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Abstract: It is a well-known fact that a weighting pattern matrix is realizable as a linear
periodic system if and only if the matrix is separable and periodic. This fact, however, can not
cope with a reasonable question when a weighting pattern matrix can be realized as a linear
periodic system with a specific period of time. This paper answers the question by constructing
two types of period-specific realizations. Moreover, this paper describes in detail how the lowest
dimension of period-specific realizations is identified.

1. INTRODUCTION

This paper is concerned with a classical realization prob-
lem, an inverse problem of constructing a state-space rep-
resentation from a given weighting pattern matrix which
represents the input-output relation of a linear system, es-
pecially with a realization problem for linear periodic and
continuous-time systems. This type of periodic realization
problem was initiated by Silverman[1, 2] and further de-
veloped by [3], or discussed in somewhat different situation
in [4]. A periodic realization problem for discrete-time
systems was investigated in [5]. A realization problem of
time-varying linear systems in infinite dimensional spaces
was treated in [6].

For the realization problem for linear periodic continuous-
time systems, Silverman exhibited a necessary and suf-
ficient condition for a weighting pattern matrix to be
realized by a linear periodic system[1, 2]. To be precise,
it was proven for the necessity that a weighting pattern
matrix inherits a period from a given linear periodic sys-
tem, the source of the weighting pattern matrix, and for
the sufficiency that there exists a linear periodic realization
with twice the period of a given weighting pattern matrix.
This suggests that the sufficiency part may accept an ex-
cessively wide class of linear periodic systems as candidates
for periodic realization. This motivates us to initiate the
question when a given weighting pattern matrix can be
realized by a linear periodic system with a specific period.
It should be strongly recognized, as clarified in Section 3,
that in the period-specific realization problem, there may
be no solution among linear periodic systems whose dimen-
sions are equal to the order of a weighting pattern matrix,
an object of realization, in contrast with realization prob-
lems for general linear time-varying systems or linear time-
invariant systems; it is well-known that the linear time-
varying/time-invariant realization problems can be solved
with the dimension equal to the order of weighting pattern
matrices. This situation makes it difficult to find a solution
to the present problem, since it requires that we should
scan possible realization candidates with dimensions larger
than the order of weighting pattern matrices.

The first result of this paper answers the period-specific
realization problem, by employing a linear periodic real-
ization candidate with a redundant dimensional constant
A-matrix. The second result of this paper shows how the
redundancy of dimension can be reduced by introducing a
linear periodic realization candidate with a non-constant
A-matrix.

2. REALIZATION THEORY – A BRIEF REVIEW

2.1 Realization of general linear systems

Let us make a formal statement of the realization prob-
lem for general linear systems and summarize known
results for the realization problem without proofs. De-
tailed discussions about these results can be found in the
references[7, 8, 9].

Consider an n-dimensional linear time-varying control
system with a state x, an input u and an output y in
the form

ẋ = A(t)x + B(t)u, y = C(t)x, (1)
where A(t) ∈ R

n×n, B(t) ∈ R
n×m, C(t) ∈ R

r×m are
supposed to be continuous in t and real matrix-valued.
Since the output under the initial condition x(t0) = 0 is
expressed by

y(t) =
∫ t

t0

C(t)ΦA(t, p)B(p)u(p)dp,

the input-output relation of the system (1) is completely
determined by a weighting pattern matrix W (t, p) :=
C(t)ΦA(t, p)B(p) of the system (1) (ΦA(t, p) denotes the
transition matrix of ẋ = A(t)x throughout this paper).

A realization problem is an inverse problem of obtaining
a system as (1) or equivalently a set of real matrix-valued
functions (A(t), B(t), C(t)) from a given weighting pattern
matrix. Our interest is to find these coefficient matrices
(A(t), B(t), C(t)) as real matrices, since physical systems
are usually approximated as linear systems with real
coefficients. We will exclude any complex coefficient matrix
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from candidates of solution to the realization problem
throughout this paper.
Definition 1. A matrix-valued function W (t, p) with two
variables t and p is said to be realizable (by a linear
time-varying system) if there exist continuous real matrix-
valued functions A(t), B(t), and C(t) such that

W (t, p) = C(t)ΦA(t, p)B(p), ∀t, ∀p ∈ R. (2)
Then, the linear time-varying system in (1), or equiva-
lently, the triplet (A(t), B(t), C(t)) is called a realization
of W (t, p).

The following fact is most fundamental in realization
theory.
Theorem 1. W (t, p) is realizable if and only if it is separa-
ble, that is,

W (t, p) = L(t)R(p), ∀t, ∀p ∈ R (3)
for some continuous real matrix-valued functions L(t) and
R(t).

The separations of the form (3) have in general redun-
dancy. For redundancy we mean linear dependence about
functions L(t) and R(t) in (3). Removing the redundancy
from a separation, we have an essential separation in the
following.
Theorem 2. For any separable W (t, p) ∈ R

r×m, there
exist continuous real matrix-valued functions L0(t) ∈
R

r×n0 and R0(t) ∈ R
n0×m whose columns and rows are

respectively linearly independent over R such that
W (t, p) = L0(t)R0(p), ∀t, ∀p ∈ R. (4)

This special type of expression for W (t, p) is called a
globally reduced form of W (t, p).

A set of globally reduced forms of weighting pattern matrix
can be characterized in the following.
Proposition 3. Let W (t, p) = L0(t)R0(p) be a globally
reduced form. Any other globally reduced form W (t, p) =
L̃0(t)R̃0(p) is parametrized by

L̃0(t) = L0(t)S, R̃0(t) = S−1R0(t) (t ∈ R) (5)
where S is an arbitrary nonsingular real matrix.

The fact above implies that all L0(t)’s and R0(t)’s resulting
in globally reduced forms of a weighting pattern matrix
have the same sizes. Therefore the integer n0 in Theorem
2 is uniquely determined by W (t, p) and is called the order
of W (t, p). The order is well defined for any separable
(realizable) matrix-valued function.

The order of a weighting pattern matrix is closely related
to a minimal dimension of possible realizations, as follows.
Proposition 4. Any separable W (t, p) with the order n0

has a realization with the dimension n0, but no realization
with a dimension less than n0.

2.2 Realization of linear periodic systems – A procedure by
Silverman

Let us here recall a Silverman’s result for realization of
linear periodic systems. In conclusion, Silverman proved
the following[1, 2].
Theorem 5. W (t, p) has a periodic realization if and only
if it is separable and periodic.

We will rebuild the proof of Theorem 5 with some inspec-
tion in the below.

To prove the necessity, suppose that W (t, p) has a T -
periodic realization (A(t), B(t), C(t)) with some T > 0.
Separability of W (t, p) is obvious in view of Theorem
1. Since the functions ΦA(t, p), B(t) and C(t) have the
common period T , W (t, p) = C(t)ΦA(t, p)B(p) has also
the period T , i.e. W (t + T, p + T ) = W (t, p), ∀t,∀p ∈ R.
Thus we can conclude that W (t, p) is separable and T -
periodic.

To prove the sufficiency, we shall construct a periodic
realization from a given separable and periodic W (t, p)
with a period T . Notice that our objective here is a
periodic realization with some period possibly independent
of the period T of W (t, p). This freedom of period will
achieve a successful construction.

Since W (t, p) is separable, we have a globally reduced form
(4) by Theorem 1 and 2. Observe a trivial factorization

W (t, p) = L0(t)R0(p) = L0(t)e−A0t · eA0(t−p) · eA0pR0(p),

∀t,∀p ∈ R with any A0 ∈ R
n0×n0 . This implies that the

triplet

A(t) := A0, B(t) := eA0tR0(t), C(t) := L0(t)e−A0t (6)

is a (possibly non-periodic) realization of W (t, p) for any
A0 ∈ R

n0×n0 . We can expect that (6) is periodic for an
appropriate A0. In order to generate such an A0, we note:
Lemma 6. [1] Let W (t, p) be separable with the order
n0 > 0 and a globally reduced form W (t, p) = L0(t)R0(p)
be given. If W (t, p) is T -periodic, then there exists a
nonsingular real matrix Q ∈ R

n0×n0 such that

L0(t + T ) = L0(t)Q, R0(t + T ) = Q−1R0(t), ∀t ∈ R. (7)

Taking account of (7), we immediately see that B(t) and
C(t) in (6) have the period T , provided that eA0T = Q.
Thus, a T -periodic realization of W (t, p) is attainable if the
matrix equation eA0T = Q has a solution A0 ∈ R

n0×n0 .

The substantial difficulty in this step is that there may
be no real matrix solution A0 to the matrix equation
eA0T = Q, even though Q is nonsingular and real.
Proposition 7. [10, 11] Let a square real matrix Q be
arbitrarily given. The matrix equation eX = Q has a
solution X as a real matrix, i.e., Q has a real logarithm
if and only if Q is nonsingular and has an even number
of Jordan blocks of each size for every negative real
eigenvalue.

If it emerges that Q in the equation (7) has no real loga-
rithm, the realization (6) by eA0T = Q is not functional,
because it has a non-real A-matrix. To avoid this difficulty,
we direct our attention to the following fact.
Proposition 8. [11] Given any nonsingular real matrix Q,
there exists a real matrix X such that eX = Q2.

In light of this fact, we always find a real matrix A0 such
that e2A0T = Q2 because of nonsingularity of Q and take
(6) as a candidate of periodic realization. The realization
(6) is then actually 2T -periodic, since we have, from (7),

L0(t+2T ) = L0(t)Q2, R0(t+2T ) = Q−2R0(t), ∀t ∈ R.
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Hereinbefore, we have proven that Theorem 5 is valid.
Notice that for the sufficiency part we have constructed
a 2T -periodic realization for a separable and T -periodic
W (t, p), which was the realization procedure by Silverman.

3. MAIN RESULTS

This section introduces and solves a new type of realization
problem, a linear periodic realization problem with a
specific period of time. This problem contrasts sharply
with the situation in Theorem 5 by Silverman where the
period of realizations is not specified beforehand. We will
prove in conclusion that there exists a periodic realization
whose period is equal to a given weighting pattern matrix,
by constructing two types of period-specific realizations;
one is a periodic realization with a constant A-matrix, and
the other with a non-constant periodically time-varying A-
matrix. In particular, it will be clarified that the latter can
be minimal with respect to the dimension of period-specific
realizations.

3.1 Period-specific realization with constant A-matrices

Although the realization procedure by Silverman works
well as demonstrated in Section 2.2, it always yields a
2T -periodic realization for a T -periodic weighting pattern
matrix, even though the weighting pattern matrix has a
T -periodic realization. This means that the realization
procedure by Silverman serves to construct a periodic
realization, by overestimating candidates for periodic re-
alization, since the set of all 2T -periodic functions strictly
contains the set of all T -periodic functions. This urges us
to explore the question when a given weighting pattern
matrix has a periodic realization with a specific period.

The first result of this paper answers the question even if
the nonsingular real matrix Q in (7) has no real logarithm.
This means that for any nonsingular real Q we need
not suppose 2T -periodic realization candidates, unlike the
realization procedure by Silverman.
Theorem 9. W (t, p) has a T -periodic realization if and
only if it is separable and T -periodic.
Proof . The proof for the necessity part has already been
shown in Section 2.2. To prove the sufficiency, we suppose
that W (t, p) is separable and T -periodic. We have a
globally reduced form W (t, p) = L0(t)R0(p) with an order
n0, by Theorem 2, and then, a nonsingular real matrix
Q ∈ R

n0×n0 satisfying (7), by Lemma 6. Note that Q is
guaranteed to be nonsingular and real, and may have some
negative real eigenvalues. The rest of realization procedure
is alternative; we will consider the case when Q has a
real logarithm, that is, when Q satisfies the condition in
Proposition 7, and the other case.

Consider first the case when Q satisfies the condition in
Proposition 7. In this case, we are able to obtain a real
matrix A0 ∈ R

n0×n0 such that eA0T = Q. With this A0,
we take a candidate of realization by (6) which is indeed a
T -periodic realization of W (t, p) as mentioned in Section
2.2.

Now we consider the case when Q does not satisfy the
condition in Proposition 7. It is obvious that there exists
a nonsingular real matrix Qμ ∈ R

μ×μ such that an

augmented matrix Q̂ = diag[Q,Qμ] ∈ R
(n0+μ)×(n0+μ)

satisfies the condition in Proposition 7. Hence, we are
able to find a real matrix Â ∈ R

(n0+μ)×(n0+μ) such that
eÂT = Q̂. Now we define

A(t) := Â, B(t) := eÂtR̂(t), C(t) := L̂(t)e−Ât (8)
as a candidate triplet of T -periodic realization of W (t, p),
where

L̂(t) := [ L0(t) 0r×μ ] , R̂(t) :=
[

R0(t)
0μ×m

]
.

Since ΦA(t, p) = eÂ(t−p),

C(t)ΦA(t, p)B(p) = L̂(t)e−ÂteÂ(t−p)eÂpR̂(p)

= L̂(t)R̂(p) = L0(t)R0(p) = W (t, p), ∀t, ∀p ∈ R.

Therefore, (8) is certainly a realization of W (t, p). Since
Q̂ is block-diagonal nonsingular, (7) immediately implies
that

L̂(t + T ) = L̂(t)Q̂, R̂(t + T ) = Q̂−1R̂(t), ∀t ∈ R.

This, together with the equality eÂT = Q̂, shows that B(t)
and C(t) in (8) are both T -periodic. We have thus proven
Theorem 9.

Notice here that the statements in Theorem 5 and 9 differ
only in that the former uses the term “periodic” and the
latter “T -periodic”. Hence Theorem 9 provides a stricter
and more informative statement than Theorem 5.

3.2 Minimal and period-specific realization

In Section 3.1, we have observed that Theorem 9 success-
fully resolves the period-specific realization problem. Here,
we point out that the resultant realizations by Theorem 9
may be wasteful; the dimension of the realizations may be
reducible, because A-matrices of realizations given in the
proof of Theorem 9 are selected from among constant real
matrices while they can be periodically time-varying. This
motivates us to investigate whether or not the dimension
of realizations by Theorem 9 could be reduced with a fixed
period, by supposing non-constant A-matrices. In fact, we
can show a “reducible” example in the following.
Example 1. Consider a real valued

W (t, p) = cos πt sin πp − et−p sin πt cos πp (9)
which has a globally reduced form W (t, p) = L0(t)R0(p)
with

L0(t) =
[
cos πt −et sin πt

]
, R0(t) =

[
sin πt

e−t cos πt

]
.

We can readily verify that a nonsingular real matrix

Q =
[−1 0

0 −e

]
∈ R

2×2 (10)

with T = 1 solves the equation (7). Applying the proce-
dure in the proof of Theorem 9 to Q, we obtain an aug-
mented matrix Q̂ = diag[Q,Q] which has a real logarithm

Â =

⎡
⎢⎣

0 0 −π 0
0 1 0 −π
π 0 0 0
0 π 0 1

⎤
⎥⎦ ∈ R

4×4.

We then obtain an 1-periodic realization (8) written as
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A(t) = Â, B(t) =
1
2

⎡
⎢⎣

sin 2πt
1 + cos 2πt
1 − cos 2πt

sin 2πt

⎤
⎥⎦ ,

C(t) =
1
2

[ 1 + cos 2πt − sin 2πt sin 2πt −1 + cos 2πt ] .

Although reducibility of dimension is not apparent in view
of these coefficient matrices above, we can verify that the
triplet

A(t) =
1
2

[
1 − cos 2πt −2π − sin 2πt
2π − sin 2πt 1 + cos 2πt

]
, B(t) =

[
0
1

]
,

C(t) = [ 1 0 ] (11)
gives another 1-periodic, lower-dimensional realization of
W (t, p). A full verification will be given in Example 2.

This example, thus, shows that exploiting non-constant
periodic A-matrices enables to reduce the dimension of
periodic realization preserving the period.

The second objective is to find a period-specific minimal
realization, a period-specific realization with the lowest
dimension. For this end, we begin by coding the connection
between a weighting pattern matrix and “Q”, the key
matrix.
Proposition 10. Under the situation of Lemma 6, Q in (7)
is unique.

Although Q in (7) is uniquely determined by a pair (L0(t),
R0(t)) resulting in a globally reduced form, it of course
depends on the choice of L0(t)’s and R0(t)’s. Recall here
that all the possible choice of L0(t)’s and R0(t)’s are
parametrized as (5), by Proposition 3. Therefore, with a
Q resulting from a globally reduced pair (L0(t), R0(t)),
each Q̃ resulting from every globally reduced pair (L̃0(t),
R̃0(t)) constitutes a set

{S−1QS : nonsingular S ∈ R
n0×n0}.

In particular, we notice that detQ = det Q̃. This means
that detQ is independent of choice of L0(t)’s and R0(t)’s,
and therefore, it is uniquely determined for a separable and
periodic W (t, p) and its period T . This justifies that we call
the sign of detQ of some/any Q the sign q corresponding
to T of W (t, p): we let q = 1 if detQ > 0 and q = −1
if detQ < 0. The phrase “corresponding to T” may not
be omitted. If a separable W (t, p) has a period T , then it
must have periods 2T , 3T , . . .. This implies that W (t, p)
has each sign q, q2, q3, . . . corresponding to each period
T , 2T , 3T , . . ., because we have, from (7), for any positive
integer k,
L0(t+kT ) = L0(t)Qk, R0(t+kT ) = Q−kR0(t), ∀t ∈ R.

Therefore, the existence of negative q’s urges us to define
the sign of weighting pattern matrices with their periods.

With the notion of sign corresponding to a period of
W (t, p), we exhibit the second result of this paper.
Theorem 11. For a given separable and T -periodic W (t, p)
(assume W (t, p) �≡ 0), the minimal dimension n̂0 of all the
possible T -periodic realizations of W (t, p) is given by

n̂0 =
{

n0 (if q > 0)
n0 + 1 (if q < 0)

where n0 and q respectively denote the order and the sign
corresponding to the period T of W (t, p).

Before we proceed to the proof of Theorem 11, we show
a key lemma, a generalization of matrix exponential func-
tion.
Lemma 12. For a given real number T > 0 and a given
nonsingular real matrix Q ∈ R

n×n with detQ > 0, there
exists a C∞ real matrix-valued function Ξ(t) ∈ R

n×n such
that

Ξ(t + T ) = Ξ(t)Q, det Ξ(t) �= 0, ∀t ∈ R. (12)

Proof . Consider first the case when Q has no negative
real eigenvalue. Then we have a real matrix A0 ∈ R

n×n

satisfying eA0T = Q by Proposition 7. With this A0 we
define Ξ(t) := eA0t, a C∞ real matrix-valued function. It
is evident by noting properties of matrix exponential that
Ξ(t) satisfies (12).

Now consider the case when Q has at least one negative
real eigenvalues. Note that Q can be block-diagonalized as

Q = U−1

[
Q− 0
0 Q+

]
U,

where U is a nonsingular real matrix, the eigenvalues of
Q− ∈ R

ν×ν are all negative real, and Q+ ∈ R
(n−ν)×(n−ν)

has no negative real eigenvalue. This block-diagonalization
can be done by performing the real Jordan canonical
form, for example. We see that det Q+ > 0, because the
eigenvalues of the real matrix Q+ consist of positive real
numbers and conjugate pairs of complex numbers. Noting
det Q = det Q− det Q+ and detQ > 0, we have that
det Q− > 0 because det Q+ > 0. Therefore, the product of
all eigenvalues of Q− is positive, which implies that ν, the
size of Q−, is even, because all the eigenvalues are negative
real. This enables us to introduce a real matrix

H = diag
[[

0 −1
1 0

]
π

T
, . . . ,

[
0 −1
1 0

]
π

T

]
∈ R

ν×ν .

Meanwhile, the matrices −Q− and Q+ are nonsingular
real and both of them have no negative real eigenvalue.
We then find real matrices A− ∈ R

ν×ν and A+ ∈
R

(n−ν)×(n−ν) such that −Q− = eA−T and Q+ = eA+T ,
by Proposition 7. With the matrices H, A−, A+, and U
defined above, we now define a C∞ real matrix-valued
function

Ξ(t) := diag[eHteA−t, eA+t] U ∈ R
n×n.

It is straightforward that Ξ(t) defined above meets (12).
This completes the proof.

We are now in the position to complete the proof of Theo-
rem 11. Note that the following gives another constructive
proof for the sufficiency part of Theorem 9.
Proof . (Proof of Theorem 11). Suppose that a separable
and T -periodic W (t, p) is given. Consider first the case
when q > 0. Then, we have a real Q ∈ R

n0×n0 with
det Q > 0 satisfying (7) for a globally reduced form
W (t, p) = L0(t)R0(p). Now apply Lemma 12 to Q. Then
we obtain a C∞ real matrix-valued function Ξ(t) ∈ R

n0×n0

which satisfies (12). At this stage, we are able to synthesize
a triplet of matrix-valued functions

A(t) := Ξ̇(t)Ξ(t)−1, B(t) := Ξ(t)R0(t),
C(t) := L0(t)Ξ(t)−1 (13)

as a candidate for the desired realization. Clearly, all these
functions are continuous in t (in particular, A(t) is C∞)
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and real matrix-valued. Since Ξ(t) is a real fundamental
matrix of ẋ = A(t)x by the definition of A(t) in (13),
ΦA(t, p) = Ξ(t)Ξ(p)−1. Together with the definitions of
B(t) and C(t) in (13) we have

W (t, p) = L0(t)R0(p) = C(t)Ξ(t) · Ξ(p)−1B(p)
= C(t)ΦA(t, p)B(p), ∀t, ∀p ∈ R,

which exactly means that the triplet of (13) is an n0-
dimensional realization of W (t, p). Moreover, combining
(7), (12) and (13), we immediately verify that the functions
in (13) have the common period T . Therefore, (13) is
indeed an n0-dimensional T -periodic realization of W (t, p).

Consider next the case when q < 0. In this case, we
have a real Q ∈ R

n0×n0 with detQ < 0 satisfying (7)
for a globally reduced form W (t, p) = L0(t)R0(p). Since
det Q < 0, we can not directly apply Lemma 12 to Q.
Instead, we introduce an augmented matrix

Q̂ :=
[

Q 0
0 −δ

]
∈ R

(n0+1)×(n0+1)

with an arbitrarily fixed positive real number δ. We
can then apply Lemma 12 to Q̂, because det Q̂ > 0.
Thus we have a C∞ real matrix-valued function Ξ̂(t) ∈
R

(n0+1)×(n0+1) which satisfies
Ξ̂(t + T ) = Ξ̂(t)Q̂, det Ξ̂(t) �= 0, ∀t ∈ R (14)

instead of (12). With this Ξ̂(t), we synthesize a triplet of
matrix-valued functions

Â(t) := ˙̂Ξ(t)Ξ̂(t)−1, B̂(t) := Ξ̂(t)R̂(t), Ĉ(t) := L̂(t)Ξ̂(t)−1

(15)
as a candidate for the desired realization, where

L̂(t) := [ L0(t) 0r×1 ] , R̂(t) :=
[

R0(t)
01×m

]
.

These functions are continuous in t (Â(t) is C∞) and
real matrix-valued. Noting ΦÂ(t, p) = Ξ̂(t)Ξ̂(p)−1 and the
definitions of B̂(t) and Ĉ(t) in (15), we have

W (t, p) = L0(t)R0(p) = L̂(t)R̂(t)

= Ĉ(t)Ξ̂(t) · Ξ̂(p)−1B̂(p) = Ĉ(t)ΦÂ(t, p)B̂(p),
∀t,∀p ∈ R, which means that the triplet (15) gives an (n0+
1)-dimensional realization of W (t, p). The first equation in
(14), the nonsingularity of Q̂ and the definition of Â(t) in
(15) imply that Â(t) has the period T . Since Q̂ is block-
diagonal, we see that

L̂(t + T ) = L̂(t)Q̂, R̂(t + T ) = Q̂−1R̂(t), ∀t ∈ R.

These with (14) and the definitions of B̂(t) and Ĉ(t) in (15)
imply that B̂(t) and Ĉ(t) have also the period T . Hence,
we conclude that (Â(t), B̂(t), Ĉ(t)) defined in (15) is an
(n0 + 1)-dimensional T -periodic realization of W (t, p).

It remains only to show that for the case q > 0, there is no
T -periodic realization with a dimension less than n0 and
that for the case q < 0, no T -periodic realization with a
dimension less than n0+1. We know by Proposition 4 that
we have no realization with a dimension less than n0 even
though we include non-periodic realization candidates.
Therefore, we need to only prove that there is no T -
periodic realization with a dimension equal to n0 in the
case q < 0. The proof is by contradiction. Assume that we
have an n0-dimensional T -periodic realization of W (t, p),

say (Ã(t), B̃(t), C̃(t)) with Ã(t) ∈ R
n0×n0 , in the case

q < 0. By definition, W (t, p) = C̃(t)ΦA(t, p)B̃(p) =
C̃(t)Φ̃(t)Φ̃(p)−1B̃(p) with an arbitrary real fundamental
matrix Φ̃(t) of ẋ = Ã(t)x. Consequently, we obtain a
separation W (t, p) = L̃(t)R̃(p) with L̃(t) = C̃(t)Φ̃(t)
and R̃(t) = Φ̃(t)−1B̃(t). Note here that this separation
is globally reduced, since the number of columns of L(t)
is equal to the order n0 of W (t, p). If we let Q0 be the
monodromy matrix of Φ̃(t), we have det Q0 > 0 because
Ã(t) is real. This leads to, ∀t ∈ R,

L̃(t + T ) = C̃(t + T )Φ̃(t + T ) = C̃(t)Φ̃(t)Q0 = L̃(t)Q0,

R̃(t + T ) = Φ̃(t + T )−1B̃(t + T ) = Q−1
0 Φ̃(t)−1B̃(t)

= Q−1
0 R̃(t).

Thus, we conclude that the sign corresponding to T of
W (t, p) must be positive, which contradicts the assump-
tion q < 0.
Remark 1. The proof of Theorem 11 is closely related
to Floquet factorization. For a continuous and real T -
periodic A(t) ∈ R

n×n, let W (t, p) := ΦA(t, p). Note that
the sign q corresponding to T of ΦA(t, p) is positive, or
equivalently, a monodromy matrix Q defined by Q =
Φ(t)−1Φ(t + T ) belonging to any real fundamental matrix
Φ(t) of ẋ = A(t)x has a positive determinant, because A(t)
is real matrix-valued. Then, the procedure for the case
q > 0 generates a Floquet-like factorization for any real
fundamental matrix Φ(t) of ẋ = A(t)x, Φ(t) = C(t)Ξ(t),
∀t ∈ R, where C(t) is nonsingular real and periodic with
the period T , and Ξ(t) is a nonsingular real matrix-valued
function generated from the monodromy matrix Q of Φ(t)
by Lemma 12. Note that the factorization holds true
with the common period T and on the real number. In
contrast, in the standard Floquet theory, factorizations
can be performed with the common period T , but the
factors may be non-real. Floquet-type factorizations on the
real number with a non-common period are discussed in
[12, 13].

Let us illustrate the period-specific minimal realization
procedure given above by the following two examples: one
for q > 0 and the other for q < 0.
Example 2. To see the former type of example, we revisit
W (t, p) in (9). We already know that the triplet (11) is a
realization which is minimal as well as 1-periodic, since the
dimension of (11) is equal to 2, the order of W (t, p). This is
consistent with Theorem 11, because det Q = e > 0 which
means that the sign corresponding to T = 1 of W (t, p) is
positive. We then try to “realize” the triplet (11) along the
proof of Theorem 11 and Lemma 12. Although Q in (10)
has no real logarithm, −Q has a real logarithm

A− =
[

0 0
0 1

]
.

With this A− and

H =
[

0 −π
π 0

]
,

define

Ξ(t) = eHteA−t =
[

cos πt −et sin πt
sin πt et cos πt

]
.

The realization triplet (11) is then immediately obtained
by substitution into (13).
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Example 3. To see the latter type of example, consider a
real valued function

W (t, p) = cos πt sin πp − 2 cosh(p − t) sin πt cos πp

which has the order n0 = 3, a period T = 1, and a globally
reduced form W (t, p) = L0(t)R0(p) given by

L0(t) =
[−e−t sin πt −et sinπt cos πt

]
,

R0(t) =
[
et cos πt e−t cos πt sinπt

]T
.

We have a nonsingular real matrix Q = diag[−e−1,−e,−1]
as a solution to the equation (7) with T = 1. We thus
identify the sign q corresponding to T = 1 of W (t, p) as q =
−1. Since the three eigenvalues of Q are negative real and
distinct, the procedure in the proof of Theorem 9 generates
an 1-periodic realization with a 6-dimensional constant A-
matrix. Here we shall observe how an 1-periodic realization
with the dimension n0 + 1 = 4 is generated by following
the proof of Theorem 11. Define an augmented matrix

Q̂ =
[

Q 0
0 −1

]
∈ R

4×4.

Observing that −Q̂ has a real logarithm
A− = diag [−1, 1, 0, 0 ]

and setting

H = diag
[ [

0 −π
π 0

]
,

[
0 −π
π 0

] ]
,

we obtain

Ξ̂(t) = eHteA−t

= diag
[[

e−t cos πt −et sinπt
e−t sinπt et cos πt

]
,

[
cos πt − sin πt
sinπt cos πt

]]
.

With these functions, we arrive at a realization (15)
calculated as

Â(t) = diag
[[ − cos 2πt −π − sin 2πt

π − sin 2πt cos 2πt

]
,

[
0 −π
π 0

]]
,

B̂(t) =
1
2

⎡
⎢⎣

1 + cos 2πt − sin 2πt
1 + cos 2πt + sin 2πt

sin 2πt
1 − cos 2πt

⎤
⎥⎦ ,

Ĉ(t) =
1
2

⎡
⎢⎣

1 − cos 2πt − sin 2πt
−1 + cos 2πt − sin 2πt

1 + cos 2πt
sin 2πt

⎤
⎥⎦

T

,

which is 4-dimensional and 1-periodic.

We have examined in Section 2.2 that Silverman’s pro-
cedure provides, for a T -periodic weighting pattern ma-
trix with the order n0, 2T -periodic, in particular n0-
dimensional realizations. In order to interpret this situ-
ation through Theorem 11, let q denote the sign corre-
sponding to T of W (t, p). Then, we have the sign q2 = 1
corresponding to 2T of W (t, p), for both the cases q = 1
and q = −1. Theorem 11 states for this situation that
W (t, p) has a 2T -periodic realization with the dimension
equal to the order n0 of W (t, p). Thus, the dimension as
well as the period of this realization coincides with those
by Silverman’s procedure.

4. CONCLUSIONS

In this paper, we have proposed and answered the period-
specific realization problem, the question when a given

weighting pattern matrix has a periodic realization with
a given period. One of the crucial steps toward the proofs
of the first and second results in this paper has been to
utilize the freedom of dimension of realization candidates.
It would seem to be unnecessary and redundant that
we should take account of realization candidates with
dimensions larger than the order n0 of a given weighting
pattern matrix as in the results of this paper, in view of the
fact that the realization problem for general linear systems
has always a solution system with the dimension equal
to the order n0. Nevertheless, we have revealed that it
is necessary and concise in the period-specific realization
problem.

This situation can be interpreted as the relation between
minimality of realizations and the notion of controllability
and observability; it turns out by the second result that
period-specific minimal realizations are not necessarily
controllable and observable. In fact, the realization for a
negative sign of a weighting pattern matrix shown in the
proof of the second result has rank-deficient controllability
and observability Grammians. More precisely, the ranks of
these Garmmians are both equal to n0, while the sizes of
the Grammians are n0 + 1. This situation is noteworthy,
even paradoxical, in view of the well-known fact that mini-
mal realizations are inevitably controllable and observable
(and the converse is also true), in the realization prob-
lems for linear time-varying/time-invariant systems, or the
linear periodic realization problems with an unspecified
period.
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