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Abstract: An enhanced controller to improve the robustness of Time Delay Control (TDC) for a robot 
manipulator in the presence of hard nonlinearities is proposed. The problem of TDC is first analyzed with 
TDC as a trajectory control for a robot manipulator in the presence of hard nonlinearity. The method of 
steepest descent, which is a type of adaptive control scheme, is used to solve this problem in order to 
develop an enhanced controller. The proposed controller is called TDC with Adaptive Compensator 
(TDCAC). The adaptive compensator of TDCAC serves as a type of high pass filter for the effect of hard 
nonlinearities and is very intuitional for choosing the adaptive gain of the adaptive compensator. The 
robustness of TDCAC is verified by experiment. 

 

1. INTRODUCTION 

Time Delay Control (TDC) is the control technique which 
compensates for unpredicted disturbances of a plant and/or 
unknown dynamics of a plant with Time Delay Estimation 
(TDE) (Morgan et al., 1985; Youcef-Toumi et al., 1990; Hsia 
et al., 1990). TDC has a distinct robustness for disturbances 
and parameter variations, although TDC has simpler structure 
than other advanced control algorithms developed until now, 
such as H ∞  control and adaptive control. The effectiveness 
of TDC has been demonstrated by many successful 
applications in robotics (Hsia et al., 1990; Chang et al., 1996; 
Jung and Hsia et al., 2004) and actuators (Chang et al., 1999; 
Lee et al., 2004). A robust control scheme similar to TDC is 
recently developed for only uncertain LTI systems (Zhong et 
al., 2004). 

In the presence of hard nonlinearity, such as coulomb 
friction/static friction, TDC shows problems commonly 
found in methods of PID control or disturbance observer 
(Chang and Park, 2001). Tracking error increases at zero 
velocity in systems having coulomb friction. Slow motions 
often involve stick-slip phenomena expressed in the form of 
limit cycle in the position control and oscillation in trajectory 
tracking control in the system having static friction and 
stribeck effect. 

There are a few studies which strive to solve this problem. 
TDCSA, which is TDC with a compensator of the switching 
action based on Sliding Mode Control (SMC), was proposed 
by Chang and Park (2001). A control scheme which has the 
same structure as TDCSA was developed by Park and Kim 
(1999). The perturbation observer as a compensator for the 
problem of TDC was suggested by Nam (2005). TDCIM, 
which is TDC with an additional feedback loop based on 
Internal Model Control (IMC), was recently proposed to 
solve the problem of TDC (Cho and Chang et al., 2005). A 
control scheme for impedance control was developed by Jin 

and Chang (2006), which uses both TDC and ideal velocity 
feedback loop to be more robust than TDC. 

An enhanced controller to improve the robustness of Time 
Delay Control (TDC) for a robot manipulator in the presence 
of hard nonlinearities by using a kind of adaptive control 
scheme is proposed in this paper. Adaptive control is a 
control scheme which has a function to estimate uncertain 
plant parameters (or, equivalently, the corresponding 
controller parameters) on-line based on measured system 
signals, and uses the estimated parameters in the control input 
computation to remedy situations with parameter uncertainty 
(Slotine and Li, 1991). The problem of TDC in the presence 
of hard nonlinearity has been remedied by the adaptive law of 
a proposed controller, since the effect of hard nonlinearity is 
estimated and compensated by an adaptive law. We have 
investigated the properties and performances of a proposed 
controller. 

This paper is outlined as follows. In Section II, the TDC are 
briefly reviewed and its problem is analyzed. An enhanced 
controller named TDCAC is proposed and its some properties 
are analyzed in Section III. The robustness of TDCAC is 
verified through 1 degree-of-freedom (D-O-F) experiment in 
Section IV. At last, concluding remarks are given in Section 
V. 

2. PROBLEMS OF TDC DUE TO THE TDE ERROR 

We summarize the TDC law for robot manipulators (Hsia et 
al., 1990) and analyze its problems concerning TDE error 
(Chang and Park, 2001; Lee and Chang, 2002; Jin and Chang, 
2006). 

2.1 Review of the TDC 

The dynamics of n DOF robot manipulators is generally 
described as follows: 
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  (1) ( ) ( ) ( ) ( )+ + +M θ θ V θ,θ G θ + F θ w = τ�� � �

where denote the joint angle, joint angular 
velocity, and joint angular acceleration, respectively; 

 the inertia matrix;  the Coriolis 
and the centrifugal forces; 

n∈ℜθ,θ,θ� ��

( ) n n×∈ℜM θ ( ) n∈ℜV θ,θ�

( ) n∈ℜG θ  terms due to gravity; 

 friction;  the unmodeled dynamics or 
disturbances; and  denotes the input torque. By 
introducing a constant diagonal matrix,

( ) n∈ℜF θ� n∈ℜw
n∈ℜτ

n n×∈ℜM , which 
represents the known part of , one can rewrite (1) as 
follows: 

( )M θ

 ( , )Mθ + Η θ,θ θ = τ�� � �� , (2) 

where denotes the total sum of the nonlinear 
dynamics of robot manipulators, frictions, and disturbances, 
and is described as follows: 

(H θ,θ,θ� ��)

 ( ) ( ( ) ) ( ) ( ) ( )= − +H θ,θ,θ M θ M θ + V θ,θ + G θ + F θ w� �� �� � � .(3) 

The control objective of TDC, like the computed torque 
method, is to achieve the following error dynamics: 

 , (4) D P =e + K e + K e 0�� �

where . To this end, the control torque τ is 
designed based on the computed torque control as follows: 

d −e θ θ�

 ˆτ = Mu + H , and (5) 
 , (6) ( ) (d D d P d−u = θ + K θ θ + K θ θ�� � � )−

where  denotes the estimated value of H; Ĥ n
d d d ∈ℜθ ,θ ,θ� ��  

denote the desired trajectory and its time derivatives, 
respectively; and ,  represent the 
diagonal gain matrices of decoupled PD controllers. In 
essence, therefore, the control (5) attempts to cancel H in (2) 
by and inject a desired dynamics in (6). 

n n
D

×∈ℜK n n
P

×∈ℜK

Ĥ

Whereas the computed torque method incorporates real-time 
computation of  based on a robot dynamic model, TDC 
uses the time delay estimation (TDE) described as follows: 
Under the assumption that H is continuous or piecewise 
continuous and the time delay L is sufficiently small, the 
following approximation holds: 

Ĥ

 , (7) ( ) ( )t t −
≅H H L

L

providing an excellent estimation of , i.e. ( )tH

  (8) ( ) ( )
ˆ ,t t −
H H�

which is the essential idea of the TDC. The TDE can be 
derived from (2) as follows: 

 ( ) ( ) ( ) ( )
ˆ

t t L t L t− −
= = −H H τ Mθ�� L−

. (9) 

Note that (9) is a causal relationship. Using the TDE for  
in (9) leads (5) to 

Ĥ

 ( ) ( ) ( ) ( )t t L t L− −
− +τ = τ Mθ Mu��

The final form of TDC results from (2) and (6) like this: 

 
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

t L t L

d t D d t t P d t t

− −−

⎡ ⎤+ − −⎣ ⎦

τ = τ Mθ

M θ + K θ θ + K θ θ

��

�� � � . (11) 

Owing to the TDE, the TDC has a simple structure and is 
very efficient – approximately as efficient as a typical PID 
control. Furthermore, since M  is selected as a diagonal 
matrix, the TDC can be designed for n individual joint 
controllers by using each diagonal element of M , that of  

DK , and that of  PK . Fig. 1 shows the block diagram of the 
closed-loop system due to the TDC. Notice that the TDC may 
be viewed as consisting of three functions: (A) feed-forward 
function processing ; (B) feedback linearization using the 
TDE; and (C) the PD-type feedback of . 

dθ
θ

 

Fig. 1. Block diagram of TDC 

2.2 Problems of the TDC concerned with the TDE error 

If the time delay L is set infinitesimally small, a perfect 
estimation of H would be possible by using the TDE. 
Because of digital implementation, however, the smallest 
value for the time delay L is the sampling time, which is 
finite. Therefore, the estimation error results from a finite L. 
The following relationship is derived from substituting (5) 
into (2) and considering (8): 

 (( ) ( ) ( ) ( ) ( ) ( )
ˆ

t t t t L t t−
− = − −=H H H H M u θ�� ) . (12) 

The LHS of the above equation denotes the estimation error. 
Now define the TDE error,  as follows: ( )tε

 ( )( ) ( ) ( - ) ( ) ( )t t t L t

− −1ε M H H = u θ��� t−  (13) 

Substituting (6) into(13), we obtain the error dynamics of the 
TDC: 

  (14) ( ) ( ) ( ) ( ) ,t D t P t t=e + K e + K e ε�� �

which clearly shows the influence of the TDE error, , on 

the tracking error, . 
( )tε

( )te

t . (10) 

Especially, under hard nonlinearities, such as Coulomb 
friction and static friction, of (3) becomes discontinuous 
and then the continuity assumption of H

( )F θ�

(t) in (7) is invalid. As 
a result, a large TDE error is occurred in (9) under hard 
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nonlinearities. A large TDE error results in a large tracking 
error as (14). 

3. PROPOSITION: TIME DELAY CONTROL WITH 
ADAPTIVE COMPENSATOR 

An enhanced controller, which has a function to compensate 
for TDE error, is proposed. The method of steepest descent, 
which is a type of adaptive control scheme, was used to 
design a new controller. The new controller is called Time 
Delay Control with Adaptive Compensator (TDCAC). 
Stability issues and its properties are also analyzed.  

3.1 Derivation of TDCAC 

The control law of TDCAC is designed as follows: 

 
( )

( ) ( )

ˆ( ( ) ( ))
t L t L

d D d P d t

− −−

+ − −

τ = τ Mθ

M θ + K θ θ + K θ θ Mε

��

�� � � +

t

t

, (15) 

where , which serves as an adaptive compensator, 
compensates for TDE error. 

ε̂

Closed-loop error dynamics derived from (15) and (2) is as 
follows: 

 , (16) ( ) ( ) ( ) ( ) ( ) ( )ˆD Pt t t t t −e + K e + K e = ε - ε = ε�� � �

where  denotes the estimation error of TDE 
error. 

( ) ( ) ( )ˆt tε ε - ε� �

An adaptive compensator was designed by the method of 
steepest descent using a cost function of the estimation error. 
A cost function for design was made as follows: 

 ( )( ) ( ) ( )
1
2t t= TJ ε ε� � tε� . (17) 

If TDE error was slow-varying or constant, an adaptive 
compensator was designed by the method of steepest descent 
as follows: 

 ( )
[ ]

( ) ( ) ( ) ( )ˆ ,
ˆ D Pt t t t

∂ ⎡ ⎤ ⎡ ⎤= − = − = + +⎣ ⎦ ⎣ ⎦∂

J
ε γ γ ε γ e K e K e

ε
� �� �� t

)

 (18) 

where ( 1diag , , nγ γγ � …  denotes an adaptive gain matrix 
of which elements are always positive. 

The term in (18), an adaptive compensator, is updated to 
the direction of decreasing TDE error, because the method of 
steepest descent always makes the slope of cost function be 
negative. 

( )ˆ tε

The overall control law of TDCAC is as follows: 

 

( ) ( ) ( )

( ) ( )(

The block diagram of TDCAC is shown in Fig. 2. TDCAC 
only consists of an adaptive compensator and an original 
TDC for a robot manipulator (Hsia et al., 1990).  

 

Fig. 2. Block diagram of TDCAC 

3.2 Stability analysis of TDCAC 

Theorem 1. [Stability of TDCAC] 

If the TDCAC law of (19) is used, and both 
( )1diag , nα αM � … and ( 1diag , , n )γ γγ � … are chosen such 

that 

 
2
1

i
i

i

L
L

γ
α ρ

γ
+

<
+

, (20) 

where L  sampling time; ρ the minimum value of ( )1λ −M , 
then closed-loop system becomes stable for a sufficiently 
small L. 

Proof: The proof in (Hsia et al., 1990; Jung and Chang et al., 
2004) can be immediately applied to this case with few 
modifications, because there are few differences in the 
assumptions and conditions. (Q.E.D.) 

3.3 Properties of TDCAC 

1) Property of adaptive compensator as high-pass filter 

An adaptive compensator can be characterized as a type of a 
high-pass filter for TDE error (Fig. 3). This is certain reason 
why TDCAC is more robust against TDE error than TDC. 
Assume that 1 D-O-F robot manipulator is used to analyze 
this property of adaptive compensator for simplicity. 

From using the time derivative of TDE error, an adaptive 
compensator (18) is re-written: 

 ( ) ( ) ( ) ( ) ( )ˆt t t t tε ε ε γε ε= = − −-��� � � � , (21) 

) ( )

( ) ( ) ( ) ( )

ˆ

ˆ

t t L t L

d D d P t

D Pt t t t

− −= −

+ + − + − +

⎡ ⎤= − = + +⎣ ⎦

d

τ τ Mθ

M θ K θ θ K θ θ Mε

ε γε γ e K e K e

��

�� � �

� �� ��

. (19) 

where the output of a high-pass filter is the estimated error of 
TDE error, ( )tε� , the input of a high-pass filter is TDE error, 

( )tε  and the cut-off frequency of a high-pass filter is a 
adaptive gain, γ . The frequency response function of a filter 
is derived from (21) as follows: 
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( ) ( )
( )

( )
( )

( ) ( )
( )( )2

1/
1 1/

1/

1 1/

s jw
jw

s jw

w
jw

w

ε γ
ε γ

γ

γ

−
= =

+

=
+

G

G

�

. (22) 

The frequency magnitude plot of (22) is shown in Fig. 4. The 
larger the adaptive gain, the more robust it is against a low 
frequency part of TDE error (Fig. 4).  

The power spectrum of the input/output of an adaptive 
compensator in the simulation using 1 D-O-F manipulator 
(Fig. 5) with Coulomb friction model, one of hard 
nonlinearities (Fig. 6) is shown in Fig. 7. The γ of TDCAC 
in simulation is also shown in Fig. 7. Notice that other 
conditions of this simulation are explained in Cho et al., 2005. 
The low frequency part of TDE error is compensated for by 
an adaptive compensator, since an adaptive compensator 
functions as a high-pass filter.  

 

 

Fig. 3. Adaptive Compensator as high-pass filter

 

Fig. 4. Frequency magnitude plot of Adaptive Compensator 

θ

l

m

θ

l

m

Fig. 5. 1 DOF link system. ( )1.0l =

θ�

slipτ
frictionτ

θ�

slipτ
frictionτ

 

Fig. 6. Coulomb friction model: slipτ denotes the Coulomb 
friction coefficient 

 

Fig. 7. Frequency Contents of Filter Input/Output 

2) Simple gain tuning procedure of adaptive gains 

There are two gain matrices, such as ( )1diag , , nα α=M …  

and ( )1diag , nγ γγ � … , in the control law of TDCAC. Notice 
that ,D PK K is automatically resulted from the desired error 
dynamics. The gain tuning procedure of TDCAC is as 
follows: 

First, iα has to be determined as TDC case. Next, iγ has to be 
determined. An advantage of TDCAC is that the choice of iγ  
is very intuitional, because the adaptive gain of the adaptive 
compensator, iγ is the same as the cut-off frequency of the 
high-pass filter. The enhancement of performance is expected 
as increasing in adaptive gain, because a low frequency part 
of TDE error is more cancelled out with increase in the cut-
off frequency of the adaptive compensator (Fig. 4, 5). 
Therefore, an adaptive gain can be chosen as the biggest 
value in the condition of satisfying the stability condition of 
TDCAC (20). 

The variation of trajectory tracking error according to the 
change of adaptive gain is demonstrated by numerical 
experiment. The closed-loop error dynamics of TDCAC (16)
in the case of 1 D-O-F manipulator is re-written as follows: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )1

D P Dt t t

P

e K e K K e

K e d M H t

γ γ

γ τ τ −

+ + + +

+ = Δ∫

�� �
. (23) 

The result of simulation using (23) is shown in Fig. 8, 
provided that the TDE error is: 

m  and  ( )1.0m k= g   (1.0 1H tδ )Δ = − . (24) 

Three adaptive gains, such as 10, 50 and 100, of the adaptive 
compensator are used to perform the simulation.  
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Fig. 8. Simulation – TDCAC error dynamics 

The enhancement of performance is shown as increasing in 
adaptive gain (Fig. 8). 

4. EXPERIMENTAL VERIFICATION 

In this section, the performance of TDCAC is compared with 
that of TDC through experiments with 1 DOF linear motor 
(Fig. 9), in order to confirm the robustness of TDCAC. 

 

Fig. 9. Linear Motor (JTM 10) 

4.1 Linear Motor System 

The reduced mathematical model of linear motor system is as 
follows: 

 
2

2 ,i i
E f

T T

MR Rd x dxK F u
K dt Kdt

+ + =  (25) 

where x  denotes the position of motor; u  the input voltage; 
3M kg= the mover mass of motor; 16 /TK N A= the force 

constant; fF the friction force; the electrical 
resistance;

15.2iR = Ω

16 sec/EK V= ⋅ m means the back-EMF constant. 

4.2 Experimental Set up 

TDC is designed as follows: 

 ( ) ( ) ( ) ( ) (( )d D d P dt t L t Lu u Mx M x K x x K x x− −= − + + − + −�� �� � � ) (26) 

TDCAC is designed as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )ˆd D d P dt t L t Lu u Mx M x K x x K x x M tε− −= − + + − + − +�� �� � �  

 ( ) ( ) ( ) (( )ˆ d D d P dt

All gains of TDC and TDCAC are best tuned to minimize 
tracking error as shown in Table 1. Note that the PD gains of 
all controllers are 20, 100D PK K= =  in order for desired 
error dynamics to be critical-damped . 
Both the sampling time and the time delay for TDE are set to 
L=0.001 sec. 

( )1, 10rad/snς ω= =

Table 1.  Control gains for experiments 

TDC 0.0003M =  
TDCAC 0.0003M = , 1.333γ =  

4.3 Experiment results 

The reference trajectory is: 

 ( ) ( )( ) 10.0 1 sin ( )d t
d t dx e tω ω−= − mm , (28) 

where nω  denotes the frequency of reference trajectory, 
0.25Hz.  

Experimental results are shown in Fig. 10 and Fig. 11. And 
maximum tracking errors are arranged in Table 2. 

The plant controlled by TDC has large tracking error due to 
coulomb friction, one of hard nonlinearity, when the plant 
passes by zero velocity (Fig. 10 (a) and (b)). In TDCAC case, 
tracking error is reduced decently, and then it is confirmed 
that the adaptive compensator works well (Fig. 10 (e)).  

 

 

 

Fig. 10. Experimental results – TDC, TDCAC 

Table 2.  Max. error in Fig. 10 
)x x K x x K x xε γ= − + − + −� �� �� � �  (27) TDC TDCAC 

0.60mm±  0.048mm±  
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5. CONCLUSIONS 

A new simple controller, called TDCAC, is proposed for the 
control of a robot manipulator in this paper. The performance 
of the controller is more robust than TDC, because TDE error 
is effectively cancelled out on-line by an adaptive 
compensator of TDCAC, which is based on the method of 
steepest descent. An adaptive compensator serves as a type of 
high pass filter for TDE error, while the choice of adaptive 
gain is intuitional. Experiments with a 1 D-O-F robot 
manipulator are occurred in order to verify the robustness of 
TDCAC. In the future, the experiment of TDCAC with a 
multi D-O-F robot manipulator should be carried out. 
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