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Abstract: An integrated design of robust controller and fault estimator for linear parameter varying 
systems is presented in this paper. Based on gain-scheduled H∞ design strategy and scaled bounded real 
lemma, a linear parameter varying controller is developed, which can generate both control signals and 
fault estimates. To demonstrate the effectiveness of the proposed method, an uncertain system with 
actuator faults is studied. 

 

1. INTRODUCTION 

The issue of Fault Detection and Isolation (FDI) has been an 
active research area in the last two decades, a useful survey 
on FDI can be found in the book of Chen and Patton (1999). 
Early papers on FDI suffered from problems due to 
modelling uncertainties. To achieve robustness in the 
presence of disturbances and uncertainty, optimization-based 
FDI schemes have been proposed where an appropriately 
selected performance index is chosen to enhance sensitivity 
to the faults and simultaneously attenuate disturbances. One 
of the popular methods is the so-called robust H∞ FDI (Liu & 
Frank, 1999, Stoustrup & Niemann 2002, Zhong et al., 2003, 
Casavola et al., 2005). 

In the literature dealing with FDI, the filters for FDI have in 
general been considered as a separate design problem from 
the design of feedback controllers. However, some attention 
has been paid to the integrated design of the controller and 
the FDI filter (Jacobson & Nett, 1991, Stoustrup et al., 1997, 
Marcos & Balas, 2005, Castro et al., 2006). Stoustrup et al. 
(1997) have shown that the optimal integrated design is equal 
to the optimal separate design of the controller and detection 
filter if there is no model uncertainty. When there is 
uncertainty the design is coupled and then an integrated 
approach would present a more advantageous framework for 
the trade-off between performance and robustness.  Indeed 
the integrated approach is very important for the design and 
development of fault-tolerant control schemes  

Recently, FDI for linear parameter varying (LPV) systems 
has attracted many investigators (Bokor & Balas, 2004, 
Casavola et al., 2008). LPV systems are linear time-varying 
plants whose state-space matrices are fixed functions of some 
vector of varying parameters. An LPV system can be reduced 
to a linear time-varying (LTV) system for a given parameter 
trajectory and it can also be transformed into a linear time-
invariant (LTI) system on a constant trajectory.  From a 
practical point of view, a large class of nonlinear systems can 

be reduced to LPV systems by using the linearization along 
trajectories of the parameters. LPV methods have been 
successfully used in control design to provide guaranteed 
stability and performance (Apkarian et al., 1995), its 
extension to the FDI problem has not been studied 
thoroughly.  

In this paper, we study the integrated design of a robust 
controller and fault estimator for a class of LPV plants which 
depend affinely on a vector of time-varying parameters. The 
resulting LPV controller has the same parameter dependence 
as the plants, and can generate both the control action and the 
fault estimates. 

2. PROBLEM FORMULATION 

The setup considered is illustrated in Fig. 1.  
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Fig. 1. Control system with faults 

Where ( , )G s θ  is the LPV plant, θ is a vector of varying 
parameters measured in real time during system operation, 

uΔ  is the uncertainty block which reflects the modelling 
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uncertainty or unmodelled dynamics, and satisfies 
1 γ

∞
Δ ≤ , Wp  and Wu are weighting functions for 

performance and robustness, respectively. Wa and Ws are the 
fault models of the actuator faults signals fa and sensor faults 
signals fs, respectively. f̂  is the estimation of the actuator 
and sensor faults, and the exogenous signal d2 is uncertain 
disturbance. 

The objective of this paper is to design a LPV controller 
( , )K s θ  for Fig. 1 such that the system has satisfactory 

control performance and fault estimation performance. 

Define a fault estimation error z3 as: 
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Then Fig. 1 can be rearranged as Fig. 2 which is the standard 
structure in H∞ theory. The transfer function from d2 to z2 
defines the performance of the closed-loop control system 
and the transfer function from (wa, ws) to z3 defines the 
performance of the fault estimator. Now the integrated design 
problem can be expressed as: 

Problem 1: Find an internally stabilizing controller K(s,θ) 
such that the closed-loop system is internally stable and the 

H∞ norm of  the operator mapping ( )2

TT T t
a sd w w  into 

( )2 3

TT Tz z  is bounded by γ  for all 1u γ
∞

Δ ≤ . 

By inserting fictitious perturbation blocks, Problem 1 can be 
further reduced to the robust stability problem as shown in 
Fig. 3 where pΔ  ( 1p γ

∞
Δ ≤ ) and fΔ  ( 1f γ

∞
Δ ≤ ) 

blocks represent performances of the closed-loop system and 
fault estimation, respectively. 

The equivalent uncertainty block for the robust stability 
problem in Fig. 3 has the following structure: 

( )
3 31 1 2 2

: {diag , , :

, , }
u p f

q qq q q q
u p f

×× ×

Δ = Δ Δ Δ

Δ ∈ Δ ∈ Δ ∈C C C
      (2) 

This structured uncertainty problem can be solved by existing 
methods, such as μ-synthesis. In this paper we use the scaled 
H∞ control theory. The set of scaling matrices associated with 
the structure Δ is:  

1 2 31 2 3: {diag( , , ) :

, 0, 1, 2,3}
q q q

i i

L I I I

i

σ σ σ
σ σ

Δ =

∈ > ∀ =R
                (3) 

According to the small gain theorem, the sufficient condition 
for robust stability of the system in Fig.3 can be expressed as 
Problem 2. 
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Fig. 2. Standard structure for robust control and fault 
estimation 
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Fig. 3. Equivalent structure for robust stability 

Problem 2: The system in Fig.3 is internally stable for all 
1u γ

∞
Δ ≤ , 1p γ

∞
Δ ≤ , 1f γ

∞
Δ ≤ , if  there exists a 

scaling matrix L LΔ∈  and a controller ( , )K s θ  such that the 
nominal system is internally stable and the closed-loop 
transfer function ( ( , ), ( , ))lF P s K sθ θ  form (d1, d2, wa, ws) 
to (z1, z2, z3) satisfies 

1 1
2 2( ( , ), ( , ))lL F P s K s Lθ θ γ

−

∞

<             (4) 

Remark 1: If ( , )K s θ  satisfies Problem 2 then it also 
satisfies Problem 1. In the remaining of this paper, we will 
focus on the solution to Problem 2. 
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3. DESIGN METHOD 

This section will discuss the solution to Problem 2. Suppose 
the LPV plant ( , )G s θ  has the following state-space 
representation 

( )
( , ) 0

g g

g

A B
G s C

θ
θ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

                (5) 

Here we assume that the matrices Bg and Cg are parameter 
independent. This assumption can be alleviated by pre- 
and/or post-filtering of the control inputs and/or the measured 
outputs. 

More assumptions on the LPV plant G(s,θ) 

(A1) The vector of varying parameters θ(t) varies in a 
polytope Θ of vertices θ1, θ2, …, θr , i.e.: 

{ }1 2
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(A2) The matrix Ag(θ) depends affinely on θ(t). 

(A3) The pairs (Ag(θ), Bg) and (Ag(θ), Cg) are quadratically 
stabilizable and  quadratically detectable over Θ, respectively. 

From (A1) and (A2), it is clear that the LPV system (5) is a 
polytopic system, i.e. 
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The state-space representations of the weightings are as 
follows: 
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The state-space realization of the generalized plant ( , )P s θ  
is:  
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Where: 
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The dimensions of the generalized plant (8) are given by 

1 1 2 2
11 22( ) , ,p p p mn nA D Dθ × ××∈ ∈ ∈R R R       (13) 

The LPV controller ( , )K s θ  to be designed in this paper has 
the same parameter dependence as the plant, i.e. 

( ) ( )( ) : ( ) ( )
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As shown in Fig. 3, by closing the loop with the kth-order 
controller: ( , )K s θ , we have the following closed-loop 
system:  

( ) ( )
 ( ) ( )
cl cl cl cl

cl cl cl

x A x B w
z C x D w

θ θ
θ θ

= +
= +

&
              (15) 

Where:  

( )1 2

TT T T T
a sw d d w w=  

( )1 2 3

TT T Tz z z z=  

0( ) ( ) ( )clA Aθ θ θ= +BK C  
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0 21( ) ( )clB Bθ θ= +BK D  

0 12( ) ( )clC Cθ θ= +D K C  

11 12 21( ) ( )clD Dθ θ= +D K D              (16) 

and with 
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Since the state-space matrices of the closed-loop system (15) 
depend affinely on θ(t), the following statements are 
equivalent: 

(i) ( )clA θ  is stable and there exists L LΔ∈  such that 
1 2 1 1 2|| ( ( )( ( )) ( ) ( )) ||cl cl cl clL C sI A B D Lθ θ θ θ− −

∞− + γ<  
for all possible parameter trajectories θ(t) in the polytope Θ. 

(ii) There exist positive definite solutions X and L LΔ∈  to 
the matrix inequalities: 

1
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( ) ( )

                                                    1, 2, ,

T T
cl i cl i cl i cl i

T T
cl i cl i

cl i cl i

A X XA XB C
B X L D
C D L

i r

θ θ θ θ
θ γ θ
θ θ γ −

⎛ ⎞+
⎜ ⎟− <⎜ ⎟
⎜ ⎟−⎝ ⎠

= L

   (18) 

Remark 2: The statement (i) is the sufficient condition for 
robust stability of the system in Fig. 3 (see Problem 2). The 
equivalence between statement (i) and (ii) is an extension of 
the scaled bounded real lemma for linear time-invariant 
systems (Apkarian & Gahinet, 1995) to LPV systems. Based 
on this extension, and through some manipulations, we have 
the following theorem which gives a solution to the Problem 
1. 

Theorem 1 

Consider the LPV plant (5) with assumptions (A1)-(A3). Let 

RN  and sN  denote bases of the null spaces of 2 12( , ), 0T TB D  

and 2 21( , ),0C D , respectively. The Problem 1 is solvable if 

and only if there exist two symmetric matrices (R, S) in R n n×  
and (L, J) in LΔ  such that 
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LJ I=                                                                           (22) 

where Ai denotes the value of A(θ) at the vertices θ = θi of the 
parameter polytope Θ. 

Constraint (22) is non-convex, the global optimization 
algorithm based on convex area search (Yamada et al., 1995) 
is employed in this paper. Once the solution (R, S, L, J) of the 
matrix inequalities (19)-(22) has been given, the state-space 
data K(θ) of the LPV controller K(s, θ) can be computed as 
follows (Apkarian & Gahinet, 1995, Apkarian et al., 1995): 

Algorithm 1 

1). Compute the full column rank matrices , R n kM N ×∈  such 
that 

TMN I RS= −                               (23) 

2). Compute X as the unique solution of the linear matrix 
equation 

0 0T T

I R S I
X

M N
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                 (24) 

3). Compute Ki by solving the linear matrix inequality (18). 

4). Compute the state-space data K(θ) of the controller K(s, θ). 

1
( )

r

i i
i

θ α
=

=∑K K                             (25) 

where αi is any solution of the following convex 
decomposition problem: 

1

r

i i
i

θ α θ
=

=∑                               (26) 

4. EXAMPLE 

In this section we present an example illustrating the 
integrated design method. The plant considered has the 
following state-space description: 
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where xp, up and yp are the vectors of states, input and output 
of the plant, respectively. p1 and p2 are time-varying 
parameters which can be measured in real time, 

1 [6,14]p ∈ , 2 [9,13]p ∈ . The plant is subject to 
multiplicative uncertainties and actuator faults, the 
interconnections of the generalized plant are shown in Fig. 1 
and Fig. 2. The weighting functions are selected as: 
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1000u
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+=
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10 1000
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s
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10
10aW

s
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+
                                          (30) 

The purpose is to design a combined controller and estimator 
such that the system has satisfactory control performance and 
fault estimation performance. 

Applying Theorem 1 to this problem and solving the matrix 
inequalities (19)-(22) yields a performance level of γ = 
0.71433. Then according to the steps in Algorithm 1, a 
polytopic LPV controller can be constructed. 

Fig. 4 shows a simulation with an actuator fault. The 
disturbance d2 is Gaussian white noise with standard 
deviation of 0.2.  The parameter trajectories of p1 and p2 are 

1 2( ) 6 2 , ( ) 9 , 0 4p t t p t t t= + = + ≤ ≤  

Simulation results show that the designed controller can 
identify the actuator fault effectively, the disturbance has 
little effect on the fault estimation, and the actuator fault does 
not have disastrous effects on the system. 
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Fig. 4. Simulation for integrated design 

5. CONCLUSIONS 

A new framework for the simultaneous design of a robust 
controller and fault estimator for LPV systems has been 

outlined in this paper based on scaled H∞ theory and gain-
scheduled techniques. The work forms a part of an on-going 
study by the authors on the development of new methods for 
Fault Tolerant Control. Research is already underway on 
application of these methods to practical laboratory and 
engineering systems. 
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