ α−1
0 ◦ ĉ0σ0(s)

]φ+1

≤ 1

ĉ1τ
φ
1

(τ1 − 1)(ĉ0 − 1)
[
α̂1◦ ᾱ−1

1 ◦ α1(s)
]φ+1

(58)

When (12) holds, it follows from (46), (47), (48), (51), (55)
and (11) that

α0(∞)<∞∧ σ̂1(∞)<∞ ⇒ λ0(∞)<∞∧ λ1(∞)<∞(59)

By virtue of (13), we can pick Ci > 0 so that Ci <

lims→∞ λ̂i(s)/λ̂ri(s) holds. Define λ̃ri, σ̃ri : R+ → R+ by
λ̃ri = Ciλ̂ri and σ̃ri = σri/Ci. Then, we have

λM.i(s)λ̂i(s) + Di ≥ λM.i(s)λ̃ri(s), ∀s ∈ R+ (60)

for some Ri > 0, where Di = maxs∈[0,Ri] λM.i(s)λ̃ri(s). It
can be verified that the inequality (10) together with (58)
and (59) guarantees the existence of αcl∈K satisfying

λM.0(V0(t, x0))λ̂0(V0(t, x0)) [−α0(|x0|)+σ0(|x1|)
+σ̃r0(|r0|)] + λM.1(V1(t, x1))λ̂1(V1(t, x1)) [−α̂1(|x1|)

+σ̂1(|x0|)+σ̃r1(|r1|)] ≤ −αcl(|x|)+σcl(|r|) (61)

We have σcl ≡ 0 in the absence of r. In the presence of r,
we have σcl∈K if one of [A1] and [A2] is true. In the case
of [A3], we can verify that αcl∈K∞. Now, define

Vcl(t, x)=
∫ V0(t,x0)

0
λM.0(s)ds +

∫ V1(t,x1)

0
λM.1(s)ds (62)

The property (7) and λM.0, λM.1 ∈ K imply that there
exist αcl, αcl ∈ K∞ such that αcl(|x|) ≤ Vcl(t, x) ≤ αcl(|x|)
holds. Due to (9), (60) and (61), the property

dVcl

dt
≤−αcl(|x|)+σcl(|r|)+

1∑

i=0

Diσ̃ri(|ri|)

holds along Σ for all x ∈ Rn, r ∈ Rm and t ∈ R+. The
functions σcl and σ̃ri disappear in the case of UGAS. In
the case of (42), there exist σ̂1 ∈ K and ĉ0, ĉ1 > 1 such
that (45), (46) and lims→∞ ĉ1σ̂1(s) = lims→∞ α̂1(s) are
satisfied with (48). Define

L = lim
s→∞

σ̂1(s), τ1(s) = (τ1+
ĉ1−τ1

L
s)s, 1<τ1 <ĉ1
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Q(t) =
1

τ−1
1 (ĉ1t)− t

×max
{(

ĉ1

τ1(τ1 − 1)(ĉ0 − 1)
− 1

)
,

(
ĉ1

τ1

− 1
)}

ψ(s) = eG(s), G(s) =
∫ s

L/2
Q(t)dt, s ∈ [0, L)

The function ψ is continuous, increasing and bounded on
[0, L). It is verified that ψ satisfies

[
ψ ◦ σ̂1 ◦ α−1

0 ◦ ᾱ0 ◦ α−1
0 ◦ ĉ0σ0(s)

]

≤ τ1(τ1 − 1)(ĉ0 − 1)
ĉ1

[
ψ◦ τ−1

1 ◦ α̂1◦ ᾱ−1
1 ◦ α1(s)

]
(63)

Replace (53), (54), (56) and (57) by

ζ̂0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
] [

ψ◦σ̂1◦ α−1
0 (s)

]

ζ̂1(s)=
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
α̂1◦α−1

1 (s)
][

ψ◦ 1
τ1

α̂1◦α−1
1 (s)

]

λ0(s)=
ĉ0

(ĉ0−1)

√
ĉ1

τ1

[
σ̂1◦ α−1

0 (s)
] [

ν ◦ σ̂1◦ α−1
0 (s)

]×[
ψ◦σ̂1◦ α−1

0 (s)
]

λ1(s) =
[
α0◦ ᾱ−1

0 ◦ α0◦σ̂−1
1 ◦ 1

τ1
◦α̂1◦α−1

1 (s)
]

×
[
ν◦ 1

τ1
◦α̂1◦α−1

1 (s)
] [

ψ◦ 1
τ1
◦α̂1◦α−1

1 (s)
]

respectively. Then, using (10) and (63), we obtain (61) for
some αcl∈K and r(t) ≡ 0. Finally, it is verified that (42)
does not hold if one of [A1], [A2] and [A3] holds.

5.2 Proof of Theorem 6

Using (20), decompose λ̂0 as λ̂0(v0) = λ̂A0(|v0|)λ̂B0(v0),
where λ̂B0(v0) > 0, ∀v0 ∈ Rn0 and lims→∞ λ̂A0(s) < ∞.
By virtue of (29), the inequality (26) ensures that

0 ≤ λ̂A0(|v0|) [−α0(|v0|) + σ0(|x1|)] + λ̂Ar0(|v0|)σr0(|r0|)
holds for some C0 function λ̂Ar0 : R+ → R+ satisfying
lim sups→∞ λ̂Ar0(s)/λ̂A0(s) < ∞. The iISS and ISS Lya-
punov functions are given by

Vcl(t, x)=
∫ V1(t,x1)

0
λM.1(s)ds (64)

5.3 Proof of Theorem 7

Combining (20) and (36) with (38) we obtain

−α1(|x1|) + σ1(|v0|) ≤ −δ1α1(|x1|)
where δ1 = (1 − 1/c1) > 0. Let λM.1 : R+ → R+

be any function fulfilling λM.1(s) > 0, ∀s ∈ (0,∞) and
0 < lims→∞ skλM.1(s) < ∞. The assumptions (39) and
(40) guarantee

lim
s→∞

sup
s≤|x1|,t∈R+

λM.1(V1(t, x1))λ̂r1(t, x1) < ∞

lim
s→∞

inf
s≤|x1|,t∈R+

λM.1(V1(t, x1))λ̂1(t, x1)α1(|x1|) = ∞

A Lyapunov function proving UGAS, iISS and ISS is (64).

6. ILLUSTRATIVE EXAMPLES

In order to illustrate Theorem 1, consider the following
feedback interconnection defined on R2

+.

Σ0 : ẋ0 = −
(

x0

x0+5

)(
6x0

x0+6

)
+

(
x0

x0+5

)(
x1

x1+3

)

+ r2
0, x0(0)∈R+ (65)

Σ1 : ẋ1 = −4
(

x1

x1+1

)(
x1

x1+3

)2

+
(

x1

x1+1

)(
6x0

x0+6

)2

+
(

x1

x1+2

)
r1, x1(0)∈R+ (66)

The system Σ1 is not ISS, and it is only iISS. Let

V0 = x0, α0(s) =
6s

s+6
, σ0(s) =

s

s+3

λ̂0(s) =
s

s + 5
, λ̂r0(s) = 1, σr0(s) = s2

V1 = x1, α1(s) = 4
(

s

s + 3

)2

, σ1(s) =
(

6s

s+6

)2

λ̂1(s) =
s

s + 1
, λ̂r1(s) =

s

s + 2
, σr1(s) = s

The properties (3)-(6), (11), (12), (13), (14) and [A2] are
fulfilled. It follows from ᾱi = αi = s, i = 1, 2, that (10) is

c1

(
c0s

s + 3

)2

≤ 4
(

s

s + 3

)2

, ∀s ∈ R+

Since there exist c1, c0 > 1 such that this inequality holds,
Theorem 1 guarantees the interconnection of (65) and
(66) to be iISS with respect to r and x. The proof of
Theorem 1 yields an iISS Lyapunov function Vcl(x) of the
interconnection given by (62) with

λM.0(s) =
4
√

3 + 2
√

6
3

(
6s

s+6

)14

U1(σ1(s))

λM.1(s) =
(

8
3

)13
2
(

s

s + 3

)13 6
√

6s

(45 +
√

6)s + 135

U1(s) =





9s + 6
√

6s

6s + 6
√

6s + 8
, s ∈ [0, 8/3)

1, s ∈ [8/3,∞)
Note that we cannot use the iISS small-gain theorem in
Ito (2006a) and Ito and Jiang (2008) for this example due
to the presence of x0/(x0 + 5) and x1/(x1 + 1). Theorem
1 allows us to ignore x0/(x0 +5) and x1/(x1 +1) when we
resort to the small-gain argument.

Another example is the following:

Σ0 : ẋ0 = 12x2
0

(
x1

x1 + 1

)2

+ x0v0 + r0, x0(0)∈R+ (67)

Σ1 : ẋ1 = − 3x1

x1 + 1
+ x0 + r2

1, x1(0)∈R+ (68)

The state x = [x0, x1]T evolves on R2
+. The vector r =

[r0, r1]T is disturbance. The purpose is to design a scalar
input v0(t) to make the whole interconnected system iISS
with respect to input r to state x. Since Σ1 is not ISS, the
control v0(t) should render Σ0 stable strongly enough to
compensate the shortage of stability. Let
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V1 = x1, α1(s) =
3s

s + 1
, σ1(s) = s, σr1(s) = s2

λ̂0(s) = 1, λ̂r0(s) = 1

For the choice of V0 = x0, we obtain

V̇0 =
4x2

0

3

{
3v0

4x0
+

(
3x1

x1 + 1

)2
}

+ r0

Define

α0(s) =
3v0(s)

4s
, σ0(s)=

(
3s

s + 1

)2

, σr2(s) = s

λ̂0(s) =
4
3
s2, λ̂r0(s) = 1

where α0 ∈ K∞ has yet to be determined. These functions
satisfy (3)-(6), (11), (12), (13) and (14), [A1]. Using ᾱi =
αi = s, i = 1, 2, we obtain (10) as

α−1
0

(
c0

(
3s

s + 1

)2
)
≤ 3s

c1(s + 1)
, ∀s ∈ R+

This inequality holds for some c0, c1 > 1 if and only if
α0(s)>s2 is satisfied for all s∈ (0,∞). Hence, Theorem 1
guarantees that v0(x0) =−kx3

0 with any k > 4/3 renders
the interconnected system iISS. An important feature of
this paper is that we obtain an iISS Lyapunov function
explicitly as Vcl(x) in (62), where

λM.0(s)=
k+3
k−1

√
ĉ1

τ1
sφ+1, λM.1(s)=

4k

3

(
3s

τ1(s+1)

)φ+4

ĉ1 = 2

√
k

k + 3
, τ1 = 2

√
k

2(k + 3)
+

1
8

L =

√
1
2

+
1
8

√
k + 3

k
, φ = max

{
log (τ1−1)(k−1)

4

log L
, 0

}

It is stressed that Lyapunov functions Vcl of the two ex-
amples cannot be derived from Ito (2006b). The examples
are not covered by Ito (2005b) either.

7. CONCLUSIONS

This paper introduces a flexible Lyapunov formulation into
the small-gain methodology for stability analysis of inter-
connected systems. Namely, the technique of bilaterally
flexible Lyapunov inequalities is proposed, which can be
considered as a thoroughly nonlinear counterpart of the
popular scaling technique in linear robust control. The
bilaterality and treating iISS and ISS systems equally are
new in the literature. Examples have shown that the flex-
ibility is useful in exploiting and coping with nonlinearity
in stability analysis and feedback design. The Lyapunov
function of the interconnected system is expressed explic-
itly in terms of a “smooth” nonlinear combination of given
Lyapunov functions of individual subsystems. This paper
has focused on the construction a continuously differen-
tiable Lyapunov function since such a Lyapunov function
is directly amenable to a large variety of techniques for
further analysis and design of control systems. This con-
trasts with the max-type construction leading only to a
Lipschitz continuous function, which requires methods of

non-smooth analysis or additional mathematical process
of smoothing(see Jiang et al. (1996)). Finally, it is worth
mentioning that ciσi in (10), (28) and (38) can be replaced
by (Id + ρi) ◦ σi where ρi belongs to class K∞ in the ISS
case. It can be relaxed further when iISS or UGAS is tar-
geted. This paper employs the simplest case s+ρi(s) = cis
for brevity of the presentation of Lyapunov functions. For
the generalization, the reader can consult Ito and Jiang
(2008) devoted to the iISS small-gain theorem without
flexible parameters {λ̂i, λ̂ri}.
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