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Abstract: This paper studies the robust attitude control of the large flexible communication
satellite ETS-VIII. As a controller candidate, we propose a two-degrees-of-freedom control based
on robust direct velocity and displacement feedback, in order to develop a baseline of future
controller design technology for this class of spacecraft. For this purpose, the spacecraft modeling
and controller synthesis methods are discussed. Then, the controller implementation for on-orbit
control experiment is shown with some simulation results.

1. INTRODUCTION

According to the increasing mission requirement, there is a
trend that recent communication satellites have large flex-
ible communication antenna reflectors and solar paddles.
During the past three decades, the issues of modeling and
control technologies of large spacecraft have been studied
extensively, and some on-orbit control experiment results
have been reported. As one of them, we have performed
the on-orbit attitude control experiment using Engineering
Test Satellite VI (ETS-VI) in 1994 (Kida et al. [1997]).
Based on the experience, we are now planning an on-orbit
experiment of robust control of Engineering Test Satellite
VIII (ETS-VIII) launched into Geo-synchronous orbit in
December, 2006. It is the largest satellite that Japan has
ever developed with measurements that are 40 × 37 (m)
and weight 3000 (kg) (Fig. 1). The main mission is mobile
communications for which two large deployable reflectors
(LDR) are appended in the roll axis direction. A pair
of solar paddles (PDL) rotate around the pitch axis at
the rate of 360 (deg/day) to direct its normal direction
to the Sun. Spacecraft dynamics around three axes are
coupled with each other and system parameters drastically
change according to paddle rotation. Therefore, it must be
treated as a linear parameter varying (LPV) multi-input
multi-output (MIMO) system. For this spacecraft, we have
studied to apply μ synthesis and H∞ gain-scheduling con-
troller (Nagashio and Kida [1999], Hamada et al. [2006]).
While the controllers obtained using such parametric ap-
proaches achieve high control performance, they become
higher-order and sensitive to plant parameter accuracy.
As another approach, the use of the symmetric static
output feedback control is known to be effective for flexible
spacecraft with collocated sensors and actuators (Joshi
[1986]). It guarantees the robust stability of the closed-loop
system irrespective of the system parameters. This paper
proposes to construct two-degrees-of freedom controller
based on symmetric controller having the salient stability
property in order to meet the ETS-VIII spacecraft mission.
The optimization methods of feedback controller gains and
feedforward controllers are discussed. Finally, on-board

computer implementation problems are discussed, the on-
orbit experiment plan and some simulation results are
shown.

2. SPACECRAFT MODEL

The dynamical equation of ETS-VIII is given by the fol-
lowing hybrid equation (Likins [1970]) when PDL rotation
is sufficiently slow.

J(δ)θ̈ +
∑

i

Δi(δ)η̈i = u + w (1)

ΔT
i (δ) + η̈i + 2ζiΩiη̇i + Ω2

i ηi = 0 (2)

where i = n, s, a, b denotes the north/south solar paddles
and a/b antenna reflectors, and δ ∈ R is paddle rotation
angle. θ ∈ R

3 is attitude angle, u ∈ R
3, w ∈ R

3 are torque
control input and disturbance input around three axes
and ηi ∈ R

ni is modal coordinate of the i th appendage.
Ω2

i = diag[ω2
i1, · · · , ω2

ini
] is modal stiffness matrix where

ωij ∈ R and ζi ∈ R denote modal frequency and damping
ratio. The inertia matrix J(δ) and coupling matrix Δi(δ)
vary depending on paddle angle δ. On the measurement
output, by the attitude determination logic based on gyros
and earth/sun sensors, the estimated attitude angles and
their rates are available.

y1 = θ, y2 = θ̇. (3)

From FEM analysis of each appendage under the canti-
lever condition, coupling matrices and modal parameters
of eight modes for LDR (na = nb = 8) and eight modes for
PDL (nn = ns = 8) are obtained. The canti-lever modal
frequency ωij ranges from 0.06 (Hz) to 4.0 (Hz). Thus
the obtained full-order model has n = 3 (rigid mode) +
na + nb + nn + ns = 35 coordinates. The dependency of
the spacecraft model on paddle angle δ is evaluated by
singular value plots of open-loop plant from control input
u to measurement output y1 for paddle angle δ = 0, 45, 90
(deg) (Fig. 2). It is apparent that many vibration modes
exist in the lower frequency range and they are exchanged
with each other according to the paddle rotation.
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Fig. 1. A view of ETS-VIII.
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Fig. 2. Singular value plots of ETS-VIII open-loop system
for δ = 0, 45 and 90 (deg) from top to bottom.

The controller design objective is to obtain a reduced
order controller that robustly stabilizes the LPV MIMO
spacecraft against the unstructured uncertainties of higher
vibration modes and the structured uncertainties caused
by the inaccuracy of modal identification before launch.
As well as the closed-loop asymptotic stability, other
control specifications must be considered from its mission
requirement. They are

• Robust stability for all paddle angles,
• Steady state attitude error less than 0.05(deg) under

orbit control thruster firing,
• Attitude tracking capability to ±0.05 (deg) step com-

mand.

After trade-off studies, we have determined to employ
two-degrees-of freedom control based on the static output
feedback controller as stated in the next section. For the
controller design, the spacecraft equations (1)(2) and (3)
are compactly described as follows.

M(δ)p̈ + Dṗ + Kp = Lu + Lw (4)
y1 = LT p, y2 = LT ṗ (5)

where p = [ θT ηT
a ηT

b ηT
n ηT

s ]T ∈ R
n. It is noted that

(4)(5) satisfies two features. First,

M(δ) > 0, D ≥ 0, K ≥ 0, ∀δ ∈ R (6)
hold from the modal identity (Likins [1970]). Second,
system (4)(5) is stabilizable and detectable, since the rank
conditions

rank[K, L] = rank[D, L] = n. (7)
are satisfied for all δ (Ikeda et al. [1993]).

3. CONTROLLER DESIGN

The block diagram of the proposed controller is shown
in Fig. 3. It consists of the feedback control part of K0,
and the feedforward part of stable transfer functions K1

and K2. The input-output relation from the reference
signal r and disturbance w to the measurement output
y = [ yT

1 yT
2 ]T is given by

y = Gyrr + Gyww (8)
where

Gyw = (I + PK0)−1P, Gyr = Gyw(K2 + K0K1) (9)
if we denote the plant transfer function by P . We first
design K0 so that the closed-loop system is robustly
stable and has disturbance attenuation capability to w.
Afterward, K1 and K2 are designed so that the output y
quickly follows the step command r without steady-state
error.

3.1 Feedback Control

Robust stability Let us consider a static output feedback
controller.

u = −K0y (10)
where K0 = [ K01 K02 ] and gain matrices K01 and K02

are constant and satisfy
K01 > 0, K02 > 0 (11)

Then the closed-loop system (4)(5) with (10) is
M(δ)p̈ + D∗ṗ + K∗p = Lw (12)

where
K∗ = K + LK01L

T , D∗ = D + LK02L
T . (13)

In order to examine the stability of (12), we use the
following two lemmas.

Lemma 1 (Ikeda et al. [1993]): The coefficient matrices of
(12) satisfy

D∗ > 0, K∗ > 0 (14)
if system (4)(5) is stabilizable and detectable. �

Lemma 2: If X, Y > 0, there exist a sufficiently small scalar
α > 0 such that[

X αY
αY αY

]
> 0,

[
αX αY
αY Y

]
> 0 (15)

Proof: It is apparent from Schur complement. �

Then we can state the following stability condition.

Theorem 1: System (12) is asymptotically stable for all
δ ∈ R if M(δ) > 0 and K∗, D∗ > 0 when disturbance
input w = 0.

Proof: The asymptotic stability of (12) is equivalent to

A =
[

0 I
−M−1(δ)K∗ −M−1(δ)D∗

]
(16)
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Fig. 3. Block diagram of two-degrees-of freedom controller.

being stable. The matrix A is stable if and only if there
exists a matrix X > 0 such that

XA + AT X < 0 (17)
The Lyapunov inequality obviously has a solution

Xe =
[

K∗ αM(δ)
αM(δ) M(δ)

]
> 0 (18)

because
XeA + AT Xe = −Q (19)

where

Q =
[
2αK∗ αD∗

αD∗ 2D∗ − 2αM(δ)

]
> 0 (20)

from Lemmas 1 and 2. �

It is noted that stability is ensured only from the qual-
itative properties of sign definiteness (6) and (11) and
it is independent from parameters and dimensions of the
plant and controller. In the sense, the closed-loop system
is robustly stable.

Disturbance attenuation Now we discuss conditions on
feedback gain matrices K01 and K02 (11) for the closed-
loop system having the prescribed disturbance attenuation
ability. To this end, they are analyzed in the H∞ optimiza-
tion framework. Let us rewrite (12) in state space,

ẋ = Ax + Bw (21)
z = Cx (22)

where A is as given in (16) and

B =
[

0
M−1(δ)L

]
, C =

[
LT 0

]
(23)

Then, from Bounded Real Lemma (BRL), the stable
transfer function Gyw = LT (M(δ)s2 + D∗s + K∗)−1L
satisfies ‖Gyw‖∞ < γ, ∀δ ∈ R if and only if there exists a
X > 0 such that⎡

⎣XA + AT X XB CT

BT X −γI 0
C 0 −γI

⎤
⎦ < 0 (24)

It is known that the standard H∞ controller is feasible
if the system is stabilizable and detectable (Gahinet and
Apkarian [1994]). However, since our problem imposes the
positive definiteness constraints (11) upon (24), it must
be examined whether such a controller could exist. We
can derive the following theorem.

Theorem 2: There always exists a controller (10) such that
the closed-loop system (21)(22) has an H∞ norm 1 less
than γ > 0 for all δ.

Proof: From Schur complement, (24) is equivalent to

1 In the strict sense of definition, we should state that the system
has L2 gain less than γ > 0, ∀δ ∈ R. However, for brevity we use
the term H∞ norm throughout the paper.

XA + AT X < 0 (25)

XA + AT X +
1
γ

[
XB CT

] [
BT X

C

]
< 0 (26)

As stated in Theorem 1, Xe > 0 given in (18) is a solution
of (25). And from (19), (26) is

1
γ

NNT − Q < 0 (27)

where Q > 0 and

N =
[
αL L
L 0

]
. (28)

The inequality (27) holds for sufficiently large γ > γmin

for all δ. Indeed, we can obtain the lower bound of γ as

γmin = λmax

(
Q−1/2NNT Q−1/2

)
(29)

by the eigen-value analysis of (27). �

Design by LMI In the preceding discussion, it has been
shown that there exist symmetric and positive-definite
feedback controller gains (11) that satisfy (24). From the
design viewpoint, they are obtained by simultaneously
solving (24) and (11) for all δ. However, since (24) is
a bilinear matrix inequality (BMI), there is no efficient
solver. This is the general case for the static output
feedback controller design. Additionally, the problem is
involved because (11) and (12) must be satisfied for all
δ. To cope with the problem, we propose the following
design scheme based on linear matrix inequalities (LMIs).

Let us suppose M(δ) bounded for all δ, and its convex
decomposition given as

M(δ) =
σ∑

i=1

aiMi, ai ≥ 0,

σ∑
i=1

ai = 1 (30)

where Mi is the mass matrix at the i th vertex formed
by the maximum and minimum of entries of matrix M(δ).
Then (27) becomes

1
γ

NNT − Q =
σ∑

i=1

ai

(
1
γ

NNT − Qi

)
< 0 (31)

Therefore, if we can simultaneously solve the inequalities
1
γ

NNT − Qi < 0, i = 1, 2, · · ·σ (32)

with (11) to obtain K01 > 0 and K02 > 0 so as to minimize
the common γ, we can achieve our objective. It is noted
here that Qi in (32) is

Qi =
[
2αK∗ αD∗

αD∗ 2D∗ − 2αMi

]
(33)

from (20) and it is linear with respect to the variables K01

and K02 from (13) when the design parameter α is fixed.
Therefore, since (32) and (11) are LMIs, they are efficiently
solved using convex optimization tools.

3.2 Feedforward Controller

In order to improve the attitude maneuver performance,
we design feedforward controllers K1 and K2 by a model
matching method. We consider to minimize γ > 0 such
that

‖Gr − Gyr‖∞ < γ (34)
for all δ, where y = Gr(s)r denotes a given constant
transfer function matrix of reference model. When the
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plant is LTI, it is a standard H∞ model matching problem
to obtain v = [ KT

1 KT
2 ]T r, for the generalized plant

z = Gr(s)r − Gyrv (35)
y = r (36)

However, in our LPV problem, feedforward controllers
K1 and K2 must be scheduled according to the change
of δ. To this end, we consider the gain scheduling H∞
model matching problem. Let the state equation of the
feedforward controller

ẋk = Ak(δ)xk + Bk(δ)r (37)
v = Ck(δ)xk + Dk(δ)r (38)

and that of the reference model
ẋr = Arxr + Brr (39)

zr = Crxr (40)
where Ar is a constant stable matrix. The closed-loop
system (12) driven by feedforward control inputs v1, v2

are written in the following descriptor form.
E(δ)ẋp = Apxp + Bpv (41)

y = Cpxp (42)
where v = [ vT

1 vT
2 ]T and

Ep(δ) =
[
I 0
0 M(δ)

]
, Ap =

[
0 I

−K∗ −D∗

]
(43)

Bp =
[

0 0
LK0 L

]
, Cp =

[
LT 0
0 LT

]
(44)

Then the LPV counterpart of the generalized plant used
for scheduled controller design, that corresponds to LTI
generalized plant (35) and (36), are from (39)(40) and
(41)(42),

E(δ)ẋ = Ax + B1r + B2v (45)
z = C1x (46)
y = r (47)

where x = [ xT
r xT

p ]T and

E(δ) =
[
I 0
0 Ep(δ)

]
, A =

[
Ar 0
0 Ap

]
(48)

B1 =
[
Br

0

]
, B2 =

[
0

Bp

]
, C1 = [Cr −Cp] (49)

The reason of using descriptor equation instead of state
equation is twofold. First is to localize the parameter
varying elements only to the mass matrix. Second is to
avoid constraints encountered in solving LMIs.

The closed-loop system of the generalized plant (45)(46)(47)
with the controller (37)(38) is given as

Ec�(δ)ẋc� = Ac�(δ)xc� + Bc�(δ)r (50)
z = Cc�(δ)xc� (51)

where xc� = [ xT xT
k ]T and

Ec� =
[
E(δ) 0

0 I

]
, Ac� =

[
A B2Ck(δ)
0 Ak(δ)

]
(52)

Bc� =
[
B1 + B2Dk(δ)

Bk(δ)

]
, Cc� = [C1 0] (53)

From BRL, the optimal model matching controller (37)(38)
is designed by minimizing γ > 0 for all δ under the
condition ⎡

⎣ S + ST Ec�XCT
c� Bc�

Cc�XET
c� −γI 0

BT
c� 0 −γI

⎤
⎦ < 0 (54)

where X > 0 and S = Ac�XET
c�. The gain-scheduling

controller is solved by slightly extending the standard
algorithm for state equation (Apkarian et al. [1995]). First,
let convex decompositions of parameter varying matrices

Ec� =
σ∑

i=1

aiEc�i, Ac� =
σ∑

i=1

aiAc�i (55)

Bc� =
σ∑

i=1

aiBc�i, Cc� =
σ∑

i=1

aiCc�i (56)

Substitution (55)(56) into (54) yields
σ∑

i=1

a2
i Φi +

σ∑
i=1

aiaj (Ψij + Ψji) < 0 (57)

where j = i + 1, · · · , σ,

Φi =

⎡
⎣ Yi + Y T

i Ec�iXCT
c� Bc�i

Cc�iXET
c�i −γI 0

BT
c�i 0 −γI

⎤
⎦ (58)

Ψi =

⎡
⎣ Zij + ZT

ji Ec�jXCT
c� Bc�i

Cc�iXET
c�j −γI 0

BT
c�i 0 −γI

⎤
⎦ (59)

and Yi = Ac�iXET
c�i, Zij = Ac�iXEc�j. Therefore, if we

can simultaneously solve the following inequalities at each
vertex of convex decomposition

Φi < 0, Ψij + Ψji < 0, i = 1, · · ·σ, j = i + 1, · · ·σ (60)
for vertex controllers Aki, Bki, Cki Dki and X > 0 so as to
minimize γ > 0, the gain-scheduled feedforward controller
is constructed as

Ak(δ) =
σ∑

i=1

aiAki, Bk(δ) =
σ∑

i=1

aiBki (61)

Ck(δ) =
σ∑

i=1

aiCki, Dk(δ) =
σ∑

i=1

aiDki (62)

Since inequalities (60) are reduced to LMIs by eliminat-
ing matrix variables using Parrot and Finsler’s lemma
(Gahinet and Apkarian [1994]), the problem is again solved
using convex optimization tools.

4. CONTROLLER IMPLEMENTATION

For the implementation of the proposed controller, we
consider the elimination of the observation noise, and the
transformation to the discrete system.

4.1 Elimination of Observation Noise

It is known that the rate integrating gyro used for the
attitude estimate of the ETS-VIII has some observation
noises. In order to attenuate the noise, we add the following
1st order low-pass filter to the angular velocity measure-
ment y2 = θ̇ in (3).

ẋf = −μ2 xf + μ y2

yf = μ xf
(63)

where xf , yf ∈ R
3 and μ2 (μ > 0) ∈ R is the breaking

point frequency of the filter. Then, the control input (10)
is modified as
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u = −K01y1 − K02yf . (64)
By extending Theorem 1, we can show that the internal
stability of the feedback closed-loop system is preserved
even when the filter is added to the system. In this case,
the matrix A of (16) with (63) (64) is described as

A =

⎡
⎢⎣

0 I 0

−M−1(δ)K∗ −M−1(δ)D −μM−1(δ)LK02

0 μLT −μ2I

⎤
⎥⎦ . (65)

Then the solution X (18) is

X =

⎡
⎢⎣

K∗ αM(δ) X13

αM(δ) M(δ) X23

XT
13 XT

23 X33

⎤
⎥⎦

X13 = −α

μ
LK02, X23 = − 1

μ
LK02

X33 =
1
μ2

K02L
T M−1(δ)LK02 +

α

μ2
K02 .

(66)

Using above matrices, the Lyapunov stability condition
(19) is revised as

XA + AT X = −Q

Q =

⎡
⎢⎢⎢⎢⎣
2αK∗ αD∗ − 1

μ
K∗M−1(δ)LK02

sym 2D∗ − 2αM(δ) − 1
μ

D∗M−1(δ)LK02

sym sym αK02

⎤
⎥⎥⎥⎥⎦
(67)

where sym denotes the symmetric element. Then, X > 0
and Q > 0 are satisfied under the condition α >> μ−1.
Therefore, the internal stability of the feedback closed-
loop system with the filter is guaranteed by selecting the
suitable α for the given μ. Here, it is noted that the
H∞ performance γ in the BRL might be almost same
for the both of the closed-loop system with or without
filter, because the maximum singular values generally have
the supremum in the low frequency range. For the precise
model matching in the gain scheduling, we design the
feedforward controller by using the proposed method to
the generalized plant including the filter (63).

4.2 Transformation to Discrete System

The feedforward controller (37) (38) and the noise elimina-
tion filter (63) must be discretized for the digital on-board
computer. Therefore, we transform those state equations
by applying practical schemes, after they are designed as
the continuous systems.

First, the filter (63) is transformed as follows by the
Tustin’s method for precise approximation of the discrete
system.

xfd[i + 1] = Afd xfd[i] + Bfd y2[i]
yfd[i] = Cfd xfd[i]

Afd = (1 − ts
2

μ2)(1 +
ts
2

μ2)−1I

Bfd = Cfd =
√

tsμ(1 +
ts
2

μ2)−1I

(68)

where ts is the sample period of the discrete system.

Next, in order to reduce the calculation load of the gain
scheduling on the orbit, we apply the 1st order Euler’s
method to the feedforward controller (37) (38) as

xkd[i + 1] = Akd(δ) xkd[i] + Bkd(δ) r[i]
v[i] = Ckd(δ) xkd[i] + Dkd(δ) r[i]

Akd(δ) = I + ts

σ∑
i=1

aiAki, Bkd(δ) = ts

σ∑
i=1

aiBki

Ckd(δ) =
σ∑

i=1

aiCki, Dkd(δ) =
σ∑

i=1

aiDki .

(69)

By using the approximation, it is confirmed that the gain
scheduling can be completed in the given sampling period
62.5 (msec).

5. SIMULATION RESULTS

The on-orbit attitude control experiment is planned to be
performed at the end of the main mobile communication
mission. The purpose is to confirm the robust stability,
disturbance attenuation capability to disturbances caused
by the east-west orbit control thrusters and attitude ma-
neuver around roll and pitch axes. In order to verify the
capability of the proposed controller, we perform some
numerical simulations which apply the discrete control
system to the continuous full order ETS-VIII model.

First, we design feedback controller gain matrices K01 and
K02 so that the closed-loop system has high disturbance
rejection ability. They are designed using three rigid modes
and two elastic modes model (n = 5) for four vertexes
(σ = 4) using LMIs (32). At design phase, the achieved
minimal value is γ = 6.79 that is disturbance attenuation
ratio. On the other hand, γ = 0.024 is calculated from (27)
substituted with (70) (71) for δ = 45 (deg). The difference
comes from conservativeness brought in solving LMIs. The
obtained gain matrices are

K01 =

⎡
⎣ 9.66e+1 −4.31e−4 2.51e−2

−4.31e−4 9.65e+1 −6.55e−4

2.51e−2 −6.55e−4 9.65e+1

⎤
⎦ (70)

K02 =

⎡
⎣ 1.26e+3 −1.48e+0 −8.65e−1

−1.48e+0 1.17e+3 −1.14e+0

−8.65e−1 −1.14e+0 1.27e+3

⎤
⎦ (71)

For the controller, the noise elimination filter (63) is given
as μ2 = 2.51 that is decided based on the maximum elastic
mode frequency and the discrete system sampling period.
Then, it is confirmed that the H∞ performance γ of the
both closed-loop systems with and without the filter is
almost the same from Fig. 4. The impulse responses of
roll, pitch and yaw angles to torque disturbances caused
by the east-west station keeping thrusters firing at 0 (sec)
and 600 (sec) during 62.5 (msec) to positive and negative
directions are shown in Fig. 5. From the cant angles of
thrust vectors, the firing causes w = [ −0.3 − 0.5 1.8 ]
(Nm) torque around roll, pitch and yaw. This is the major
disturbance source. Additionally, in the simulations, white
noises of standard deviation 1.11e−4 (deg/sec) are added
to the angular velocity measurements. The spacecraft
attitudes are observed to stay between +0.002 (deg) and
−0.002 (deg), which is sufficiently smaller than the given
specification. On the other hand, from Fig. 6, we can
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Fig. 5. Impulse responses of roll, pitch, yaw for initial
paddle angles δ = 0, 45, 90 [deg].

understand that the filter is effective for reducing the noise
influence to the control inputs.

Next, in order to obtain feedforward controllers K1 and
K2, we give the reference matrix Gr so as to have

ω2
r

s2 + 2ζrωrs + ω2
r

(72)

where ωr = 5.0e−4, ζr = 0.7 as its diagonal elements.
By solving LMIs (60), a gain scheduling model matching
controller is obtained for n = 5 and σ = 4. In the design,
γ = 0.45 has been achieved. Simulation results of attitude
maneuvering are shown in Fig. 7. They are responses to
±0.05 (deg) step command added during 600 (sec) for
each. The same white noise is also added to the angular
velocity measurements in these cases. Apparently, each
response well follows the reference model for all paddle
angles.

6. CONCLUSION

This paper has proposed two-degrees-of freedom controller
as a candidate of large spacecraft ETS-VIII precise atti-
tude control. The advantage lies in the facts that closed-
loop system is ensured to be robustly stable and can be op-
timized using LMIs, and that high maneuver performance
can be achieved. Some of simulation results were shown to
demonstrate the ability.
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