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Abstract: The present paper describes a model representation of multi-cyclic phenomena for a multi-cylinder 
engine system. The model is simplified for implementation as a practical engine controller. The simplified 
model with physically meaningful variables can be used in design considering practical objectives and 
constraints more effectively. The proposed approach consists of two steps. First, an approximate analytical 
discrete crank angle model (i.e., a periodically time-varying state space model) is derived from the 
conservation laws. Second, the concept of role state variables is proposed to transform the periodically 
time-varying state space model into a time-invariant state space model. The stabilizability and optimality of the 
time-invariant state space model  imply those of the periodically time-varying state space model. The 
time-invariant state space model is used to design cold start feedforward and feedback controllers. 

 

1. INTRODUCTION 

As the regulation of automotive performance becomes 
increasingly strict, the development of a high-efficiency and 
zero-emissions powertrain has become crucial. However, it is 
feared that conventional development techniques will 
exponentially increase the man-hours required for engine 
control design. In order to solve this problem, the powertrain 
should be controlled electronically with high performance and 
concisely, and model-based development should be realized as 
soon as possible.  

The engine control system is redundant because the torque is 
controlled by multiple inputs, such as throttle angle, fuel 
injection quantity, and spark timing. These inputs have a 
time-delay. Specifically, in the port-injection engine, the fuel 
injection quantity has a delay of one cycle. Moreover, the 
system has both time-dependent and crank angle-dependent 
dynamics, that is, a continuous time nonlinear phenomenon in 
each cylinder is switched by discrete valve opening and 
closing events. In addition, the system is multi-cyclic, that is, 
the intake, combustion (compression / expansion), and exhaust 
strokes are repeated cyclically in each cylinder, where the 
combustion stroke does not occur simultaneously in multiple 
cylinders. 

In current engine control design, the main control method is 
based on maps and if-then rules and makes use of the 
experience of experts. However, in the design and verification 
processes for a new engine, this requires a great deal of time 
and patience. Recently, a number of studies [Ohata], 
[Johansson], [Jurgen] have used empirically combined SISO 
models, such as the partial physical model and identified ARX 
models. Nevertheless, the optimality has not been discussed 
sufficiently because, in these methods, the inputs are 
calculated without consideration of the interactions among all 
of the state variables in the engine. 

The present study proposes a model representation of 
multi-cyclic phenomena for multi-cylinder engine systems. 

Section 2 briefly introduces a benchmark model. Section 3 
describes a method of deriving a simple model, which is 
periodically time-varying, for an engine system with 
complicated physical phenomena. We also introduce the 
concept of role state variables, by which the derived model can 
be transformed into a time-invariant state space model, and 
discuss the stabilizability of those models. Using the 
time-invariant state space model, optimal design examples of 
cold start feedforward and feedback control are demonstrated 
in Section 4, and Section 5 describes a numerical experiment. 
Finally, Section 6 presents the conclusions of the present 
study. 

2. BENCHMARK MODEL 

The SICE (the Society of Instrument and Control Engineers) 
Research Committee on Advanced Control of Engines has 
provided a benchmark model and has set the cold start control 
as a benchmark problem.  

Figure 1 shows the benchmark model, a V6 spark ignition 
engine, which is composed of six submodels: an air model, a 
fuel model, a cylinder model, a valve-temperature model, a 
port-temperature model, and a piston-crank model. These 
models are expressed according to the following fundamental 
equations: 
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Note that the cylinder model includes combustion and cooling 
loss, and the port-temperature model expresses the 
temperatures of the left and right banks. In addition, the 
exhaust model is approximated in the atmosphere. 

The benchmark model has 13 control inputs: one throttle angle, 
six fuel injection quantities, six spark timings, and two 
outputs: engine speed and throttle flow.    

 

 

 

 

 

 

3. MODELING 

The benchmark model is complex, where both time-dependent 
and crank angle-dependent dynamics exist over six cylinders. 
Therefore, a simplified model is needed for a practical 
controller design from the viewpoint of computational load. 
Moreover, it is important to maintain the state variables to be 
physically meaningful in this model reduction process, 
considering the practical objectives and constraints more 
effectively. Here, we will choose the sampling points based on 
the crank angle to derive a simplified discrete crank angle 
model as follows.  

1st step: A set of nonlinear differential equations (1)-(5) 
are solved by approximate analytical techniques to obtain 
the state variables at each sampling point. Thus, a 
nonlinear, periodically time-varying state space model is 
derived.  

2nd step: Using the new concept of  role state variables, the 
periodically time-varying state space model is transformed 
into a time-invariant state space model. 

3.1 Sampling Point and State Variable 

The engine system switches the strokes of intake, combustion 
and exhaust by opening and closing of intake and exhaust 
valves.  We propose that all of the states are calculated at the 
end of each stroke (switching point) and at the middle of each 
stroke (middle point). Figure 2 shows the proposed sampling 
points “k”. Therefore, one cycle, i.e., 720 degCA is divided 
into six sampling points, each of which contains three 
switching points and three middle points. Note that the 
discrete crank angle model is discretized approximately every 
120 degCA, not precisely every 120 degCA, because these 
sampling points do not occur at strictly the same time. 

The discrete crank angle model has 35 state variables: seven 
pressures and seven masses in the surge tank and each cylinder, 
eight temperatures of the valve of each cylinder and of the left 
and right banks, engine speed, 12 fuel amounts adhering to the 
valve of each cylinder, and the port of each cylinder. 

Fig. 2. Sampling points 
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3.2 Periodically Time-Varying State Space Model 

It is difficult to obtain the exact behaviors at each sampling 
point because the behaviors are subject to the nonlinear 
differential equations (1)-(5). Therefore, we derive a 
periodically time-varying state space model using 
approximate analytical techniques as below. Note that the 
detailed description is omitted due to space limitations.  

･The mass and pressure in the surge tank and each cylinder 
during the intake stroke and the exhaust stroke are obtained 
from the gas equation (1) and the conservation law (2) and 
(3) using stationary approximation at every sampling point. 
The derived model can strictly distinguish the case of two 
cylinders at the intake (exhaust) stroke at the same time 
from that of one cylinder at the intake (exhaust) stroke.  
･The pressure in each cylinder and the piston work during 
the combustion stroke are obtained from the gas equation 
(1) and the conservation law (3) using the approximated 
cooling loss model. Note that mass and pressure at the 
opening of the exhaust valve and the piston work are 
expressed using only the states at the closing of the intake 
valve without using the states under combustion. 
･ The square of engine speed is convenient for 
approximating analytical techniques for Lagrange 
equations (4) with constraints, which express the 
reciprocating dynamics of the six pistons, the rotational 
dynamics of the crank, and  their interlock. 
･The temperature of the valve of each cylinder and the 
temperature of the left and right banks are derived from the 
conservation law (3) using approximate analytical 
techniques for the cooling loss model and integral terms. 
Note that the valve temperature at the opening of the 
exhaust valve is expressed using only the states at the 
closing of the intake valve without using the valve 
temperature under combustion. 
･The fuel model is easy to discretize from the original 
model (5) in the benchmark model. 

From combining each discrete crank angle model as outlined 
above, we obtain the following periodically time-varying state 
space model, 
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where the notations are used as follows: 

 

 

 

 

 
 

Note that the torque, the thermal efficiency, and the specific 
fuel consumption can also be expressed by the state variable x̂  
and the input û . 

Figure 3 shows the entire model with Eq. (6), a fuel model, and 
some unit delays of inputs. The fuel model is a periodically 
time-varying state space model in which each cylinder has fuel 
injection at a different sampling point. Note that the total delay 
is five samples in the fuel model because the torque is 
generated one cycle after the fuel injection quantity is 
specified as the opening exhaust valve. The delays of the 
throttle angle and the spark timing indicate that throttle 
opening and spark are executed one sample after specified.  

Figure 4 shows the validation of the obtained model (Fig. 3). 
These errors are mainly caused by approximating the cooling 
loss. Notice that the computational load of the obtained model 
is less than 1/100 that of the benchmark models (1)-(5). 

 

 

 

 

 

 

 
Fig. 4. Validation 

Fig. 3. Periodically time-varying model with fuel model and unit delays 
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3.3 Time-Invariant State Space Model 

3.3.1 Role State Variable 

Table 1a summarizes Fig. 2, showing the relation among the 
cylinder number, the sampling point, and the number of 
strokes. In Table 1a, 

jξ̂  is the state variables of mass, pressure, 
and valve temperature in the # j cylinder. It is easy to see that 
the state transition function at sampling points k to k+1 is 
different from that at sampling points k+1 to k+2, because the 
stroke of 

jξ̂  at sampling points k to k+1 is different from that 
at sampling points k+1 to k+2. This is why Eq. (6) is 
time-varying and periodical.   

Next, we introduce a new state variable. The relation shown in 
Table 1b is the same as that shown in Table 1a, except with 
respect to how to choose the state variables. In Table 1b, the 
state variable 1ξ  is defined in terms of the mass, pressure, and 
valve temperature of the cylinder at the middle of the 
combustion stroke (mC). Similarly, state variables 2ξ  to 6ξ  
are defined as mass, pressure, and valve temperature of the 
cylinder under the corresponding strokes. We refer to these 
state variables ξ   as role state variables.  

The state transition function of iξ  at sampling points k to k+1 
is the same as that at sampling points k+1 to k+2 because the 
state variable iξ  is always in the same stroke. Therefore, the 
periodically time-varying state space model of Eq. (6) can be 

transformed into a time-invariant state space model if the role 
state variables are used. 

When the role state variables are used, there exist only three 
inputs: the spark timing, the fuel injection quantity, and the 
throttle angle. We refer to these inputs as role inputs. The role 
input of spark timing is a reduced input from six spark timings 
of all of the cylinders, as well as the role input of fuel injection. 
Therefore, it is important to grasp the correspondence between 
the role inputs and the real inputs. Note that the role input of 
the throttle angle is equal to the real input. 

Using the role state variables and the role inputs, the 
periodically time-varying state space model of Eq. (6) is 
transformed into the following time-invariant state space 
model, 

( ) ( ) ( )( )
( ) ( ) ( )( )kukxhky

kukxfkx
,

,1
=

=+           (7) 

where 

 

 
Figure 5 shows an entire model with Eq. (7), the fuel model, 
and the unit delays of inputs.  

The concept of the role state variables has been discussed here 
in the case of six-cylinders. Note, however, that the discussion 
holds for any number of cylinders. 

Fig. 5. Time-invariant state space model with fuel model and unit delays 
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3.3.2 Permutation Matrix 

This section clarifies the relation between the role state 
variables and the state variables, as well as the relation 
between the role inputs and the real inputs. 

From the relation between the role state variables iξ  and the 
state variables 

jξ̂   in Table 1, it is easy to see that using the 
following permutation matrix:  

66

001
10
01

1
1

0010

×∈

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= RQ

LLL

OOOO

OOOM

MOOOM

MOOOM

LL

, (8) 

the transformation between ( )kξ  and ( )kξ̂  is given by  

( ) ( )kQk kξξ ˆ=     (9) 

where 6modkk = . Similarly, the relation between the role 
inputs and the real inputs is given by 
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                . 

3.3.3 Stabilizability 

We consider some linearized models around a steady state to 
clarify the relation between the stabilizability of the 
time-invariant state space model (7) with the role state 
variables and that of the periodically time-varying state space 
model (6).  

Equation (11) indicates the linearized state space models 
derived from the time-invariant state space model (7) and the 
periodically time-varying state space model (6), in which 

uΔ , xΔ , and yΔ denote the perturbations of the input, state, and 
output, respectively, from a steady state. Here, we assume that 
in a steady state, the fuel quantity in a cylinder is equal to the 
fuel injection quantity, and thus the fuel model, the 
valve-temperature model, and the port-temperature model can 
be disregarded. 
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Theorem:  In Eq. (11), the periodically time-varying state 
space model is stabilizable if the time-invariant state space 
model is stabilizable. 

Proof:  If the time-invariant state space model is stabilizable, 
there exists a gain matrix F  such that BFA + is stable. 

Substituting                           into        yields 

where        is given by 

( ) k
x

T
u

k
u FQRQkF −≡ˆ .      (12) 

The periodically time-varying state space model is then given 
by  

( ) ( ) ( ) ( ){ } ( )kxkFkBkAkx ˆˆˆˆ1ˆ Δ+=+Δ       (13) 

where 

( ) ( ) ( ) ( ) k
x

k
x QBFAQkFkBkA +=+ +− 1ˆˆˆ .             (14) 

The stability of the periodically time-varying state space 
model is decided according to the transition matrix from 
arbitrary sampling point k to sampling point k+6, i.e., by one 
cycle 

( ) ( ) ( )kxkkkx ˆ,66ˆ Δ+Φ=+Δ    (15) 

where from Eqs. (13) and (14), it is easy to see that 

( ) ( ) k
x

k
x QBFAQkk 6,6 +=+Φ − .    (16) 

Therefore, it is clear that ( )kk ,6+Φ  is stable when BFA + is 
stable, which means that the theorem has been proven.        □ 

This theorem implies that the stabilization problem of the 
periodically time-varying state space model can be reduced to 
that of the time-invariant state space model. In addition, it is 
easy to see that a similar theorem holds with respect to 
detectability. Therefore, we can use the control theory of 
time-invariant systems in the design of an engine feedback 
controller. 

( ) ( )kxFku Δ=Δ ûΔ ( ) ( ) ( )kxkFku ˆˆˆ Δ=Δ

( )kF̂
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4. DESIGN EXAMPLE 

The benchmark problem mainly sets up the following control 
specifications. 

･ The engine speed, 650±50 rpm, should be reached in 1.5 
seconds after cold start.  
･ The overshoot of the engine speed should be as small as 
possible. 
･ The engine speed should converge to 650 rpm, and so the 
steady state engine speed, 650 rpm, should be 
asymptotically stable. 

Figure 6 shows the design flow diagram.  

1st step: The steady states and inputs are obtained 
numerically using the nonlinear time-invariant state space 
model of Eq. (7), in which a set of 15 nonlinear algebraic 
equations should be solved numerically. 
2nd step: An optimal feedforward control inputs for the 1.5 
seconds after cold start is searched using Eq. (7), a 
performance index (square sum of the engine speed error), 
and some constraints (engine speed, inputs, misfire, and 
stall). 
3rd step: An LQI controller is obtained by using the linear 
time-invariant state space model of Eq. (11) and 
considering the unit delays of the inputs.  

Figure 7 shows the controller designed in the present study.  

5. NUMERICAL EXPERIMENT 

Using the benchmark model and the designed controller given 
in Fig. 7, numerical experiments for cold start control were 
conducted. Figure 8 shows results that satisfy the 
specifications of the benchmark problem. In Fig. 8, the 
feedback control was executed from the sixth cycle 
(approximately 1.8 seconds), at which time the temperatures 
of the valves of all of the cylinders were near steady state. 
Moreover, the feedforward control inputs were kept at the 
steady state values after this time. Note that in Fig. 8, the spark 
timing and the fuel injection quantity are plotted for every 
sample, i.e., for different cylinders.   

6. CONCLUSIONS 

The present paper proposes a model representation of 
multi-cyclic phenomena for a multi-cylinder engine system 
using the new concept of role state variables in order to design 
an optimal multiple inputs. The features of this model 
representation are as follows.  

･ The periodically time-varying state space model is 
equivalently transformed into the time-invariant state 
space model using the role state variables. This holds for 
any number of cylinders. 
･ The stabilizability of the time-invariant state space model 
implies the stabilizability of the periodically time-varying 
state space model, as well as detectability. 
･ The time-invariant state space model enables an optimal 
design for periodical engine system. 

･The time-invariant state space model and the permutation 
matrix introduce some simplification in the program 
structure when the controller is implemented.  

In the future, model predictive control will be applied 
explicitly to consider the constraints of inputs. 
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