
Decentralized boundary control of

irrigation canal networks via a strict

Lyapunov method

L. Li ∗

∗ National ICT Australia, Department of Electrical and Electronic
Engineering, The University of Melbourne, VIC, 3010, Australia.

(e-mail: li.li@ee.unimelb.edu.au)

Abstract: A decentralized boundary control problem for irrigation canal networks is considered
in this paper. The control scheme is based on a strict Lyapunov method introduced in Coron
et al. (2007). A sufficient condition is presented to guarantee the closed-loop system to be
locally convergent to a desired set point, which extends the results in Coron et al. (2007)
for the single-pool case to a decentralized fashion for the multi-pool case. By eliminating the
redundant variables, the derived condition involves certain contractive condition and discrete-
time Lyapunov inequality with variables in a diagonal structure. This provides an easier way to
check the existence of the solution. An application to a two-pool canal with overflow spillways
is presented to demonstrate the proposed approach.

1. INTRODUCTION

This paper considers the problem of decentralized bound-
ary control for irrigation canal networks. The control prob-
lem of irrigation canals has been of increasing interest
since 1990s; e.g., see Malaterre et al. (1998); Mareels
et al. (2005); Cantoni et al. (2007) and the references
therein. The considered irrigation canal is composed of
several pools separated by hydraulic gates. Each pool
is described by hyperbolic partial differential equations
(PDEs), the so-called Saint-Venant equations. In recent
years boundary control problems have attracted much at-
tention (de Halleux et al., 2003; Bastin et al., 2005; Prieur
et al., 2005; Santos and Toure, 2005; Litrico and Fromion,
2006; Coron et al., 2007). This is motivated by the fact
that such systems are usually regulated through the gates
located at the boundaries of the pools to maintain the
water levels and discharges at their operation points.

A strict Lyaponov approach to the problem of boundary
control of single-pool canals is presented in Coron et al.
(2007). This approach can enable the trajectories of the
state variables converge to a desired set point. This is
achieved by introducing a Lyapunov function suitable to
the underlining nonlinear PDEs and choosing appropriate
boundary control strategy, such that the time derivative of
the chosen Lyapunov function is strict negative. In general,
the canals in a irrigation networks can be represented
as strings of pools separated by regulating gates. The
water level and velocity in a canal are then regulated by
controlling the gate opening. This motivates us to apply
the idea of Coron et al. (2007) to the decentralized control
of multi-pool canals.

In this paper, we consider a multi-pool canal network;
e.g., see de Halleux et al. (2003). The proposed control
scheme extends the results in Coron et al. (2007) to
a decentralized fashion. A sufficient condition for the
existence of a decentralized state feedback controller is
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Fig. 1. Single-pool canal with underflow gates

presented such that the corresponding closed loop system
is locally convergent to a desired set point. This sufficient
condition involves choosing appropriate boundary control,
such that the closed-loop boundary conditions satisfy
certain contractive condition and discrete-time Lyapunov
inequality with variables in a diagonal form. Note that
the results in Coron et al. (2007) involve some redundant
variables; c.f. Proposition 3. Finding a solution satisfying
such condition is more complicated. In this paper, instead,
we eliminate those redundant variables, leading to an
easier way to check whether a solution to the condition
exists; c.f. Lemma 4.

The organization of this paper is as follows. In Section
2 we describe the system model and introduce Riemann
invariants approach. Section 3 shows the main results
of this paper, presenting a sufficient condition for the
closed-loop system to be locally convergent. We illustrate
the method by an application to a two-pool canal with
overflow spillways presented in Section 4. Conclusions and
future works are given in Section 5.
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2. MODELING OF A SINGLE-POOL CANAL

In this section we give a brief review on the model of a
single-pool open canal controlled by two hydraulic gates
(de Halleux et al., 2003). Some typical gates are underflow
gate, overflow gate, over-shot gate etc.. The single-pool
canal with underflow gates are shown in Fig. 1, where
the upstream and downstream water level denoted by
Hup and Hdo are supposed to be constant and Hup >
Hdo. The canal under consideration satisfies the following
assumptions (Coron et al., 2007; de Halleux et al., 2003):
the canal is one-dimensional and horizontal; the canal is
prismatic with a constant rectangular cross section and
a unit width; the friction effects are neglected. Under
these assumptions, as is well known, the dynamics of
open channel are governed by the so-called Saint-Venant
equations:

∂

∂t

[

H
V

]

+ A(H, V )
∂

∂x

[

H
V

]

= 0, (1)

for (x, t) ∈ (0, L) × (0, +∞), where x is one-dimensional
space variable, t is time variable, V = V (x, t) is the water
velocity, H = H(x, t) is the water depth, g is the gravity

constant, and A(H, V ) =

[

V H
g V

]

.

The boundary conditions obtained by a standard discharge
relationship at each gate are

f̂1(V (0, t), H(0, t), u1) = 0, (2a)

f̂2(V (L, t), H(L, t), u2) = 0. (2b)

Under constant gate openings ū1, ū2, constant steady state
solutions (H̄, V̄ ) of (1) can be derived from (2).

The system (1) under consideration is strictly hyperbolic,
that is, the eigenvalues of A(H, V )

λ1 = ĉ(H, V ) = v +
√

gH, λ2 = −d̂(H, V ) = v −
√

gH
(3)

satisfy ĉ(H, V ) > 0, d̂(H, V ) > 0. This allows us to rewrite
the system (1) under Riemann invariants. Indeed, consider
the following bijection change of coordinates,

a = V − V̄ + 2(
√

gH −
√

gH̄),

b = V − V̄ − 2(
√

gH −
√

gH̄).
(4)

Then the system (1) can be diagonalized with the new
coordinates (a, b) as

∂

∂t

[

a
b

]

+

[

c(a, b) 0
0 −d(a, b)

]

∂

∂x

[

a
b

]

= 0. (5)

Here c(a, b), d(a, b) are the equivalent forms of ĉ(H, V ),

d̂(H, V ) in terms of (a, b) coordinates:

c(a, b) =
3

4
a +

1

4
b + V̄ +

√

gH̄,

d(a, b) = −(
3

4
a +

1

4
b + V̄ −

√

gH̄).

The equivalent forms of boundary conditions (2) in terms
of (a, b) are then expressed as

f̌1(a(0, t), b(0, t), u1) = 0, (6a)

f̌2(a(L, t), b(L, t), u2) = 0. (6b)
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Fig. 2. Two-pool canal with underflow gates

The new (a, b)-coordinate system provides a convenient
way for the controller design, see for example de Halleux
et al. (2003), Coron et al. (2007) and Aamo et al. (2006).
In the next section we will work on the system of the form
(5) and (6) to carry out decentralized control for irrigation
canals.

3. DECENTRALIZED BOUNDARY CONTROL OF
MULTI-POOL IRRIGATION CANALS

In this section we consider an open canal consisting of
n(n > 1) pools, extending the results of Coron et al. (2007)
for the single-pool case. For the sake of simplicity, the
control design is carried out only for n = 2; other cases
can be derived similarly.

The two-pool canal, as shown in Fig. 2, can be described
in the (a, b) coordinate system,

∂

∂t

[

ai

bi

]

+

[

ci(ai, bi) 0
0 −di(ai, bi)

]

∂

∂x

[

ai

bi

]

= 0, i = 1, 2,

(7)

with ci(ai, bi) > 0, di(ai, bi) > 0 and the boundary
conditions

f̌1(a1(0, t), b1(0, t), u1) = 0, (8a)

f̌2(a1(L, t), b1(L, t), a2(0, t), b2(0, t), u2) = 0, (8b)

f̌3(a1(L, t), b1(L, t), a2(0, t), b2(0, t)) = 0, (8c)

f̌4(a2(L, t), b2(L, t), u2) = 0, (8d)

in which (8a), (8b) and (8d) are obtained by a standard
discharge relationship at each gate, and (8c) by the flow
conservation law.

Define

ξ+(x, t) =

[

a1(x, t)
a2(x, t)

]

, ξ−(x, t) =

[

b1(x, t)
b2(x, t)

]

,

ai,0(t) = ai(0, t), ai,L(t) = ai(L, t),

bi,0(t) = bi(0, t), bi,L(t) = bi(L, t),

a
#
i (x) = ai(x, 0), b

#
i (x) = bi(x, 0).

We aim to design a decentralized boundary control scheme,
namely which only uses local information at the boundary
points for the feedback,

u1 = u1(a1,0, b1,0),

u2 = u2(a1,L, b1,L, a2,0, b2,0),

u3 = u3(a2,L, b2,L),

such that the system is stabilized at a desired steady state.
Without loss of generality, we take ξ̄ = (ξ̄T

+, ξ̄T
−

)T = 0 to be
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the steady state. The corresponding boundary conditions
for the closed-loop system are given by,

f1(a1,0, b1,0) = 0,

f2(a1,L, b1,L, a2,0, b2,0) = 0,

f3(a1,L, b1,L, a2,0, b2,0) = 0,

f4(a2,L, b2,L) = 0.

(9)

In what follows, we will present a sufficient condition for
the closed-loop system to be stable under such boundary
conditions. Following Coron et al. (2007), the sufficient
condition is derived along two steps. First, the stability of
the linearized model is analyzed by introducing an appro-
priate Lyapunov function. Then, this Lyapunov function
is extended for the nonlinear case.

3.1 Linear case

Similar to Coron et al. (2007), we first consider a simpler
case, the linear approximation of (7) around the origin,

∂

∂t

[

ai

bi

]

+

[

c̄i 0
0 −d̄i

]

∂

∂x

[

ai

bi

]

= 0, i = 1, 2. (10)

with boundary conditions

[

ξ−(L, t)
ξ+(0, t)

]

= K

[

ξ−(0, t)
ξ+(L, t)

]

. (11)

Here c̄i > 0, d̄i > 0.

Based on the analysis in Coron et al. (2007), the following
Lyapunov function is considered for the cascade system
(10):

U(t) = U1(t) + U2(t)

with

U1(t) =
2
∑

i=1

Ai

c̄i

∫ L

0

a2
i (x, t)e−(µ/c̄i)xdx,

U2(t) =

2
∑

i=1

Bi

d̄i

∫ L

0

b2
i (x, t)e+(µ/d̄i)xdx,

where Ai, Bi, µ are positive constant numbers to be deter-
mined.

Proposition 1. Given a system (10) with boundary condi-
tions (11), if there exist positive constants A1, A2, B1, B2,
µ satisfying

KT diag(B1e
µL/d̄1, B2e

µL/d̄2 , A1, A2)K

− diag(B1, B2, A1e
−µL/c̄1 , A2e

−µL/c̄2) < 0, (12)

then U̇(t) ≤ −µU(t) along the trajectories of the system
(10).

Proof.

U̇(t)

= −µU(t) −
[

2
∑

i=1

Aia
2
i (x, t)e−µx/c̄i

]L

0

+

[

2
∑

i=1

Bib
2
i (x, t)e+µx/d̄i

]L

0

= −µU(t)

+

[

ξ−(L, t)
ξ+(0, t)

]T

diag(B1e
µL

d̄1 , B2e
µL

d̄2 , A1, A2)

[

ξ−(L, t)
ξ+(0, t)

]

−
[

ξ−(0, t)
ξ+(L, t)

]T

diag(B1, B2, A1e
−

µL

c̄1 , A2e
−

µL

c̄2 )

[

ξ−(0, t)
ξ+(L, t)

]

= −µU(t)

+

[

ξ−(0, t)
ξ+(L, t)

]T
[

KT diag(B1e
µL/d̄1, B2e

µL/d̄2, A1, A2)K

− diag(B1, B2, A1e
−µL/c̄1, A2e

−µL/c̄2)
]

[

ξ−(0, t)
ξ+(L, t)

]

≤ −µU(t).

The above result guarantees that the solution of the linear
system (10) converges in L2(0, L)-norm. We will use this
property to prove the convergence for the nonlinear system
(7) in the next section. Note that the condition (12) can be
further simplified, which is postponed to the next section;
c.f. Lemma 4.

3.2 Nonlinear case

To analyze the convergence of the general nonlinear sys-
tem (7), an extended Lyapunov function was constructed
in Coron et al. (2007), which involves not only the state
variable, but their spatial first and second order partial
derivatives. In what follows, this approach is extended to
the cascade network of the form (7).

To this end, we first define some variables,

vi(x, t) = ∂xai(x, t), wi(x, t) = ∂xbi(x, t),

qi(x, t) = ∂xvi(x, t), ri(x, t) = ∂xwi(x, t).

Consider the following extended Lyapunov function,

S(t) = U(t) + V (t) + W (t), (13)

where

V (t) = V1(t) + V2(t),

V1(t) =

2
∑

i=1

c̄iAi

∫ L

0

v2
i (x, t)e−(µ/c̄i)xdx,

V2(t) =

2
∑

i=1

d̄iBi

∫ L

0

w2
i (x, t)e+(µ/d̄i)xdx,

W (t) = W1(t) + W2(t),

W1(t) =

2
∑

i=1

c̄3
i Ai

∫ L

0

q2
i (x, t)e−(µ/c̄i)xdx,

W2(t) =
2
∑

i=1

d̄3
i Bi

∫ L

0

r2
i (x, t)e+(µ/d̄i)xdx.

Define

f(ξ−(0, t), ξ−(L, t), ξ+(0, t), ξ+(L, t)) = (f1, f2, f3, f4)
T ,
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where fi is defined in (9). Note that here f(0) = 0.
As in de Halleux et al. (2003), the following assumption
is essential to the convergence analysis of the nonlinear
system (7).

Assumption 2. f is continuously differentiable and satisfies
det∇[ξ

−
(L,t),ξ+(0,t)]f(0) 6= 0, where ∇[ξ

−
(L,t),ξ+(0,t)]f de-

notes the Jacobian of f with respect to [ξ−(L, t)T , ξ+(0, t)T ]T .

Under the above assumption, in the neighborhood of
origin, by the Implicit Function Theorem (see e.g. Spivak,
1965), the boundary conditions (9) can be rewritten as

[

ξ−(L, t)
ξ+(0, t)

]

= g

(

ξ−(0, t)
ξ+(L, t)

)

(14)

for some continuously differentiable function g. Note
that Eq. (14) is a general form of (11), which explic-
itly describes the relation between incoming invariants
ξ−(0, t), ξ+(L, t) and outgoing invariants ξ−(L, t), ξ+(0, t);
see de Halleux et al. (2003) for more details. We can then
apply the result of Proposition 1 to obtain the following
for the nonlinear system (7).

Proposition 3. Given a system in the form of (7) with
boundary conditions (9), under Assumption 2, if the
positive constants A1, A2, B1, B2, µ satisfy

∇g(0)T diag(B1e
µL/d̄1, B2e

µL/d̄2 , A1, A2)∇g(0)

− diag(B1, B2, A1e
−µL/c̄1 , A2e

−µL/c̄2) < 0, (15)

where ∇g denotes the Jacobian of g with respect to

the vector [ξ−(0, t)
T
, ξ+(L, t)

T
]T , there exist positive

constants λ0 and δ0 such that if S(t) < δ0, then Ṡ(t) ≤
−λ0S(t) along the trajectories of the closed-loop system
(7) and (9).

Proof. Using the result of Proposition 1, it follows the
routine similar to the proof of Lemma 4 in Coron et al.
(2007).

Lemma 4. The condition (15) in the positive real variables
A1, A2, B1, B2, µ is feasible if and only if the following
condition

∇g(0)T diag(B̂1, B̂2, Â1, Â2)∇g(0)

− diag(B̂1, B̂2, Â1, Â2) < 0 (16)

in the positive real variables Â1, Â2, B̂1, B̂2 is feasible.

Proof. The sufficiency part can be easily verified by
continuity. As for the necessity part, supposing that the
condition (15) holds, we have

∇g(0)T diag(B1, B2, A1e
−µL/c̄1 , A2e

−µL/c̄2)∇g(0)

− diag(B1, B2, A1e
−µL/c̄1 , A2e

−µL/c̄2)

< ∇g(0)T diag(B1e
µL/d̄1 , B2e

µL/d̄2 , A1, A2)∇g(0)

− diag(B1, B2, A1e
−µL/c̄1 , A2e

−µL/c̄2)

< 0.

Then B̂1 = B1, B̂2 = B2, Â1 = A1e
−µL/c̄1, Â2 =

A2e
−µL/c̄2 verify (16). This completes the proof.

The above lemma provides a simplified version of the
condition (15) by eliminating the redundant variable µ.
The new condition (16), as we can see, has the form of
discrete-time Lyapunov inequality. It is straightforward
from (16) to obtain the following result.

Lemma 5. A necessary condition for (16) to hold is that
ρ(∇g(0)) < 1, where ρ(·) denote the spectral radius.

Now we are in the position to state the main result of this
paper.

Theorem 6. Under Assumption 2, if ρ(∇g(0)) < 1, and the

positive constants Â1, Â2, B̂1, B̂2 satisfy (16), there exist
positive real constants M, δ, λ such that, for any initial

condition (a#
1 (x), a#

2 (x), b#
1 (x), b#

2 (x)) in H2(0, L)4 1 sat-
isfying the compatibility conditions









b
#
1 (L)

b
#
2 (L)

a
#
1 (0)

a
#
2 (0)









= g









b
#
1 (0)

b
#
2 (0)

a
#
1 (L)

a
#
2 (L)









,

diag









d1(a
#
1 (L), b#

1 (L))

d2(a
#
2 (L), b#

2 (L))

−c1(a
#
1 (0), b#

1 (0))

−c2(a
#
2 (0), b#

2 (0))









∂

∂x









b
#
1 (L)

b
#
2 (L)

a
#
1 (0)

a
#
2 (0)









= ∇g









b
#
1 (0)

b
#
2 (0)

a
#
1 (L)

a
#
2 (L)









diag









d1(a
#
1 (0), b#

1 (0))

d2(a
#
2 (0), b#

2 (0))

−c1(a
#
1 (L), b#

1 (L))

−c2(a
#
2 (L), b#

2 (L))









∂

∂x









b
#
1 (0)

b
#
2 (0)

a
#
1 (L)

a
#
2 (L)









,

and such that
2
∑

i=1

(|a#
i (x)|H2(0,L) + |b#

i (x)|H2(0,L)) < δ,

the closed-loop system (7) with boundary conditions (9)
has a unique solution which is continuous from [0, +∞)
into H2(0, L)4 and satisfies

2
∑

i=1

(|ai(x, t)|H2(0,L) + |bi(x, t)|H2(0,L))

< M

2
∑

i=1

(|a#
i (x)|H2(0,L) + |b#

i (x)|H2(0,L))e
−λt.

Proof. On the basis of Lemma 4-5 and Proposition 3, the
proof is essentially the same as that of Theorem 1 of Coron
et al. (2007), thus omitted here.

Remark 7. If n = 1, Theorem 6 recovers the results of
Coron et al. (2007) for the single-pool case. Similar to
de Halleux et al. (2003), the stability condition involves
the contraction of ∇g(0) = −(∇[ξ

−
(L,t),ξ+(0,t)]f(0))−1

∇[ξ
−

(0,t),ξ+(L,t)]f(0). This is due to the discrete-time na-
ture of the (a, b) coordinate system (7) at the boundary
points. Intuitively, g(·) describes the relation between the
outgoing invariants ξ−(L, t), ξ+(0, t) and the incoming
invariants ξ−(0, t), ξ+(L, t), and the characteristic curves
of a(x, t), b(x, t) link the outgoing invariants and the in-
coming invariants together, at different time instances, to
form a discrete-time-like system at the boundary points.
The discrete-time Lyapunov inequality in (16) justifies
this connection. Note that the internal mechanism for
the single-pool case, driven by the characteristic curves
and the boundary controls, is depicted mathematically in
de Halleux et al. (2003, Section 3.2).

1 Here H2(0, L) denotes the Sobolev space defined on [0, L], see
Taylor (1996, Chapter 4) for a complete description and related
operations.
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Fig. 3. Two-pool canal with overflow spillways

In general, it is hard to justify the contraction of ∇g(0).
One possible approach to reduce the computation of ∇g(0)
is proposed in de Halleux et al. (2004), which exploits
the structure of the invariant graph to break some of its
connectivity.

Note that the condition in the above theorem differs from
the one presented in de Halleux et al. (2003) which requires
that

ρ(abs(∇g(0))) < 1;

here abs(·) means, for A = [aij ] ∈ Rm×n, abs(A) =
[|aij |] ∈ Rm×n. There is no clear indication showing which
one is tighter compared to the other. Either one could be
feasible while the other is infeasible.

We now summarize the overall control design procedure.

Procedure 8. (Control design procedure)

(1) Choose suitable closed-loop boundary conditions (9)
such that ρ(∇g(0)) < 1.

(2) Check the feasibility of (16). If not feasible, go back
to Step 1.

(3) Derive the decentralized controller u1(a1,0, b1,0),
u2(a1,L, b1,L, a2,0, b2,0), u3(a2,L, b2,L) from the bound-
ary conditions (8) and (9).

4. APPLICATION TO A TWO-POOL CANAL WITH
OVERFLOW SPILLWAYS

In this section we illustrate the method presented in
Section 3 by an application to a two-pool canal with
overflow spillways depicted in Fig. 3; see Coron et al.
(2007) for the single-pool case.

The open-loop boundary conditions are

H1,0V1,0 = C0(Hup − u1)
3/2, (17a)

H1,LV1,L = C0(H1,L − u2)
3/2, (17b)

H1,LV1,L = H2,0V2,0, (17c)

H2,LV2,L = C0(H2,L − u3)
3/2, (17d)

where C0 is the characteristic constant of the spillways,
and for i = 1, 2,

Hi,0(t) = Hi(0, t), Hi,L(t) = Hi(L, t),

Vi,0(t) = Vi(0, t), Vi,L(t) = Vi(L, t).

For constant spillway positions ū1, ū2 and ū3, the steady
state solutions are given by

H̄1 = Hup − ū1 + ū2,

H̄2 = Hup − ū1 + ū3,

V̄1 =
C0(Hup − ū1)

3/2

Hup − ū1 + ū2
,

V̄2 =
C0(Hup − ū1)

3/2

Hup − ū1 + ū3
.

The corresponding closed-loop boundary conditions (9)
are chosen to have the following form:

f1(a1,0, b1,0) = a1,0 + k1b1,0, (18a)

f2(a1,L, b1,L, a2,0, b2,0)

= b1,L + k2a1,L + k3b2,0 + k4a2,0, (18b)

f3(a1,L, b1,L, a2,0, b2,0)

= (a1,L + b1,L + 2V̄1)(a1,L − b1,L + 4

√

gH̄1)
2

− (a2,0 + b2,0 + 2V̄2)(a2,0 − b2,0 + 4

√

gH̄2)
2, (18c)

f4(a2,L, b2,L) = b2,L + k5a2,L, (18d)

where (18c) is the (a,b) coordinate expression of (17c),
and ki, i = 1, · · · , 5 are constants to be selected such that
the closed-loop system is stable in the sense of Theorem 6.

For the stability condition in Theorem 6, ∇g(0) can
be computed by ∇g(0) = −(∇[ξ

−
(L,t),ξ+(0,t)]f(0))−1

∗∇[ξ
−

(0,t),ξ+(L,t)]f(0) in which

∇[ξ
−

(L,t),ξ+(0,t)]f(0)

=







0 0 1 0
1 0 0 k4

16
√

gH̄1(
√

gH̄1 − V̄1) 0 0 −16
√

gH̄2(
√

gH̄2 + V̄2)

0 1 0 0






,

∇[ξ
−

(0,t),ξ+(L,t)]f(0)

=







k1 0 0 0
0 k3 k2 0

0 −16
√

gH̄2(
√

gH̄2 − V̄2) 16
√

gH̄1(
√

gH̄1 + V̄1) 0
0 0 0 k5






.

Combing (4), (17) and (18), the boundary control strategy
is as follows:

u1 = Hup − 3

√

H2
1,0

C2
0

(

V̄1 − 2
√

gλ1(
√

H1,0 −
√

H̄1)
)2

,

u2 = H1,L − 3

√

H2
1,LH2

2,0

C2
0 (H2,0 + λ3H1,L)2

× 3

√

√

√

√

(

V̄1 + λ3V̄2 + 2
√

gλ2(
√

H1,L −
√

H̄1)

+2
√

gλ4(
√

H2,0 −
√

H̄2)

)2

,

u3 = H2,L − 3

√

H2
2,L

C2
0

(

V̄2 + 2
√

gλ5(
√

H2,L −
√

H̄2)
)2

,

where

λ1 =
1 − k1

1 + k1
, λ2 =

1 − k2

1 + k2
,

λ3 =
k3 + k4

1 + k2
, λ4 =

k3 − k4

1 + k2
, λ5 =

1 − k5

1 + k5
.
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As seen above, only water level at the local boundary is fed
back to the local control. The decentralized feature makes
this algorithm easier to implement in practical systems.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider a decentralized control design
for irrigation canals based on a strict Lyapunov method
introduced in Coron et al. (2007). The obtained results
extend the boundary control strategy for a single-pool
canal in Coron et al. (2007) to a decentralized control
design for a multi-pool canal. The proposed boundary
control design uses only the states measured at each gate.
It is shown that, by selecting appropriate boundary con-
trol, such that the closed-loop boundary conditions satisfy
certain contractive condition and discrete-time Lyapunov
inequality with diagonal variables, the local convergence
to a desired set point can be guaranteed.

Our future work will focus on the following issues:

• Explore possible ways to overcome the difficulties
in the control design caused by the spectral-radius-
related stability condition.

• Instead of the feasibility problem considered in this
paper, try to solve the optimization problem involv-
ing, for example, the decay exponential µ, or some
suitable cost function.

• Extend the control algorithm to robust analysis, for
example, studying the uncertain model with offtake
at each gate.

• Investigate how the errors propagate over the network
and how to drive the errors as small as possible.
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