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Abstract: This paper discusses the H∞ control problem for a class of nonlinear stochastic
systems with Markovian jumps subjected to both state- and disturbance-dependent noise. We
establish the equivalent conditions among Hamilton-Jacobi inequality (HJI), Hamilton-Jacobi
equality (HJE), the dissipative inequality and L2-gain property for this class of systems. As to
the infinite time horizon case, we synthesize a worst case-based state-feedback H∞ controller.

1. INTRODUCTION

In recent years, stochastic H∞ control systems, such as
Markovian jump systems, H∞ Gaussian control design,
and Itô differential systems (governed by the Itô equation)
have received a great deal of attention, see Bjork [1980],
Doyle [1989] and Hinrichsen [1998]. Zhang [2006] and
Berman [2005] both developed the H∞ theory from the
dissipation point of view for stochastic nonlinear systems.
In particular, the nonlinear counterparts of the stochastic
Lur’e equations proposed by Zhang [2006] can be applied
to solve many stochastic control problems. Dissipation the-
ory is attractive because the general notion of dissipativity
comprises a family of system properties. One or another
property can be specified by defining the so-called supply
rate. The readers may refer to Willems [1972], Schaft
[1992], Polushin [2000] and Andrievskii [2006] for more
details about the tendencies in the development of this
theory for deterministic systems.

Jump system has been studied since the pioneering work
on quadratic control of linear jump systems in 1960s. It
switches from one mode to another in a random way, and
the switching between the modes is governed by a Markov
process with discrete and finite state space. Noticeable
achievements have been made in the last three decades on
controller design, filtering and stability analysis of linear
jump systems, see Ghaoui [1996], Shi [1997], Li [2003],
Caines [1995], Dragan [2002] and Mao [1999]. In particular,
the problems of designing state feedback controllers for
stochastic linear jump systems to achieve stochastic sta-
bility (Ghaoui [1996]), and a prescribed H∞ performance
(Shi [1997]) or guaranteed cost control (Li [2003]) have
been well studied. However, to the best of the authors’
knowledge, there are still little count of publications deal-
ing with dissipativity of nonlinear stochastic systems with
Markovian jumps, which merits our study on this topic.

This paper will discuss the H∞ control problem for non-
linear stochastic systems with Markovian jumps, which
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extends the result of Schaft [1992] to nonlinear Itô dif-
ferential systems with Markovian jumps. In section 2,
by applying the generalized stochastic Lur’e equations,
we establish the equivalent conditions for HJI, HJE, the
dissipative inequality and L2-gain property for this class
of systems. Section 3 synthesizes a worst case-based state-
feedback H∞ controller as to the infinite time horizon case.
An example is given to illustrate the use of our method.
Section 4 concludes this paper.

For convenience, we adopt the following notation:

A′: the transpose of the corresponding matrix A;
A ≥ 0(A > 0): the positive semi-definite (positive-definite)
matrix;
I: the identity matrix;
Rn: n-dimensional Euclidean space;
C2(U): the class of functions V (x) twice continuously dif-
ferentiable with respect to x ∈ U ;
L2
F (R+, Rny ): space of non-anticipative stochastic pro-

cesses y(t) ∈ Rny with respect to an increasing σ-algebra
Ft(t ≥ 0), satisfying ‖y‖2L2(R+) := E

∫∞
0
|y(t)|2dt < ∞.

2. STOCHASTIC DISSIPATIVE THEORY

In this section, we discuss the dissipative theory for a
class of stochastic systems with Markovian jumps. The
relationship among HJE, HJI, the dissipative inequality
and L2-gain property is established.

First of all, let (Ω,F , {Ft}t≥0, P ) be a given filtered prob-
ability space where there lives a standard one-dimensional
Brownian motion w(t) on [0,+∞) (with w(0) = 0) and
a Markov chain rt ∈ {1, 2, . . . , N} with the generator
Π = (λij), and Ft = σ{w(s), rs|0 ≤ s ≤ t}. The Brow-
nian motion is assumed to be one dimensional only for
simplicity; there is no essential difference for the multi-
dimensional case. In addition, the processes rt and w(t)
are assumed to be independent throughout this paper.

Consider the nonlinear stochastic system with Markovian
jumps defined by
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{
dx(t) = (f(x, rt) + k(x, rt)d) dt + (h(x, rt)

+l(x, rt)d) dw, f(0, rt) = 0, h(0, rt) = 0,
z = m(x, rt), m(0, rt) = 0,

(1)

where x(t) ∈ Rn is the state vector, x0 ∈ Rn is the
initial state, d(t) ∈ Rm is the control input, also can
be regarded as the exogenous disturbance, w(t) is a one-
dimensional Brownian motion and z(t) ∈ Rnz is the
regulated output. Assume that d(t) is an adapted and
measurable process with respect to Ft. {rt, t ≥ 0} is the
continuous-time Markov process taking values in a finite
set ϕ = {1, 2, . . . , N} and describes the evolution of the
mode at time t. For every i ∈ ϕ, f(x, i), k(x, i), h(x, i),
l(x, i) and m(x, i) are uniformly continuous and Lipschitz
satisfying a linear growth condition, which guarantees that
system (1) has a unique strong solution (Yong and Zhou
[1999]).

The Markov process {rt, t ≥ 0} takes values in the finite
set ϕ, which represents the switching between the different
modes and its dynamics is described by the following
transition probabilities:

P [rt+h = j|rt = i] =
{

λijh + o(h)
1 + λiih + o(h) ,

where λij is the transition rate from mode i to j with

λij ≥ 0 when i 6= j and λii = −
N∑

j=1,j 6=i

λij and o(h) is

such that lim
h→0

o(h)/h = 0.

According to the terminology introduced by Willems
[1972], the function W (·, ·) : Rnd ×Rnz → R related with
system (1) will be called the supply rate on [s,∞], if for any
d ∈ L2

F ([s, T ], Rnd), and x satisfying (1), the inequality

E

T∫

s

|W (d, z)| dt < ∞, ∀T ≥ s ≥ 0, i ∈ ϕ

is satisfied.

Definition 1. System (1) with supply rate W is said to
be dissipative on [s,∞], s ≥ 0, if there exists a set of
nonnegative continuous functions V (x, i) : Rn → R+,
called the storage functions, such that for all t ≥ s ≥ 0,
x(s) ∈ Rn, i ∈ ϕ,

E{V (x(t), rt)− V (x(s), rs)|rs = i} (2)

≤ E

t∫

s

W (d(τ), z(τ)) dτ.

(2) can be regarded as the dissipative inequality for
stochastic systems with Markovian jumps.

Here, we assume that the set of storage functions V (x, i),
i ∈ ϕ, if exists, belongs to C2(Rn).

Let the supply rate be given by W (u, z) = z′Qz +2z′Sd+
d′Rd. In this case, the dissipative conditions are provided
by the following lemma, which can be regarded as a parallel
generalization of Theorem 1 of Zhang [2006].

Lemma 1 (Generalized stochastic Lur’e equations). A nec-
essary and sufficient condition for system (1) to be dissi-

pative on [s,∞] with respect to a supply rate W (d, z) is
that there exists Vs(x, i) ∈ C2(Rn) : Rn → R+, for every
i ∈ ϕ, Vs(0, i) = 0, l̃i : Rn → Rq, and w̃i : Rn → Rq×nd

for some integer q > 0, such that

m′
iQmi − ∂V ′

s (x, i)
∂x

fi − 1
2
h′i

∂2Vs(x, i)
∂x2

hi (3)

+
N∑

j=1

λijVs(x, j) = l̃′i l̃i,

R− 1
2
l′i

∂2Vs(x, i)
∂x2

li = w̃′iw̃i, (4)

2S′mi − k′i
∂Vs(x, i)

∂x
− l′i

∂2Vs(x, i)
∂x2

hi = 2w̃′i l̃i. (5)

Proof. See the appendix.

Definition 2 (L2-gain property). System (1) is said to
have the L2-gain property, if ‖z‖2L2[0,T ] ≤ γ2‖d‖2L2[0,T ] is
satisfied for given scalar γ > 0 and all T ≥ 0.

The following theorem establishes the equivalent condi-
tions among HJE, HJI, the dissipative inequality and L2-
gain property.

Theorem 1. The following conditions are equivalent:

(i) For system (1), given any scalar γ > 0, there exists a
set of nonnegative solutions V (x, i) ∈ C2(Rn) : Rn → R+,
with V (0, i) = 0 and i ∈ ϕ, to the HJE

H∞(V (x, i)) :=
∂V ′(x, i)

∂x
fi +

1
2
m′

imi +
1
2
h′i

∂2V (x, i)
∂x2

hi

+
N∑

j=1

λijVs(x, j) +
1
2
(
∂V ′(x, i)

∂x
ki + h′i

∂2V (x, i)
∂x2

li)

× (γ2I − l′i
∂2V (x, i)

∂x2
li)−1(k′i

∂V (x, i)
∂x

+ l′i
∂2V (x, i)

∂x2
hi)

= 0,

γ2I − l′i
∂2V (x, i)

∂x2
li > 0. (6)

(ii) For system (1), given γ > 0, there exists a set of
nonnegative solutions V (x, i) ∈ C2(Rn) : Rn → R+, with
V (0, i) = 0 and i ∈ ϕ, to the HJI

H∞(V (x, i)) ≤ 0, γ2I − l′i
∂2V (x, i)

∂x2
li > 0. (7)

(iii) There exists a set of nonnegative solutions V (x, i) ∈
C2(Rn) : Rn → R+, with V (0, i) = 0 and i ∈ ϕ, for
any t ≥ s ≥ 0, and x(s) ∈ Rn, satisfying the following
dissipative inequality

E{V (x(t), rt)− V (x(s), rs)|rs = i} ≤ E

t∫

s

W (d, z) dτ (8)

with the supply rate W (d, z) = 1
2 (γ2d′d − z′z), ∀(d, z) ⊂

Rnd ×Rnz .

(iv) For system (1), given γ > 0, x0 = 0, the following
holds for all T ≥ 0 and d ∈ L2

F ([0, T ], Rnd)
‖z‖2L2[0,T ] ≤ γ2‖d‖2L2[0,T ]. (9)
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Proof.

(i) → (ii): Obviously, (ii) holds for every solution V (x, i)
satisfying condition (i).

(ii) → (iii): Assume that there exists a set of nonnegative
solutions V (x, i) ∈ C2(Rn) : Rn → R+, with V (0, i) =
0, for every i ∈ ϕ, satisfying condition (ii), then by
Generalized Itô’s formula (Bjork [1980]), integrating the
equality from s to t, taking expectation of both sides and
recalling that E

∫ t

s
∂V ′(x,i)

∂x (hi+lid)dw(t) = 0, we have that
for any 0 < s < t, rs = i,

{EV (x(t), rt)− V (x(s), rs)|rs = i}

= E

t∫

s

[
∂V ′(x, i)

∂x
(fi + kid) +

N∑

j=1

λijV (x, j)

+
1
2
(hi + lid)′

∂2V (x, i)
∂x2

(hi + lid)] dτ

=
1
2
E

t∫

s

(2H∞(V (x, i))− ‖d− (γ2I − l′i
∂2V (x, i)

∂x2
li)−1

·(k′i
∂V (x, i)

∂x
+ l′i

∂2V (x, i)
∂x2

hi)‖2γ,li,V (x,i)

−z′z + γ2d′d) dτ,

where ‖Z(x)‖2γ,li,V (x,i) := Z ′(x)(γ2I − l′i
∂2V (x,i)

∂x2 li)Z(x).
Then, by condition (ii) and ‖ · ‖2γ,li,V (x,i) ≥ 0, we get

E{V (x(t), rt)− V (x(s), rs)|rs = i}

≤ E

t∫

s

1
2
(γ2d′d− z′z) dτ.

(iii) → (iv): Assume that there exists a set of storage
functions V (x, i) satisfying condition (iii), then, for any
given T ≥ 0, integrating (8) from 0 to T , we obtain

EV (x(T ), rT )− V (0, r0) ≤ E

T∫

0

1
2
(γ2d′d− z′z) dt,

which follows that

E

T∫

0

z′z dt ≤ E

T∫

0

γ2d′d dt− 2EV (x(T ), rT ).

So (iv) is obtained.

(iv) → (i): For any T ≥ 0, i ∈ ϕ, we know that there
always exists a set of positive definite functions q(x, i) with
q(0, i) = 0, such that

‖z‖2L2[0,T ] ≤ γ2‖d‖2L2[0,T ] + q(x, i).

For system (1), we define the function Va,0 as

Va,0(x, i) = − inf
T≥0, x(0)=x



E

T∫

0

(
1
2
γ2d′d− 1

2
z′z) dt



 .

Obviously, we have

0 ≤ Va,0(x, i) ≤ 1
2
q(x, i), Va,0(0, i) = 0.

By the proof of Lemma 1, we know that Va,0 is finite,
which implies that it is itself a storage function. Take
R = 1

2γ2I, S = 0, Q = − 1
2I, Vs(x, i) = Va,0(x, i), and

ω̃ =
√

2
2 (γ2I − l′i

∂2Va,0(x,i)
∂x2 li)

1
2 . Then, by Lemma 1, we

obtain HJE (6). The proof of Theorem 1 is completed.

Theorem 1 gives L2 input-output stable conditions for
system (1). However, if system (1) satisfies the above
conditions, it does not mean that the homogeneous system
(1) with d ≡ 0 is stable.

Definition 3. System (1) is said to be stale in probability,
if for any ε > 0, lim

x→0
P (sup

t≥0
‖x(t)‖ > ε) = 0.

Sufficient conditions of stochastic stability for system (1)
will be given in the following corollary. For simplicity,
in what follows we consider only globally asymptotically
stable in probability (Has’minskii [1980]), which requires
that the system is stable in probability, and P ( lim

t→∞
x(t) =

0) = 1 for any initial state x ∈ Rn. However, we note
that other kinds of stability request, such as exponentially
mean square stability, can be discussed by following the
lines of Berman [2005].

Corollary 1. Assume that there exists a set of positive
functions V (x, i) ∈ C2(Rn) with V (0, i) = 0, such that
inf
t>0

V (x, i) → ∞ as ‖x‖ → ∞, and V (x, i) satisfy the HJI

(7), for all x ∈ Rn, i ∈ ϕ. Then, the homogeneous system
(1) (d ≡ 0) is globally asymptotically stable in probability.

Proof. Note that for d = 0, HJI (7) reduces to

H∞d=0(V (x, i)) :=
∂V ′(x, i)

∂x
fi +

1
2
m′

imi +
1
2
h′i

∂2V (x, i)
∂x2

hi

+
N∑

j=1

λijV (x, j) ≤ 0, ∀x ∈ Rn, i ∈ ϕ.

Thus, we have Ld=0V (x, i) ≤ − 1
2m′

imi ≤ 0, where L is the
infinitesimal generator of system (1). It implies that

Θi = {x : Ld=0V (x, i) = 0} ⊂ {x : m(x, i) = 0} = {0}.
Then, for every i ∈ ϕ, the corresponding V (x, i), applying
the LaSalle’s invariance principle (Kushner [1972]), the
asymptotic stability of system is proved.

Remark 1. Assume there exists a set of solutions V (x, i)
to HJI (7), a sufficient condition for V (x, i) to be positive
is the zero state observability of the system with respect
to z. We refer the reader to Definition 3.2 and the proof
of Corollary 3.1 of Zhang [2006].

3. STOCHASTIC STATE-FEEDBACK H∞ CONTROL

In this section, we consider the state feedback H∞ control
problem in infinite time horizon case for the following
controlled nonlinear stochastic systems with Markovian
jumps





dx(t) = (f(x, rt) + k(x, rt)d + g(x, rt)u) dt
+(h(x, rt) + l(x, rt)d) dw, f(0, rt) = 0,

z =
[

m(x, rt)
u

]
, m(0, rt) = 0, h(0, rt) = 0,

(10)
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where d(t) stands for the exogenous disturbance, which
is an adapted process with respect to Ft. Under very
mild conditions (Yong and Zhou [1999]), (10) has a unique
strong solution x(t).

Definition 4 (nonlinear state feedback H∞ control). Given
γ > 0, the closed-loop system is said to have an H∞
control if for every i ∈ ϕ, there exists an admissible control
u∗∞(x, i), such that for any d 6= 0 ∈ L2

F (R+, Rnd), when
x(0) = 0, the following inequality holds:

‖z‖2LR+
≤ γ2‖d‖2LR+

. (11)

Equation (11) is equivalent to ‖L̃zd‖∞ ≤ γ, where the per-
turbation operator L̃zd is defined by L̃zd : L2

F (R+, Rnd) →
L2
F (R+, Rnz ) as

L̃zd = z(x(t), i), t ≥ 0, d 6= 0 ∈ L2
F (R+, Rnd), x(0) = 0,

‖L̃zd‖∞ = sup
‖z‖L2

R+

‖d‖L2
R+

= sup
{E ∫∞

0
(‖m(x, i)‖2 + ‖u∗∞(x, i)‖2)dt} 1

2

{E ∫∞
0
‖d‖2dt} 1

2
.

Theorem 2. Assume that there exists a set of nonnegative
functions V (x, i) ∈ C2(Rn) with V (0, i) = 0 and i ∈ ϕ,
satisfying HJE

H2
∞(V (x, i)) :=

∂V ′(x, i)
∂x

fi +
1
2
m′

imi +
1
2
h′i

∂2V (x, i)
∂x2

hi

+
N∑

j=1

λijVs(x, j)− 1
2

∂V ′(x, i)
∂x

gig
′
i

∂V (x, i)
∂x

+
1
2
(
∂V ′(x, i)

∂x
ki + h′i

∂2V (x, i)
∂x2

li)(γ2I − l′i
∂2V (x, i)

∂x2
li)−1

× (k′i
∂V (x, i)

∂x
+ l′i

∂2V (x, i)
∂x2

hi) = 0, (12)

then u∗∞(x, i) = −g′i
∂V (x,i)

∂x is an H∞ control for system
(10). Besides, if V (x, i) is also positive, and satisfies
inf
t>0

V (x, i) → ∞ as ‖x‖ → ∞, for every i ∈ ϕ, then the

closed-loop system (with d ≡ 0, u = u∗∞)

dx = (fi + giu
∗
∞)dt + hid dw (13)

is globally asymptotically stable in probability.

Proof. By Generalized Itô’s formula,

dV (x, i) = [
∂V ′(x, i)

∂x
(fi + giu + kid) +

N∑

j=1

λijV (x, j)

+
1
2
(hi + lid)′

∂2V (x, i)
∂x2

(hi + lid)] dt

+
∂V ′(x, i)

∂x
(hi + lid) dw(t). (14)

For any T > 0, integrating (14) from 0 to T , completing
the right-hand side to squares, we have

E{V (x(T ), rT )− V (0, r0)|r0 = i}

= E

T∫

0

[
∂V ′(x, i)

∂x
(fi + giu + kid) +

N∑

j=1

λijV (x, j)

+
1
2
(hi + lid)′

∂2V (x, i)
∂x2

(hi + lid)] dt

=
1
2
E

T∫

0

(‖u + g′i
∂V (x, i)

∂x
‖2 − ‖d− (γ2I − l′i

∂2V (x, i)
∂x2

×li)−1(k′i
∂V (x, i)

∂x
+ l′i

∂2V (x, i)
∂x2

hi)‖2γ,li,V (x,i)

+2H2
∞(V (x, i))− ‖z‖2 + γ2‖d‖2) dt

=
1
2
E

T∫

0

(‖u + g′i
∂V (x, i)

∂x
‖2 − ‖d− (γ2I − l′i

∂2V (x, i)
∂x2

×li)−1(k′i
∂V (x, i)

∂x
+ l′i

∂2V (x, i)
∂x2

hi)‖2γ,li,V (x,i))dt

−‖z‖2 + γ2‖d‖2. (15)

Obviously, when u = u∗∞, (15) leads to

E

T∫

0

‖z‖2dt =−E

T∫

0

‖d− (γ2I − l′i
∂2V (x, i)

∂x2
li)−1

× (k′i
∂V (x, i)

∂x
+ l′i

∂2V (x, i)
∂x2

hi)‖2γ,li,V (x,i) dt

− 2EV (x(T ), rT ) + 2V (0, r0) + γ2E

T∫

0

‖d‖2 dt.

Let T →∞, then ‖L̃zd‖∞ ≤ γ follows because of V (x, i) ≥
0 and V (0, i) = 0. The rest is proved by Corollary 1 and
is omitted. The proof of Theorem 2 is completed.

Remark 2. In (15), we define

d∗∞ = (γ2I − l′i
∂2V (x, i)

∂x2
li)−1(k′i

∂V (x, i)
∂x

+ l′i
∂2V (x, i)

∂x2
hi)

as the disturbance in the worst case. Besides, we can also
see that Theorem 2 still holds if HJE (12) is replaced by
Hamilton-Jacobi inequality H2

∞(V (x, i)) ≤ 0.

For the linear stochastic system with Markovian jumps

dx(t) = (A(rt)x + B1(rt)u + B2(rt)d) dt

+(C(rt) + D(rt)d) dw,

z =
[

M(rt)x
u

]
,

let V (x, i) = 1
2x′P (i)x, then Theorem 2 leads to the

following corollary.

Corollary 2. For every i ∈ ϕ, suppose there exists a set
of solutions P (i) ≥ 0 to the generalized algebraic Riccati
Equations (GAREs)

PiAi + A′iPi + C ′iPiCi + (PiB2i + C ′iPiDi)
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× (γ2I −D′
iPiDi)−1(B′

2iPi + D′
iPiCi)

− PiB1iB
′
1iPi + M ′

iMi +
N∑

j=1

λijPj = 0, (16)

γ2I −D′
iPiDi > 0

for some γ > 0, then u∗∞(x, i) = k̃ix = −B′
iPix is an

H∞ control, which makes the closed loop system satisfy
‖L̃zd‖∞ ≤ γ. Additionally, if P (i) > 0 holds for every
i ∈ ϕ, then the homogeneous closed-loop system (with
d ≡ 0)

dx(t) = (A(rt)x + B1(rt)u∗∞) dt + C(rt) dw (17)

is globally asymptotically stable in probability.

In what follows, we give an example for a two-mode jump
nonlinear system based on the approach developed in the
previous sections.

Example 1. Let w(t) be a one-dimensional Brownian mo-
tion. Let r(t) be a Markov chain taking values in ϕ = {1, 2}
with the generator Π = (λij) =

[−1 1
2 −2

]
. Assume that

w(t) and r(t) are independent. Consider a two-dimensional
stochastic system with Markovian jumps of the form (10)
with l1 = l2 = 0,

f1 =
[

x3
1 + x1x

2
2 − 5x1 − 4x2

x3
2 + 8x2

1x2 − 2x1 − 3x2

]
, g1 =

[
3x1

2x2

]
,

k1 =
[

2
1

]
h1 =

[
x1x2

x2
1

]
, m1 = 2x1x2,

f2 =
[−3x3

1 + 2x2 − x1

−5x3
2 + x1 − 2x2

]
, g2 =

[
2
1

]
,

k2 =
[

x1

x2

]
, h2 =

[
x1 + x2

x1 − x2

]
, m2 = 2(x2

1 − x2
2).

Assume the disturbance attenuation γ = 1 for the H∞
control designed of the above nonlinear stochastic jump
system. Then by Theorem 2 and Remark 2, we need to
solve the following HJIs for H∞ control:

H2
∞(V (x, 1)) =

∂V ′
1

∂x

[
x3

1 + x1x
2
2 − 5x1 − 4x2

x3
2 + 8x2

1x2 − 2x1 − 3x2

]

+
1
2
(2x1x2)(2x1x2) +

1
2

[
x1x2 x2

1

] ∂2V1

∂x2

[
x1x2

x2
1

]

+ λ11V1 + λ12V2 − 1
2

∂V ′
1

∂x

[
3x1

2x2

]
[ 3x1 2x2 ]

∂V1

∂x

+
1
2

∂V ′
1

∂x

[
2
1

]
[ 2 1 ]

∂V1

∂x
≤ 0,

H2
∞(V (x, 2)) =

∂V ′
2

∂x

[−3x3
1 + 2x2 − x1

−5x3
2 + x1 − 2x2

]

+
1
2

[ x1 + x2 x1 − x2 ]
∂2V2

∂x2

[
x1 + x2

x1 − x2

]

+
1
2
(2x2

1 − 2x2
2)(2x2

1 − 2x2
2) + λ21V1 + λ22V2

− 1
2

∂V ′
2

∂x

[
2
1

]
[ 2 1 ]

∂V2

∂x

+
1
2

∂V ′
2

∂x

[
x1

x2

]
[ x1 x2 ]

∂V2

∂x
≤ 0.

We choose the solution as V (x, 1) = x2
1 + 2x2

2, V (x, 2) =
x2

1 + x2
2. Then, it follows

∂V1

∂x
=




∂V1

∂x1
∂V1

∂x2


 =

[
2x1

4x2

]
,

∂V2

∂x
=




∂V2

∂x1
∂V2

∂x2


 =

[
2x1

2x2

]
,

∂2V1

∂x2
=




∂2V1

∂x2
1

∂2V1

∂x1x2

∂2V1

∂x2x1

∂2V1

∂x2
2


 =

[
2 0
0 4

]
,

∂2V2

∂x2
=




∂2V2

∂x2
1

∂2V2

∂x1x2

∂2V2

∂x2x1

∂2V2

∂x2
2


 =

[
2 0
0 2

]
.

So, we obtain that

H2
∞(V (x, 1)) =−14x4

1 − 11x2
1x

2
2 − 28x4

2 − 5x2
2 − 2x2

1 ≤ 0,

H2
∞(V (x, 2)) =−2x4

1 − 6x4
2 − (x1 + x2)2 − 7x2

1 − x2
2 ≤ 0.

Obviously, V (x, 1), V (x, 2) satisfy the above HJIs:
H2
∞(V (x, 1)) and H2

∞(V (x, 2)), respectively. Then, the
H∞ control is achieved by choosing

u∗∞(x, 1) = −g′1
∂V (x, 1)

∂x
= −6x2

1 − 8x2
2,

u∗∞(x, 2) = −g′2
∂V (x, 2)

∂x
= −4x1 − 2x2.

4. CONCLUSION

In this paper, we have dealt with the H∞ control problem
for a class of nonlinear stochastic systems with Markovian
jumps. The equivalent conditions among HJI, HJE, the
dissipative inequality and L2-gain property for this class of
systems have been established via the generalized stochas-
tic Lur’e equation. A worst case-based state-feedback H∞
controller has been synthesized as to the infinite horizon
case.

Appendix A. PROOF OF LEMMA 1

At first, we define an available storage function with supply
rate W on [s,∞), s ≥ 0, as

Va(x, i) =− inf
t≥s, d∈L2

F ([s,t],Rnd )



E

t∫

s

W (d(τ), z(τ)) dτ





= sup
t≥s, d∈L2

F ([s,t],Rnd )



−E

t∫

s

W (d(τ), z(τ)) dτ



 .

By Definition 1, system (1) is dissipative on [s,∞), which
implies that

E{V (x(t), rt)−V (x(s), rs)|rs = i} ≤ E

t∫

s

W (d(τ), z(τ)) dτ

for any x(s) ∈ Rn. So,
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V (x(s), rs)≥−E

t∫

s

W (d(τ), z(τ))dτ + EV (x(t), rt)

≥−E

t∫

s

W (d(τ), z(τ)) dτ,

which yields V (x(s), rs) ≥ sup
{
−E

∫ t

s
W (d(τ), z(τ)) dτ

}
.

Therefore, Va(x, i) is finite. Moreover, Va(x, i) is itself a
possible storage function, for every i ∈ ϕ, following the
lines of the proof of Theorem 1 (Willems [1972]).
Hence, for every i ∈ ϕ, Va(x, i) satisfies

E{Va(x(t), rt)− Va(x(s), rs)|rs = i}

≤ E

t∫

s

W (d(τ), z(τ)) dτ,

which yields

E
∫ t

s
W (d(τ), z(τ))dτ

t− s
− EVa(x(t), rt)− Va(x(s), rs)

t− s
≥ 0.

For every Va(x(t), i), i ∈ ϕ, rs = i, applying Generalized
Itô’s formula (Bjork [1980]), we know that

EVa(x(t), rt) = Va(x(s), rs) + E

t∫

s

[
∂V ′

a(x, i)
∂x

(fi + kid)

+
1
2
(hi + lid)′

∂2Va(x, i)
∂x2

(hi + lid)

+
N∑

j=1

λijVa(x, j)] dτ.

Combining with the above inequality and letting t ↓ s, it
follows that

J(x, d) = m′
iQmi + 2m′

iSd + d′Rd− ∂V ′
a

∂x
(fi + kid)

− 1
2
(hi + lid)′

∂2Va

∂x2
(hi + lid)

−
N∑

j=1

λijVa(x, j) ≥ 0.

We notice that J(x, d) is quadratic in d, so there exist
l̃i : Rn → Rq, and w̃i : Rn → Rq×nd (not necessarily
unique), such that J(x, d) = (l̃i(x) + w̃i(x)d)′(l̃i(x) +
w̃i(x)d). By comparing the coefficients of the same powers
of d, we deduce (3), (4), and (5).

For any x(s) ∈ Rn, the necessity is achieved by using
Definition 1 and noting that

E

t∫

s

W (d(τ), z(τ))dτ = EVs(x(t), rt)− Vs(x(s), rs)

+E

t∫

s

(l̃i(x) + w̃i(x)d)′(l̃i(x) + w̃i(x)d) dτ

≥ EVs(x(t), rt)− Vs(x(s), rs).

The proof of Lemma 1 is completed.
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