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Abstract: In this paper, a synthesis method of new disturbance observer, which can cope with
frequency variation, is proposed. The main idea is to synthesize the disturbance observer as
a gain-scheduled controller. The proposed disturbance observer gives the same low sensitivity
property for disturbances with frequency variation as the conventional disturbance observer
does. As an application, we consider vibration suppression control system for a flexible beam
with multiple vibration modes. By numerical simulations and experiments, the proposed control
scheme is shown superior to the conventional disturbance observer with respect to vibration
suppression as compared.

1. INTRODUCTION

Disturbance observer is effective controller to reduce
adverse effects of disturbances. There are many arti-
cles which demonstrate the usefulness of disturbance ob-
servers(Godler al. (1994) and Ohnishi (1995)). In these
articles, disturbances are assumed to have constant and
single frequency. On the other hand there are many indus-
trial situations where the disturbance frequency varies ac-
cording to the interaction with the environment. For these
disturbances the conventional disturbance observer cannot
be applied because it is effective only to the disturbance
with fixed frequency.

Also, in order to asymptotically cancel the adverse effects
of periodic disturbance, a new synthesis method of repet-
itive control has been proposed (Yu et al. (2001)). Based
on the observation, digital repetitive controller can be
synthesized to reduce periodic disturbance whose period
is not exactly an integer multiple of the sampling interval.
However, when the disturbance is periodic with the period
different from an integer multiple of the sampling interval,
it may be difficult to attain perfect asymptotic disturbance
reduction. Thomas et al. (1997) have proposed the tip
positioning controller of a single flexible link using variable
structure model following controller. Since the controller
can force the error between the model and the plant
variables to zero as time tends to infinity, responses of
the tip positioning can be improved by a suitable choice of
the damping factor and natural frequency of the desired
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model. Choi et al. (1999) have proposed vibration control
and position tracking control of a flexible smart structure
using the quantitative feedback theory(QFT). The QFT is
a frequency domain design technique utilizing the Nichols
chart. Based on the technique of loop shaping, controller
is synthesized so that specifications of robust stability,
tracking and disturbance reduction are satisfied. However,
in these articles, the variation caused by disturbance fre-
quency has not been considered.

Meanwhile, the vibration suppression control using H∞
controller has been studied. Sivriogle et al. (1997) have
proposed an active vibration control method by means
of LMI-based mixed H2/H∞ state feedback control. At-
tainable specifications of both time-domain and frequency-
domain are shown by numerical simulations. Tchernychev
et al. (1997) have proposed a synthesis method of ro-
bust controllers for an experimental flexible beam with
noncolocated sensors-actuator. By using the constrained
H∞ control approach (Sideris et al. (1993)), it is shown
that time-domain constraints are directly treated without
conversion into the frequency-domain. By these control
methods, the vibration suppression performance in the
wide range of frequency can be carried out. However, since
the control performance is decided by minimizing the H∞
norm of the transfer function matrix from disturbance
input to the control output, the obtained performance of
control system may be conservative.

To improve the conservative performance, Yang et al.
(1997) have proposed vibration suppression control of
smart structures using backpropagation neural network.
The robustness of the controller against the model uncer-
tainty of the first bending mode in the frequency domain
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Fig. 1. Disturbance observer to cope with frequency vari-
ation (DOFV)

is demonstrated. Zhou et al. (2001) have proposed the
approach to estimate the imbalance force and the im-
balance itself of a rigid rotor system during acceleration
mode using a time-varying observer. However, the control
strategy for time-variant system has not been considered.

In this paper, a new synthesis method of disturbance
observer which can cope with the frequency variation
(DOFV) is proposed. The main idea is to synthesize
disturbance observer as a gain-scheduled controller based
on an LMI-based approach. The proposed disturbance
observer has following properties:

(1) Same low sensitivity property as traditional distur-
bance observer can be obtained for wide frequency
area.

(2) Many design constrains are expressed as matrix in-
equalities and they can be solved efficiently.

To demonstrate the usefulness of the proposed DOFV,
we apply to the vibration suppression control system of
flexible beam. Both simulations and experiments show
that vibration of the beam excited by disturbance is
remarkably suppressed in the wide range of the frequency.

The following notations are used throughout in this paper.
Re{λ(M)} denotes real part of eigenvalues of matrix M .
{A,B,C,D} denotes the transfer function matrix with
order n, i.e.

{A,B,C,D} := C (sIn −A)−1B +D

where In denotes the n×n identity matrix. Ol×m denotes
the l ×m zero matrix.

2. CONSTRUCTION OF DOFV

2.1 Problem Statement

Fig.1 depicts the overall structure of the control system
for disturbance reduction. Gp(s) represents a given plant,
r(s), u(s), d(s), y(s), no(s), and e(s) are reference input,
control input, disturbance input, measurement output,
sensor noise input and error signal, respectively. K is the
state feedback gain matrix to assign desired poles to the
closed loop system. Cy(s) and Ce(s) are observer transfer

functions for disturbance reduction. When a disturbance d̂
with frequency variation is impressed in plant, we change
properties of Cy(s) and Ce(s) according to its frequency.
By measuring of the channel output y and error signal

e, we can derive the estimation d̂ for d. By the feedback

of d̂ to the input, disturbance d can be reduced. Thus,
by changing the properties of observer according to the
disturbance frequency, disturbance can be reduced for
wide range of frequency.

The plant dynamics is described by equations

ẋ(t) = Ax(t) +B {e(t) + d(t)}
y(t) = Cx(t)

(1)

where x(t) ∈ Rn, u(t), d(t) ∈ Rm, y(t) ∈ Rl are state, con-
trol input, disturbance, measurement output, respectively.
It is assumed that the pair (A,B) is controllable and the
pair (C,A) is observable.

We consider the case when disturbance d(t) is described
by the following state equations:

ẋd(t) = Adxd(t), xd(t) ∈ Rξ
d(t) = Cdxd(t).

(2)

We assume Re{λ(Ad)} ≥ 0 and characteristic polynomial
of Ad is minimal, and also the pair (Cd, Ad) is observable.
Expressing the eigenvalues of Ad as

λs = σs + jωs(algebraic multiplicity
ms

2
)

λ̄s = σs − jωs(algebraic multiplicity
ms

2
).

where ωs is assumed to be measured and satisfies quasi-
static process (Shamma et al. (1990)). Without loss of
generality, we can assume that Ad admits the following
canonical form.

Ad = blockdiag {Ad1, · · · , Adh} (3)

with

Ads :=

⎡⎢⎣Λs I2. . . . . .
Λs I2

⎤⎥⎦ (ms ×ms), Λs :=

∙
σs ωs
−ωs σs

¸
s = 1, · · · , h.

For J2 :=

∙
0 1
−1 0

¸
, we can write

Ads = A
σs
d + ωsA

ωs
d

where

Aσsd :=

⎡⎢⎣ σsI2 I2. . . . . .
σsI2 I2

⎤⎥⎦, Aωsd :=
⎡⎢⎣ J2 O2×2. . .

. . .
J2 O2×2

⎤⎥⎦.
So,

Ad = blockdiag {Aσ1d , · · · , Aσhd }
+ blockdiag {ω1Aω1d , · · · ,ωhAωhd }
= blockdiag {Aσ1d , · · · , Aσhd }

+

hX
s=1

ωsblockdiag

½
OPs−1

i=1
mi×

Ps−1
i=1

mi
, Aωsd ,

OPh

i=s+1
mi×

Ph

i=s+1
mi

¾

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2697



=:Aσd +

hX
s=1

ωsA
s
d . (4)

By equations (1) and (3), the state equation of the aug-
mented system including the disturbance is

ẋL(t) = ALxL(t) +BLe(t)
y(t) = CLxL(t)
d(t) = CdLxL(t)

(5)

where e(t) := u(t)− d(t) and

xL(t) :=

∙
x(t)
xd(t)

¸
, AL :=

∙
A BCd

Oξ×n Ad

¸
, BL :=

∙
B

Oξ×m

¸
,

CL := [ C Ol×ξ ] , CdL := [ Om×n Cd ] .

For system (5), note that the observability of the pair
(CL, AL) is guaranteed by the following conditions.

(1) The pair (C,A) is observable.
(2) For λj ∈ λ(Ad)C

rank

∙
AL − λjIn+ξ

CL

¸
= rank

"
A− λjIn BCd
Oξ×n Ad − λjIξ
C Ol×ξ

#
= n+ ξ, j = 1, · · · , ξ.

Under these conditons, which are assumed here and after,
the state observer for the augmented system (5) can be
constructed. Next, we show a synthesis method of DOFV
using minimal order observer.

2.2 DOFV using Minimal Order Observer

In this sub-section, we synthesize DOFV by Gopinath’s
method. Assume that C has a full row rank, that is, rank
C = l. Define q := n+ ξ − l and

T :=

∙
C Ol×ξ
M1 M2

¸
(6)

where [M1 M2] is q× (n+ ξ) real constant matrix and is
assigned so that T is nonsingular. We express the inverse
matrix of T with n× l matrix U11 as

T−1 :=

∙
U11 U12
U21 U22

¸
. (7)

Now, we consider state transformation x̄L(t) = TxL(t),
where the matrix TALT

−1 can be partitioned as

TALT
−1 =:

∙
Ā11 Ā12
Ā21 Ā22

¸
(8)

with

Ā11 =CAU11 + CBCdU21,

Ā12 =CAU12 + CBCdU22,

Ā21 =M1AU11 +M1CBCdU21 +M2AdU21,

Ā22 =M1AU12 +M1CBCdU22 +M2AdU22.

Here, only Ā21 and Ā22 depend on the parameters ωs. It
can be easily seen that Ā22 admits the following affine
dependence on ωs:

Ā22 = Ā
o
22 +

hX
s=1

ωsĀ
s
22 (9)

with

Āo22 :=M1AU12 +M1CBCdU22 +M2A
σ
dU22,

Ās22 :=M2A
s
dU22.

On the other hand, if the pair (CL, AL) is observable, then
the pair (Ā12, Ā22) is observable too. Then eigenvalues of
matrix

Â := Ā22 − LĀ12 (10)

can be arbitrarily assigned by a suitable choice of matrix
L.

Now, we consider ωs to be restricted on the box

ω1s ≤ ωs ≤ ω2s , s = 1, · · · , h (11)

with vertices

Q1 =
¡
ω11 , ω

1
2 , · · · ,ω1h

¢
, Q2 =

¡
ω11 , ω

1
2 , · · · ,ω2h

¢
, · · · ,

Q2h =
¡
ω21 , ω

2
2 , · · · ,ω2h

¢
.

Then, by equation (9), Ā22 can be represented by

Ā22 =

2hX
k=1

qkAk (12)

with

q1 :=

Qh
s=1

¡
ω2s − ωs

¢Qh
s=1 (ω

2
s − ω1s)

, q2 :=

¡
ωh − ω1h

¢Qh−1
s=1

¡
ω2s − ωs

¢Qh
s=1 (ω

2
s − ω1s)

, · · · , q2h :=
Qh
s=1

¡
ωs − ω1s

¢Qh
s=1 (ω

2
s − ω1s)

,
2hX
k=1

qk = 1

and

A1 := Ā
o
22 +

hX
s=1

ω1sĀ
s
22, A2 := Ā

o
22 +

h−1X
s=1

ω1sĀ
s
22

+ω2hĀ
h
22 , · · · ,

A2p := Ā
o
22 +

hX
s=1

ω2sĀ
s
22.

To obtain DOFV, we consider LMI-based approach. The
matrix Â is stable if and only if the following Lyapunov
inequality

XÂ+ ÂTX < O (13)

admits positive definite solution. Now, if L is made as

L =
2hX
k=1

qkLk, (14)

then by equations (12) and (14) the matrix Â becomes

Â =

2hX
k=1

qk
¡
Ak − LkĀ12

¢
, (15)

and inequality (13) is guaranteed by

XAk +A
T
kX −NkĀ12 − ĀT12NT

k < O, k = 1, · · · , 2h (16)
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where

Nk = XLk, k = 1, · · · , 2h, (17)

that is, if there are matrices X > O and Nk satisfying
LMIs (16), then Â is stable. This means that the matrix

Â is stabilized in the box written by equation (11). From
equations (14) and (17), the observer gain matrix L is
written by

L =

2hX
k=1

qkX
−1Nk. (18)

Remark. The set λ(Â) can be assigned by LMI-based ap-
proach(Chilali et al. (1996)). Consequently, the dynamical
equation of minimal order observer to estimate xL(t) is

ζ̇(t) = Âζ(t) + B̂e(t) +Gy(t)

x̂L(t) = Ĉζ(t) + D̂y(t),
(19)

where ζ(t) is state of minimal order observer. Letting the
matrix T be set as

TBL :=

∙
B̄1
B̄2

¸
, B̄1(l ×m),

parameter matrices of equation (19) found by the Gopinath’s
method are

B̂ := −LB̄1 + B̄2 (q ×m), G := ÂL+ Ā21 − LĀ11 (q × l),

Ĉ := T−1
∙
Ol×q
Iq

¸
, D̂ := T−1

∙
Il
L

¸
.

Since the estimated disturbance d̂(t) can be obtained as

d̂(t) = CdLx̂L(t), (20)

DOFV Ce(s) and Cy(s) can be written as

Ce(s) =
n
Â, B̂, Ĉ, On+ξ×m

o
Cy(s) =

n
Â, G, Ĉ, D̂

o
.

(21)

2.3 Stability Analysis of the Closed Loop System

In this subsection, we consider stability of the closed loop
system shown in Fig.1. The transfer matrix U(s) from all
exogenous inputs to all internal signals is

U(s) =

"
U11(s) U12(s) U13(s)
U21(s) U22(s) U23(s)
U31(s) U32(s) U33(s)

#
, (22)

where

U11(s) = U21(s) := α(s) = {A−BK,B,−K, Im} ,
U12(s) = α(s) {χCe(s) + Im}− Im,
U13(s) = U23(s) = −α(s)χCy(s),
U22(s) = U12(s) + Im,

U31(s) := β(s) = {A−BK,B,C,Ol×m} ,
U32(s) = β(s) {χCe(s) + Im} ,
U33(s) = −β(s)χCy(s) + Il,
KL := [ K Om×ξ ] , χ := CdL +KL.

Fig. 2. Schematic diagram of experimental system

In equation (22), detU−1(s) = detα−1(s). Since we choose
a feedback gain matrix K such that Reλ(A − BK) < 0,
then α(s),β(s) ∈ RH∞. Consequently, since U(s) ∈ RH∞,
the closed loop system is internally stable.

3. VIBRATION SUPPRESSION CONTROL USING
DOFV

3.1 Experimental System

The schematic diagram for the experimental vibration
suppression system is shown in Fig.2. The flexible beam
is made of aluminum material with 1000 mm in length,
50 mm in width and 2 mm in thickness, and fixed by
actuators at each side from each end. Two actuators of
moving coil type are used as shakers to excite the flexible
beam. One is used to be a disturbance source and the
other is used to generate the control inputs. The flexible
beam is vibrated with their largest amplitudes at the tip.
To suppress the vibration at the tip of flexible beam,
the acceleration is measured by using an accelerometer
which is attached at the beam tip through the charge
amplifier. By integrating the measured acceleration, the
displacement and the velocity are obtained. The obtained
displacement is sent to DSP via an A/D converter. The
DSP which is linked by a personal computer is used to
implement the synthesized controllers and to generate the
disturbance signal. The control signal which is computed
by DSP is sent to power amplifier to generate control force.
The disturbance signal with frequency variation which
is computed by DSP is also sent to power amplifier to
generate exciting force. On the other hand, the information
about disturbance frequency is directly given to DOFV.

The model of the flexible beam is given by identification
technique of frequency response as follows.

Gp(s) =
Ku(s

2 + 2ζzωzs+ ω2z)

(s2 + 2ζp1ωp1s+ ω2p1)(s
2 + 2ζp2ωp2s+ ω2p2)

(23)

where Ku = 1525, ζz = 0.02, ωz = 2π × 20.3, ζp1 =
0.015, ωp1 = 2π × 16.1, ζp2 = 0.015, ωp2 = 2π × 24.6. As
Gp(s) is stable, the closed loop system in Fig.1 is stabilized
by K = O1×4.

3.2 Synthesis of DOFV

The control system is constructed by the observer-based
controller. The convergent rate of x̂L(t) approaching xL(t)
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is determined by the observer poles. So, the observer poles
must be placed sufficiently left distant from imaginary

axis. To find the observer gain such that
¯̄̄
Re
n
λ(Â)

o¯̄̄
is larger than |Re {λ(A)}|, inequality (16) and LMIs for
pole placement constraints(Chilali et al. (1996)) should be
simultaneously solved.

Consequently, for instance, Ce(s) and Cy(s) at f = 16.1
Hz can be obtained as

Ce(s) =
−1.090× 104

©
(s+ 2.551)2 + (1.275× 102)2

ª
(s+ 2.603)2 + (1.274× 102)2

× s− 6.622× 10
{(s+ 4.930)2 + (1.091× 102)2} (s+ 6.968× 10)

(24)

Cy(s) =
7.148

©
(s+ 1.517)2 + (1.011× 102)2

ª
(s+ 2.603)2 + (1.274× 102)2

× (s+ 2.318)
2 + (1.545× 102)2

(s+ 4.930)2 + (1.091× 102)2

× s− 6.622× 10
s+ 6.968× 10 .

(25)

4. SIMULATIONS

In this section, simulation results of vibration suppression
control using DOFV are shown. Assume that the distur-
bance is a sinusoidal signal written by

Ad = 2πf

∙
0 −1
1 0

¸
, Cd = [ 1 0 ] , (26)

where f is disturbance frequency and the variation range
is

10 [Hz] ≤ f ≤ 30 [Hz]. (27)

Fig. 3. Output responses of plant without control

Fig. 4. Output responses of control system with distur-
bance observer(at f =16.1 [Hz])

Fig. 5. Output responses of control system with distur-
bance observer(at f =24.6 [Hz])

Fig. 6. Output responses of control system with DOFV

The frequency is started from 10 Hz and is increased at
the rate of 1/3 Hz per second.

Fig.3 shows the deflection of the beam tip in case without
control. From this result, it is confirmed that the natural
frequency of the first bending mode is about 16.1 Hz and
the natural frequency of the second bending mode is about
24.6 Hz, respectively. Fig.4 and Fig.5 show the control
performances of the conventional disturbance observer
synthesized at the fixed frequency 16.1 Hz and 24.6 Hz,
respectively. From these results, it can be stated that the
conventional disturbance observer suppresses the vibration
at only single frequency specified in the synthesis. Fig.6
shows the control performance of the proposed DOFV.
Compared to previous results, the control performance of
the proposed DOFV is remarkably improved.

5. EXPERIMENTS

In this section, experimental results of vibration suppres-
sion control using DOFV are shown. We implement the
proposed DOFV into DSP and perform calculations in
sampling time 2 msec. Experimental results are shown
in figures from Fig.7 to Fig.10. Each condition of con-
trol parameters of these results corresponds to that of
the simulation results from Fig.3 to Fig.6, respectively.
Comparing the simulation results with the experimental
results shows that the experimental results have almost
the same excellent performance as the simulation results.

Also, in the neighborhood of time 30 sec, the result of
performance depicted in Fig.10 is slightly worse than
the simulation result in Fig.6. This may be caused by
the existence of anti-resonance point of flexible beam.
However, since the vibration is also suppressed naturally
at the neighborhood of anti-resonance frequency, this will
not be disadvantage in practical application.
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Fig. 7. Output responses of plant without control

Fig. 8. Output responses of control system
with@disturbance observer(at f =16.1 [Hz])

Fig. 9. Output responses of control system with distur-
bance observer(at f =24.6 [Hz])

Fig. 10. Output responses of control system with DOFV

From these results, it is shown that the proposed DOFV
can be successfully applied to the vibration suppression
control system.

6. CONCLUDING REMARK

In this paper, a design technique to reduce the adverse
effects of disturbance with frequency variation is proposed.
The proposed controller is called the Disturbance Observer
to Cope with Frequency Variation (DOFV). DOFV is
theoretically improved from conventional disturbance ob-
server which gives excellent sensitivity property for a peri-
odic disturbance with single frequency and it is synthesized
as gain-scheduled controller using a LMI-based approach.

Therefore, DOFV has the low sensitivity property against
the disturbance with frequency variation. Moreover, in
the LMI-based approach, many design constrains can be
written by matrix inequalities and they can be solved
numerically very efficiently.

In order to verify the effectiveness of disturbance reduction
using DOFV, the numerical simulations and experiments
are carried out. These results of both the simulation
and experiment demonstrate almost the same excellent
performance of vibration suppression. From these results,
it can be stated that DOFV is useful and noble controller
to reduce the disturbance with frequency variation.
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