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Abstract: This paper presents a virtual range finder model with the monocular vision system for 
simultaneous localization and mapping (SLAM). It relaxes the constraint often cited in the literature that 
the motion of the optical axis has to be parallel, and reduces the errors for range extraction by a single 
camera. This model could also provide a supplementary range measurement for landmark initialization in 
bearing-only SLAM. As the sensor data transformation from pixel to metric value is a nonlinear process, 
the uncertainty for observation model adopted in Extended Kalman Filter (EKF) SLAM framework can 
not be in the Gaussian form, which probably makes difficult for data association and SLAM. Concerning 
this problem, we present a new data association technique based on the homography transformation by a 
sequence of images and integrate it into the update process of the EKF to assist the innovation computation. 
The experimental results on real data validated the performance of the virtual range finder model and the 
new data association approach. 

 

1. INTRODUCTION 

Simultaneous localization and mapping (SLAM) is 
considered as a fundamental ability for autonomous mobile 
robots. The robot is required to form a consistent 
representation from various sensor measurements and 
concurrently determine its pose by using this map. The 
perceptive devices, including intrinsic and extrinsic ones, 
take a central role in SLAM and ensure the reliability of the 
generated maps. The useful information is automatically 
extracted from these sensors accompanied by appropriate 
algorithms to estimate the states of the environment where 
the robots navigate. 

Range finders, such as laser and sonar, are typical sensors 
that offer the range and orientation data of an object and are 
widely applied in feature-based SLAM. Ip et al. (Ip, Rad, 
Chow, & Wong, 2002) suggested an enhanced adaptive fuzzy 
clustering (EAFC) algorithm from sonar array data to extract 
the segments features that were adopted to map building 
process in static and dynamic environments. Garulli et al. 
(Garulli, Giannitrapani, Rossi, & Vicino, 2005) also 
developed a line-based environment representation with the 
laser range finder. Similarly, employing the laser, Pfister 
(Pfister, Roumeliotis, & Burdick, 2003) suggested a weighted 
line algorithm for describing the environment. Besides the 
line features can be elicited, another simple representation, 
points/landmarks (Andrade-Cetto & Sanfeliu, 2002; Di 
Marco, Garulli, Giannitrapani, & Vicino, 2003, 2004; 
Madhavan & Durrant-Whyte, 2005) can be also obtained 
from these sensors. Furthermore, Diosi and Kleeman (Diosi 
& Kleeman, 2004) incorporated the sonar and laser 
information to generate the metric point feature map. 

In recent years, vision system has attracted many researchers 
as it provides abundant information than the range finders do. 
With the characteristics of numerous vision systems, related 
algorithms on feature extraction and SLAM have been 
developed. By stereoscopic camera (Miro, Dissanayake, & 
Weizhen, 2005), there is sufficient information for depth 
extraction as well as the bearings. In contrast, it is a challenge 
job to retrieve the depth information from monocular images. 
Fortunately, the depth can be approximately recovered by a 
sequence of images. Saxena et al. (Saxena, Chung, & Ng, 
2005) applied the supervised learning to predict the depth-
map with a function of the image by integrating multi-scale 
local and global image features. Additionally, depth can be 
estimated from the change of blur depending on the zoom 
shift, i.e. from defocus (Baba, Oda, Asada, & Yamashita, 
2006). Considering the real-time implementation, Davison et 
al. (Davison, Reid, Molton, & Stasse, 2007) presented a 
unified inverse depth parametrization and conversion 
between inverse depth and depth for point features with 
monocular SLAM in room space with few moving object. 
Murphey et al. (Murphey et al., 2000) designed a 
DepthFinder to detect the distances of the objects through at 
least two images, which acts like a stereo vision system. The 
errors of this model, however, are serious when the camera 
motion is unparallel, that is, the ambiguity of image points 
affects the accuracy. To eliminate variety of ambiguity, 
Martin (Martin, 2006) introduced several powerful domain 
specific constraints and presented an evolving visual sonar, 
but some of these constraints may generate the improper 
bound and confuse the robots to perceive the pseudo 
obstacles. Another alternative method only focuses on the 
bearing measurement reflected in one image when the 
monocular cameras are adopted. By using this technique, the 
bearing-only SLAM strategy is derived (Costa, Kantor, & 
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Choset, 2004; Fitzgibbons & Nebot, 2002; Klippenstein, 
2007; Xiang & Hong, 2006). 

A single camera has few limitations one of which is depth 
extraction. Without using the depth data, the bearing-only 
SLAM framework probably causes landmark initialization 
problems due to non-availability of range measurements. In 
this work, we suggested a virtual range finder with a single 
calibrated camera and extracted the range and bearing 
measurements of the interested points which are to be applied 
in the EFK-SLAM framework. Either in static or dynamic 
environments, this model relaxes the constraint that the 
motion of the optical axis has to be parallel and provides a 
complementary range data for landmark initialization in 
bearing-only SLAM. Additionally, if the real range finder, 
such as laser, has a serious fault, this model can be used as an 
alternate strategy to ensure supplying sufficient perceptive 
information. Since the transformation from the pixel values 
in images to metric ranges and bearings in the real world is a 
substantially nonlinear process, the normal distribution for 
the error model of observations is not maintained. If the 
uncertainty in the observation model is still assumed as the 
normal distribution, this can cause some difficulties for data 
association as well inducing the divergence of the update 
procedure in the EKF SLAM. To address this problem we 
present a new data association policy employing the 
homography transformation based on Scale-invariant Feature 
Transform (SIFT) (Lowe, 2004) and incorporate the result of 
this new data association algorithm into the update process to 
avoid the divergence of the SLAM. The experiments and 
simulations validate our proposed methods. 

The paper is structured as follow: After discussing the 
geometric formulations of virtual range finder and diverse 
coordinate references in Section 2, Section 3 depicts the 
landmark detection by the monocular camera. In Section 4, 
the novel data association methodology is introduced as well 
as SLAM framework. Experiments and simulations test the 
proposed methods in Section 5. Finally Section 6 presents the 
conclusion and future path of this research. 

2. GEOMETRIC FORMULATION 

There are four main coordinate references in the autonomous 
mobile robots system and the overview of the geometric 
relationship among them is displayed in Fig.1a. The subscript 
R refers to robot or local frame and the related plane is ΠR. 
Similarly, C denotes camera reference, I refers to the image 
frame and W expresses world or global coordinate system. 

For convenience, as shown in Fig. 1b we assume that the 
origins of robot and camera coordinate frame (OR and C) are 
identical. Given a world point P on the ground plane, P’ is 
the projection of P on line GE that is the projection of optical 
axis on the ground. Here E is the intersection of the optical 
axis with the ground plane. The images of P and P’ in ΠI are 
p and p’. The height h of the optical center from the ground 
plane and the tilt angle α of the optical axis from the XR axis 
are hand-measured (cf. Fig. 1c). We can recover the range r 
which is the distance from the robot to the interested point P 
following the equations (1)~(4) 
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where fu and fv are the focal length at the direction of U and 
V axis respectively; up and vp are the pixel coordinates of p; 
uo and vo are those of principal point. With the same 
technique, in Fig. 1c we can also retrieve the distance d from 
the robot to the projection point P’ according to 
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Here the sign function w.r.t. up and uo manifests the bearing 
is converted into the robot reference system. Equation (4) and 
(6) are the virtual range and bearing measurements extracted 
from one image. Note that the monocular camera intrinsic 
parameters, such as focal length, principal points, etc., are 
acquired in advance by calibration process (Zhang., 1999). 

 
(a) 

 
(b) 
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(c)                                              (d) 

Fig.1. Geometric relationship in several coordinate references 

3. LANDMARK EXTRACTION 

In previous section, we suggested that the virtual range and 
bearing information of the points can be extracted from the 
monocular images. Usually points may be treated as the 
landmarks for the mapping or SLAM task, thus it is 
necessary to define a special type of interested points as the 
features. In this study we selected the points located on the 
ground plane in that the corresponding height h in computing 
the range is measured from the floor. With this constraint, we 
assigned the intersections of vertical and horizontal edges 
detected from one image as the expected landmarks. The 
point extraction process is interpreted in detail as follow: 

Step1: Pre-processing an acquired image to filter out different 
noise signals; 

Step2: Detecting the vertical edges by the Sobel operator; 
Step3: Implementing the morphological operation to lessen 

improper edges and strengthen appropriate ones; 
Step4: Performing Hough transform (Wong, Shi, & Chan, 

1997) to obatain the line parameters ρ and θ of the 
edges; 

Step5: Selecting the region of interest (ROI). In this study, we 
defined a rectangel window which satisfies 48≤v≤240 
and 0<u≤320 as the ROI, as is shown in Fig.2; 

Step6: In the ROI, detecting the horizontal edges which 
reveal the bound of the ground by the Sobel operator 
with a reasonable threshold for the operator and a 
pixel limitation for the line length; 

Step6: Re-running Step3 and Step4; 
Step7: Calculating the intersections (i.e. landmarks) of these 

two distinct edges by cross product as expressing in 
equation (7). 

 
Fig.2. Two different edges and the landmarks (yellow points) 
calculated by these edges. 
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where θgnd and ρgnd are the parameters for the horizontal 
edges, θvert and ρvert for the vertical ones. Fig.2 illustrates the 
two different edges and the determined landmarks exhibited 
in yellow dots. 

4. SLAM FRAMEWORK 

The SLAM framework applied in this paper is the widely 
used algorithm: extended Kalman filter (EKF) same as our 
previous work (Ip et al., 2002). The motion and observation 
models are  
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where X=[x, y, φ]T is the state variable of robot pose; 
uk=[vk,ωk]T is the control variable; xlm=rcosϕ, ylm=rsinϕ are 
the Cartesian coordinates of the landmark. εk is the Gaussian 
noise of the motion model with zero mean and covariance Qk; 
ζk is the random noise for observation model, however, it 
could not be treated as Gaussian form because computing the 
metric ranges and bearings from the pixel points is an 
essentially nonlinear process. If ζk is simply taken as 
Gaussian, it probably produces a slight inaccuracy for data 
association and divergence for update process of EKF. As 
regarding to these problems, we presented a new data 
association mechanism based on the homography 
transformation within several images and then integrate it 
into the EKF to assist the update procedure. 

4.1  Data Association based on Homography Transformation 

Although the noise of the observation model is probably not 
Gaussian, the pixel noise can be considered as the normal 
distribution and the statistical parameters are accessed by 
camera calibration. Consequently, it is possible to handle the 
data association by the pixel coordinates of the landmark 
instead of the range and bearing measurements. The idea is 
applying the homography transformation (Hartley, 2003) 
computed from the Scale-invariant Features between any two 
images to calculate the Mahalanobis distance. Gil.et al. (Gil, 
Reinoso, Martinez Mozos, Stachniss, & Burgard, 2006) 
managed the data association with the SIFT features from the 
pattern classification viewpoint, and the Mahalanobis 
distance was established by the average SIFT descriptors and 
a high-dimensional covariance matrix. By contrast, following  
Lowe’s algorithm (Lowe, 2004), we used SIFT mechanism to 
determine the stable matched points between any two images 
and then estimated the homography transformation matrix M 
and its covariance ΣM using MLE technique (Hartley, 2003) 
by these points. The Mahalanobis distance was calculated 
based on M, ΣM and the pixel coordinates of landmarks. 
Another reason why we considered SIFT as the matched 
points selection mechanism for estimating M and ΣM is that 
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Scale-invariant Features maintain stable in dynamic 
environments. As is shown in Fig.3, it is obvious that those 
matched points determined by SIFT are unsusceptible to the 
moving object (the person). 

  

Fig.3. Matched points determined by SIFT in dynamic 
environments, which can be used to estimate M and ΣM. 

With the homography transformation matrix M, the estimated 
pixel coordinates of one landmark is expressed as 

 ˆ mfp Mp=  (10) 

where pm is the pixel coordinates of the landmarks existed in 
the map and ˆ fp is those of predicted landmarks. The current 
captured feature is marked as pf, and the Mahalanobis 
distance for data association is  

 1ˆ ˆ)( ( )T
m f f M f fd pp p p−− Σ −=  (11) 

Compared with the formula in Gil’s work (Gil et al., 2006), 
the main differences are the Mahalnobis distance in (11) is 
constructed by the pixel coordinates of landmarks directly 
without any SIFT descriptor and the covariance of M, and ΣM 
has low dimension. If dm is less than a threshold, then a 
current feature is associated with an existing one in the map, 
otherwise the feature is a new one. An example of predicting 
the pixel coordinates according to formula (10) and the data 
association procedure is demonstrated in Fig. 4. The yellow 
points in Image 1 are landmarks stored in map, and those in 
Image 2 are captured landmarks. To make the data 
association understandable, we stressed 3rd feature (labeled 3) 
of Image 1 in red cross, and the predicted landmark in Image 
2 is estimated according to (10) and highlighted in red cross 
as well. It is clear that the prediction sufficiently 
approximates to the captured feature labeled in 3’. With the 
criterion (11), we may claim that the captured landmark 3’ is 
same as previous feature 3. Additionally, it seems that 
landmark 6’ in Image 2 is a new one which can also be 
determined by (11). 

 

Fig.4. The example of the pixel coordinates prediction and 
data association based on homography transformation.  

4.2  EKF SLAM Framework 

In this subsection, we describe the EKF SLAM framework, 
and incorporate the results of the homography transformation 
based data association into the EKF to serve for update 
process and enhance the performance of SLAM. Equations (8) 
and (9) indicate the motion and observation model. The 
prediction phase of EKF is 
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and the update phase is 
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Where FX and Fu are the Jacobian matrices w.r.t state variable 
X and control variable u respectively; HX is the Jacobian 
matrices w.r.t. X; Rk is the covariance of the metric 
measurements and is obtained approximately by linearized 
method with Taylor series expansion. Note that the range and 
bearing measurements contribute to the innovation in (13), 
which implies the results of the data association based on the 
pixel coordinates. This is because the range and bearing data 
is calculated from pixel information of the landmarks. If the 
data association has been established in pixel measurements, 
the relationship of the landmarks still retains identical even 
though in metric representation. In this viewpoint, our 
proposed data association methodology can help to ascertain 
the existed and new features, and release the complexity of 
the innovation computation by ranges and bearings directly. 

5.  EXPERIMENTAL RESULTS 

To validate the virtual range and bearing extraction method 
and its application in the EKF SLAM, we divided the 
experiments into two scenarios. We first tested the virtual 
range finder model and then examined the performance of 
this virtual sensor and the data association based on 
homography transformation in dynamic SLAM. The mobile 
robot platform used for experimental studies was the Pioneer 
2DX mounted with a Canon VCC4 monocular camera, a 
SICK LMS200 laser range finder and a sonar array. 

5.1  Testing the Virtual Range Finder Model 

To calculate the range and bearing from an image, the 
intrinsic parameters of the camera are the important 
components. We calibrated the camera by using the Camera 
Calibration Toolbox (Bouguet, Last updated April 13th, 2007) 
and the intrinsic parameters are listed in Table 1. 

With these calibration parameters and equations (4), (6), we 
extracted the ranges and bearings of some random selected 
points in our control lab. Fig.5 shows the positions of the 
numbered points. Table 2 enlists the results compared with 
the hand-measured data. It can be seen from Table 2 that the 
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errors of the range are within 5% wherever these points 
located. However, the deviation on bearings is slightly higher, 
around 10%. This is because the bearing is not directly 
detected but computed by measuring the two sides of the 
angle. Another experiment in the next subsection will further 
validate the accuracy of the bearing data by comparing with 
the related laser data. 

Table 1.  Intrinsic Parameters 
Focal length fc=[ 365.12674   365.02905 ] 

Principal point cc=[ 145.79917   114.50956 ] 
Skew factor alpha_c=[ 0.00000 ] 
Distortion 

factor 
kc=[ -0.22776, 0.36413, -0.00545, -0.00192, 

0.00000 ] 
Pixel std err=[ 0.10083   0.10936 ] 

 

 

Fig.5. Positions of measured points in control lab. 

Table 2.  Range and Bearing Comparison 
Measured Calculated Deviation Point r(m) ϕ (rad) r(m) ϕ (rad) r(%) ϕ(%) 

1 1.29 0.330 1.28 0.314 0.7 4.8 
2 1.91 0.261 1.82 0.236 4.7 9.6 
3 2.13 0.266 2.03 0.240 4.7 9.7 
4 1.20 0 1.17 -0.02 2.5 ≈0 
5 1.52 -0.305 1.54 -0.330 1.3 8 

5.2  Testing Application of Virtual Range Finder and the 
Data Association Algorithm in Dynamic SLAM 

To test the performance of the virtual range finder model and 
our proposed data association algorithm, by using ARIA and 
OpenCV class library a sequence of images were collected 
when the mobile robot was moving with an average speed of 
200mm/s in the corridor outside the control laboratory of the 
electrical engineering department. There were several people 
walking through the corridor in a typical speed around the 
robot accompanying with slowing down and stopping at 
some place. Meanwhile, the related laser information was 
also recorded as ground truth for model comparison and 
algorithm validation. After obtaining the sensor information, 
without considering real-time property temporarily we 
implemented the SLAM offline in MATLAB environment. 
For promoting efficiency, the landmark extraction procedure 
was carried out previously in an individual routine. 

Fig.6 illustrates the EKF SLAM results with the virtual range 
finder and our proposed data association algorithm. The red 

asterisks are the landmarks represented by their Cartesian 
coordinates from the extracted range and bearing 
measurements, and as the reference the raw map built by 
laser sensor data is also overlaid in black. As is shown in 
Fig.6, it appears that the landmarks are almost identical with 
the laser data, further validating that the error of extracting 
bearing measurements can be reduced. The estimation errors 
of the robot pose are displayed in Fig.7. Most of the pose 
errors are well within the 3-sigma region, elucidating the 
performance of our proposed data association algorithm and 
probably indicating that the proposed methodology has 
robustness in dynamic environments. 

In this work, we did not examine the efficiency of this model 
in bearing-only SLAM. However, regarding the range 
measurements as the auxiliary policy for landmark 
initialization is promising. 

 

Fig.6. The EKF-SLAM results with the virtual range finder 
model and homography transformation based data association. 

 

Fig.7. Estimation errors of the robot pose. 

6. CONCLUSIONS 

A virtual range finder model based on the monocular camera 
is proposed in this work. This model alleviates the deviation 
problem caused by unparallel motion of the optical axis, and 
it can offer a supplementary range measurement for bearing-
only SLAM. As the uncertainty of the virtual observation is 
non-Gaussian, it could weaken the performance of the data 
association implied in update procedure of EKF. Therefore 
we proposed a new data association technique based on 
homography transformation within a sequence of images and 
incorporated it into the update process. Experiments validated 
the performance of the virtual range finder model and the 
homography transformation based data association in 
dynamic SLAM. However, the limitation of the proposed 
model is that the landmarks should be on the flat-floor and 
the external knowledge on the camera installation is required. 
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In the future research, we will relax these constraints by 
fusing other sensor information and active vision mechanism 
in computer vision community. The research work on sensor 
fusion is ongoing, the preliminary results of which is 
encouraging. Another path of the future study is on an 
appropriate error archetype for the virtual range finder model. 
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