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Abstract: In this paper, we study the problem of data association in simultaneous localization
and mapping (SLAM). Since almost all existing methods for solving the problem are only
able to provide suboptimal solutions, we revisit this problem and propose an optimal graph
approach to resolve it. We first formulate the problem as integer programming (IP) problem,
and then algorithmically prove that the IP is equivalent to a minimum weight bipartite perfect
matching problem. Thus, optimally solving the bipartite matching problem is equivalent to
optimally resolve the IP problem (i.e., the data association problem). Simulations validate the
effectiveness and accuracy of the proposed approach.
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1. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
process of building a map of an environment and concur-
rently generating an estimate of the robot pose from the
sensor readings. SLAM is considered an essential capabil-
ity for autonomous mobile robots to exploring unknown
environments. Since Smith and Cheeseman (1987) first in-
troduced a stochastic solution to the SLAM problem, i.e.,
stochastic mapping, in the late 1980s, rapid and exciting
progress in solving the problem has been made over the
past decades, resulting in several compelling implementa-
tions (e.g. Newman (1999); Williams et al. (2000); Kim and
Sukkarieh (2003)). Recent interest in SLAM has focused on
the design of estimation algorithms (Montemerlo (2003);
Paskin (2002)), sensor data processing (Se et al. (2002))
and theoretic analysis of the performance (Mourikis and
Roumeliotis (2006)) etc.

One of most critical and challenging problems in SLAM
is the data association, which consists of relating sensor
measurements to the landmarks (or features) in the exist-
ing map. It is crucial to establish correct correspondences
between the sensed landmarks and mapped landmarks for
building a consistent map, because any single mismatching
may cause the estimator such as extended Kalman filter
(EKF) diverge. It is intuitive to consider data association a
search problem in the space of measurement-landmark cor-
respondences. However, it is usually intractable to do ex-
haustive searching, because the complexity of finding cor-
respondences between the measurements and the mapped
landmarks is exponential on the number of measurements.

To our best knowledge, almost all the existing methods
for solving the data association is suboptimal. However,

in this paper, we revisit the problem by proposing an
optimal graph approach. Specifically, the data association
in SLAM is first formulated as a 0-1 integer programming
(IP) problem. It is well known that optimally solving IP
problem generally is NP-hard. Therefore, the relaxation
technique is usually adopted (e.g., linear programming
relaxation (Zhang et al. (2005))) to obtain suboptimal
solutions. We algorithmically prove that the IP problem is
equivalent to a minimum weight bipartite perfect matching
problem. Hence, we are able optimally solve the bipartite
matching problem and thus equivalently optimally resolve
the IP problem (i.e., data association).

The remainder of the paper is organized as follows: After
an overview of the related work in the next section, the
formulation of the data association problem in SLAM is
presented in Section 3. In Section 4, we prove the equiv-
alence between the IP problem and a minimum weight
bipartite perfect matching. The optimal graph approach
to find the matching in bipartite graph is described in
Section 5. The simulation results are presented in Section
6. Finally, in Section 7 the conclusions of this work are
drawn and future research directions are suggested.

2. RELATED WORK

In stochastic mapping, the problem of data association is
resolved by widely employing the gated nearest neighbor
(NN) algorithm (Leonard and Durrant-Whyte (2005)).
The normalized squared innovation test is used to de-
termine the compatibility, and the Mahalanobis distance
is calculated to select the best matchings. The most ap-
pealing characteristics of NN is its O(mn) computational
complexity besides its conceptual simplicity. Here m is the
number of measurements and n is the number of existing
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landmarks in the map. It performs well in the environ-
ments with sparse landmarks. However, in the surround-
ings with high density of landmarks, the innovations of
matching different observations obtained at same locations
are correlated, thus, the NN algorithm may accept wrong
matchings, which leads to divergence of the estimator.

Dezert and Bar-Shalom (1993) proposed a better solution,
i.e., joint probabilistic data association (JPDA). JPDA
associates all of the measurements falling inside a suit-
ably chosen validation region of a track to itself by a
probabilistic weighting procedure and performs relatively
well when spurious measurements are relatively moderate.
The limitation however is that it can be computationally
prohibitive in terms of calculating weighting probabilities,
and the process my corrupt the feature recognition or
discrimination information.

Neira and Tardos (2001) proposed using a joint com-
patibility test based on the branch and bound (JCBB)
search with a acceptable computational cost in indoor
environments. JCBB takes groups of feature observation
associations into consideration in the context of searching
for the hypothesis with the maximum number of compati-
ble pairs. However, the resultant exponential search space,
despite the branch and bound pruning, renders the method
computationally intensive for real-time implementation.

Nieto et al. (2003) proposed a real-time data association
method for FastSLAM (Montemerlo (2003)) by applying
the multiple hypotheses tracking (MHT) method in a
variety of outdoor environments. MHT is the most struc-
tured approach employing the idea of delay decision for
multitarget tracking and data association (Reid (1979)).
It forms a number of hard association hypotheses from
several scans of data, and delays the association decision
to a later time when more information becomes available.
The method in (Montemerlo (2003)) splits each particle
representing a map in FastSLAM into further particles for
keeping association hypotheses. The particles with wrong
data associations are expected to die out in the resampling
state. Bailey et al. (2000) considered relative distances and
angles between points and lines in two laser scans and
used graph theory to find the largest number of compatible
pairings between the measurements and existing features.

More recently, Zhang et al. (2005) formulated the problem
of data association in SLAM as a linear programming (LP)
relaxation and thus obtained the suboptimal correspon-
dences by solving the LP problem. In the same fashion
of formulating data association into an optimization prob-
lem, Wijesoma et al. (2006) introduced a multidimensional
assignment based method to resolve the problem. However,
all above mentioned methods only provide suboptimal so-
lutions, while, in this work, we seek a theoretically optimal
approach to solve the problem.

3. PROBLEM FORMULATION

Data association of SLAM is a decision process of as-
sociating measurements with existing landmarks in the
stochastic map. We start by formulating the problem as
a 0-1 integer programming (IP) or 2D assignment prob-
lem. A mathematical framework of SLAM based on EKF
(Dissanayake et al. (2001)) will be applied.

3.1 Formulation of IP Problem

At time step k, denote a set of measurements collected in
the latest scan by Z(k) and a set of landmarks existing in
the map so far by F (k), i.e.,

Z(k) �{zi(k) : i = 0, 1, 2, ..., nk} (1)

F (k) �{lj(k) : j = 0, 1, 2, ...,mk} (2)

where nk is the number of actual measurements at time
k and mk the number of existing landmarks in the map
up to time k. Note that z0(k) and l0(k) are the dummy
elements in the case of a false alarm or new landmark is
detected. Next, we introduce a 0-1 decision variable.

xij(k) �

{

1, if zi(k) associated with lj(k)

0, otherwise
(3)

where i = 0, 1, 2, ..., nk and j = 0, 1, 2, ...,mk. Two special
cases shall be emphasized here: xk

i0 = 1 stands that ith

measurement can not be assigned to any of the existing
landmarks in the map and therefore assigned with a
dummy one which may be false alarm or new landmark,
while xk

0j = 1 implies that jth landmark in the map doesn’t
have any possible measurement associated with it in the
current scan. It should be noted that in tracking typically
we do not define the j = 0 case. We do so in order to get
all equality constraints which will be become much clearer
after the discussion below.

There are two important physical constraints imposed on
the data association problem as Li et al. (1999) discussed.
(i) Single source constraint : Each actual measurement
zi(k) (i = 1, 2, ..., nk) can be assigned to at most one
landmark. However, the dummy measurement z0(k) can
be assigned to multiple landmarks in the case of false
detection or new detected landmark. We therefore set it
free to have the following equality constraint.

mk
∑

j=0

xij(k) = 1,∀i = 1, 2, ..., nk (4)

and (ii) Single return constraint : Each landmark lj(k)
(j = 1, 2, ...,mk) can produce at most one measurement
in current scan. Clearly not all landmarks can return
measurements. In other words, some existing landmarks
are undetected in current scan and hence we assign these
undetected landmarks dummy reports.

nk
∑

i=0

xij(k) = 1, ∀j = 1, 2, ...,mk (5)

Our objective is to exactly match the sensor observations
with the existing landmarks in the map. Similar to the
multitarget tracking problem (Li et al. (1999)), the cost of
a feasible association of measurement with existing land-
mark or new landmarks (or false alarm) as the negative
logarithm of the normalized joint probability of such an
association. Define the set of all possible association pairs
at current time step Ω(k) � {(i, j) : zi(k) ∈ Z(k), lj(k) ∈
F (k), i, j �= 0}, and a partition of the set ω = {ωT , ωF },
where ωT denotes the set of measurements associated with
existing landmarks in the map while ωF is the set of mea-
surements associated with new landmarks or false alarms.
Note that we do not distinguish the cases of new landmark
and false alarm. We instead assume all measurements not
associated in current scan are new landmarks, because if
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spurious landmarks are detected, they will be removed
from the map if they do not appear in the following scans.
Thus, ωF only stands for the case of association with
new landmarks. Therefore, the likelihood of detecting new
landmarks is simply approximated with 1, i.e., Λ(ωF ) = 1.
For the true associations, we have

Λ(ωT ) =
∏

(i,j)∈ωT

q(zl) (6)

where zl denotes the true association of zi(k) and lj(k),
and q(zl) is a Gaussian probability density function (pdf)
of the measurement variable zi(k), i.e.,

q(zl) ∼ N (zi(k) : ẑj(k|k − 1), Si(k)) (7)

where ẑj(k|k − 1) is the estimate of landmark lj(k), and
Si(k) is the covariance matrix of the residual (zi(k) −
ẑj(k|k − 1)). Both quantities are obtained in the update
step in EKF SLAM. Therefore, the likelihood of the
partition ω can be calculated as follows (the time index
is temporarily dropped to preserve the clarity of the
presentation):

Λ(ω) = Λ(ωT )Λ(ωF ) =
∏

(i,j)∈ωT

q(zl) (8)

=
∏

(i,j)∈ωT

1
√

det (2πSi)
exp{−

1

2
[zi − ẑj ]

T S−1
i [zi − ẑj ]}

In order to ensure the likelihood is consistent, normaliza-
tion of Λ(ω) is necessary. It is easy to realize that the
normalized likelihood will be the same as Λ(ω) because
itself is already consistent. Our objective is rephrased to
find the one with maximum likelihood Λ(ω) among all
possible partitions ω, which is equivalent to minimizing the
negative log-likelihood −Λ(ω), i.e., J(ω) � − lnΛ(ω) =
−

∑

(i,j)∈ω ln q(zl). By defining the cost coefficient

cij(k) �

{

0, (i, j) ∈ ωF

− ln q(zl), (i, j) ∈ ωT

(9)

the data association of SLAM can be formulated as the
following 0-1 IP problem:

Π1 : min
∑

(i,j)∈ω

cij(k)xij(k)

s.t. Eqs. (3), (4) and (5) (10)

Notice that any solution to this IP corresponds to a
matching and therefore this is a valid formulation of the
minimum weight perfect matching problem in bipartite
graphs (West (2000)), which will be elaborated later (cf.
Section 4).

3.2 Formulation of LP Relaxation

Consider now the linear programming (LP) obtained by
simply dropping the integrality constraints:

Π2 : min
∑

(i,j)∈ω

cij(k)xij(k)

s.t. xij ≥ 0, and Eqs. (4) and (5) (11)

This is the LP relaxation of the above IP problem (Π1),
which has been explored by Zhang et al. (2005). In an LP,
the variables can take fractional values and therefore there
are many feasible solutions to the set of constraints above
which do not correspond to matchings. But we only care
about the optimum solutions. The set of feasible solutions

to the constraints in Π2 forms a polytope, and when we
optimize a linear constraint over a polytope, the optimum
will be attained at one of the corners or extreme points of
the polytope. In general, even if all the coefficients of the
constraint matrix in an LP are either 0 or 1, the extreme
points of an LP are not guaranteed to have all coordinates
integral (This is of no surprise since the general IP problem
is NP-hard, while LP is polynomially solvable). As a result,
there is no guarantee that the optimum solution of IP (Π1)
is equal to optimum solution of its LP relaxation (Π2).
However, Π2 provides a lower bound of Π1. Moreover,
the following lemma is easy to prove.

Lemma 1. If an optimum solution to Π2 is integral, then
it must also be an optimum solution to Π1.

Proof. The integral optimum solution to Π2 satisfies all
the constraints of Π1. �

4. MINIMUM WEIGHT BIPARTITE PERFECT
MATCHING

By assigning infinite costs to the edges not present, we
assume that the bipartite graph is complete. The mini-
mum cost (or weight) perfect matching problem is often
described by the following account: There are n jobs to
be processed on n machines and one would like to process
exactly one job per machine such that the total cost of
processing the jobs is minimized. Analogue to this story,
with help of the dummy variables, the IP formulation of
data association in SLAM, Π1 (cf. (10)), can be consid-
ered as a minimum weight bipartite perfecting matching
problem. Instead of using optimization method directly
to solve the data association problem, we shall employ
graph approaches to solve the equivalent bipartite match-
ing problem. In the case of the perfect matching problem,
the constraint matrix has a very special form and one can
show that the optimality of the solutions can be preserved.
To do so, we start by stating a very crucial result (cf.
Lemma 2) as well as a purely algorithmic proof in the
following.

Lemma 2. Any extreme point of the polytope of Π2 is a
0-1 vector and, hence, is the incidence vector of a perfect
matching.

Proof. To prove algorithmically, we construct a primal-
dual algorithm for solving the minimum weight perfect
matching problem. Suppose in a specific case of the bi-
partite matching problem, we have measurement ui and
landmark vj such that ui + vj ≤ cij . The dual of the LP
relaxation, Π2, can be obtained as follows:

Π3 : max
∑

(i,j)∈ω

(ui + vj)

s.t. ui + vj ≤ cij (12)

The dual constraints can be interpreted as wij ≥ 0, where
wij = cij − ui − vj . If, for any instance, we could always
find a feasible solution u, v to the dual Π3 and hence a
perfect matching such that equalities in Eq. (3) hold (i.e.
the cost of the perfect matching is equal to the value of the
dual solution). Thus, we would know that the matching
found is optimum. Given a solution u, v to the dual, a
perfect matching would satisfy equality if it contains only
edges (i, j) such that wij = cij − ui − vj = 0. This is
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what is referred to as complementary slackness. However,
for a given u, v, we may not be able to find a perfect
matching among the edges with wij = 0. The algorithm
performs a series of iterations. It always maintains a dual
feasible solution and tries to find an almost primal feasible
solution x satisfying complementary slackness. The fact
that complementary slackness is imposed is crucial in any
primal-dual algorithm.

More precisely, the algorithm works as follows. It first
starts with any dual feasible solution, say ui = 0 for
all i and vj = mini∈ωcij for all j. In a given iteration,
the algorithm has a dual feasible solution (u, v) or say
(u, v, w). Imposing complementary slackness means that
we are interested in matchings which are subgraphs of
B = {(i, j) : wij = 0}. If B has a perfect matching
then the incidence vector of that matching is a feasible
solution in Π2 and satisfies complementary slackness with
the current dual solution and, hence, must be optimal.
To check whether B has a perfect matching, one can
use the cardinality matching method. If the maximum
matching output is not perfect, then the algorithm will use
information from the optimum vertex cover C∗ to update
the dual solution in such a way that the value of the dual
solution increases. Recall that we are maximizing the dual.

Let the set L (for labeling) of vertices which can be
reached by a directed path from an exposed vertex in
measurement set Z. In particular, there is then no edge
of B between Z ∩ L and F ∩ L, where we remind that
F is the mapped feature set. In other words, for every
i ∈ (Z ∩ L) and every j ∈ (F − L), we have wij > 0.
Let δ = mini∈(Z∩L),j∈(F−L) wij . By the above argument,
δ > 0. The dual solution is updated as follows:

ui =

{

ui, i ∈ Z − L

ui + δ, i ∈ Z ∩ L
(13)

vj =

{

vj , j ∈ F − L

vj − δ, j ∈ F ∩ L
(14)

One easily check that this dual solution is feasible, in the
sense that the corresponding vector w satisfies wij ≥ 0 for
all i and j. The difference between the values of the new
dual solution and the old dual solution is equal to:

δ(|Z ∩ L| − |F ∩ L|)

=δ(|Z ∩ L| + |Z − L| − |F − L| − |F ∩ L|)

=δ(n − |C∗|) (15)

where Z has size of n and C∗ is the optimum vertex cover
for the bipartite graph with edge set B. But by assumption
|C∗| < n, implying that the value of the dual solution
strictly increases.

This procedure is repeated until the algorithm terminates.
At that point, we have an incidence vector of a perfect
matching and also a dual feasible solution which satisfy
complementary slackness. They must therefore be optimal
and this proves the existence of an integral optimum
solution to Π2. Since, by carefully choosing the cost
function, one can make any extreme point be the unique
optimum solution to the linear program. Now we need to
prove that the algorithm indeed terminates. Notice that
at least one more vertex of F must be reachable from
an exposed vertex of Z (and no vertex of F becomes
unreachable), since an edge e = (i, j) with i ∈ (Z ∩ L)

and j ∈ (F − L) now has wij = 0 by our choice of δ.
This also gives an estimate of the number of iterations.
In at most n iterations, all vertices of F are reachable or
the matching found has increased by at least one unit.
Therefore, after O(n2) iterations, the matching found is
perfect. This completes the proof. �

Now we reach the core of our findings, which is the
equivalence between IP problem and minimum weight
bipartite perfect matching problem.

Lemma 3. Solving Π1 is equivalent to solve a correspond-
ing minimum weight bipartite perfect matching.

Proof. With Lemma 1 and 2, the optimum solution of
the minimum weight bipartite perfect matching is also
optimum solution to Π1. �

Therefore, instead of solving the original IP problem (i.e.,
Π1) directly, we resolve the minimum weight bipartite
perfect matching problem to obtain the optimum solution
to the data association.

5. ALGORITHM BASED ON WEIGHTED
BIPARTITE MATCHING

In this section, we focus on finding the minimum weight
matchings in the bipartite matching. The general idea
is straightforward: start with any empty matching, and
repeatedly discover augmenting paths.

Several essential definitions are first delivered (West
(2000)). Given a matching M in a bipartite graph G =
(V,E), a simple path in G is called an augmenting path
with respect to M if its two vertices are both unmatched
and its edges are alternative in E − M and M . Let p be
an augmenting path with respect to M , and P denote the
set of edges in path p, then M ⊕ P � (M − P )∪ (P −M)
is called symmetric difference of M and P . One can verify
the following properties of M ∪ P : (i) it is a matching,
and (ii) |M ∪ P | = |M | + 1. The total weight of matching
M is w(M) =

∑

e∈M w(e). Suppose M ′ be a set of edges.
An incremental weight ∆M ′ is defined as ∆M ′ = w(M ′ ∩
M)−w(M ′−M). From this definition, for an augmenting
path p with respect to M , ∆P gives the net change in the
weight of the matching after augmenting p, i.e.,

w(M ∪ P ) = w(M) + ∆P (16)

The minimum weight matchings are found iteratively.
Specifically, the matching M is initialized to be empty. At
each iteration, M is increased by finding an augmenting
path of minimum weight. The procedure stops till no
augmenting path with respect to M can be found. Johnson
and Mcgeoch (1993) already proved that the process yields
a minimum weight matching if repeatedly performing
augmentations by using augmenting paths of minimum
incremental weight. In order to search augmenting paths
with respect to matching M systematically and efficiently,
a search starts by constructing alternating paths from
the unmatched points. As an augmenting path must have
one unmatched endpoint in Z and the other in F , in
general, the search starts by growing alternating paths
only from unmatched vertices of Z, and may search for
all possible alternating paths from unmatched vertices of
Z simultaneously in a breadth-first manner. In this work,
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Fig. 1. Simulation setup. A robot equipped with range-
bearing senor moves on the planned trajectory at
constant velocity of v = 2 m/sec.

the approach proposed by Johnson and Mcgeoch (1993)
is employed to compute the minimum weight matching
in the bipartite graph, which consists of two basic steps:
(i) finding a shortest path augmentation from a subset
of vertices in Z to a subset of vertices in F , and (ii)
performing the shortest augmentation.

6. SIMULATION RESULTS

The simulations were designed to evaluate the performance
of the proposed approach applied in EKF-SLAM. We
implemented the simulation experiments based on the sim-
ulator written by Bailey 1 . To demonstrate the capability
of the proposed graph approach to improve the accuracy of
the data association and thus the estimation, we particu-
larly compared the performance with NN data association,
which is one of most widely used methods in EKF-SLAM.
Two different scenarios were considered: one is with sparse
landmarks, while the other has relatively denser landmarks
(cf. Fig. 1). The velocity of the robot is kept constant
at v = 2 m/sec, while its rotational velocity is obtained

1 The simulator is available online http://www-personal.acfr.

usyd.edu.au/tbailey/software/slam simulations.htm
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Fig. 2. Estimation errors of robot pose in the environment
with sparse landmarks
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Fig. 3. Estimation errors of robot pose in the environment
with dense landmarks

by calculating the changing rate of the orientation from
the current location to the next one in order to best fit
the generated trajectory. The robot pose has zero initial
uncertainty. The standard deviation of the velocity mea-
surement noise is equal to σv = 0.1 m/sec and the standard
deviation of the errors in the orientation estimates is equal
to σω = 0.0524 rad/sec. Similarly, the standard deviations
of the exteroceptive measurement noise (i.e., range and
bearing) are σr = 0.1 m and σb = 0.0524 rad. The maxi-
mum sensing range of the sensor is set to 5 m. The resulting
estimation errors of robot pose are shown in Figs. 2 and
3, respectively. Figs. 4 and 5 depict the estimation errors
of the landmarks. As seen from these figures, the bipartite
matching data association performs consistently, since the
estimation errors are all well bounded in the 3σ regions,
thus validating the effectiveness of the proposed algorithm.
Moreover, in terms of the accuracy, the proposed graph
approach attains better results, in that it has smaller
covariance than NN, especially in the dense environment.

7. CONCLUSIONS AND FUTURE WORK

Almost all existing solutions to data association problem
in SLAM are suboptimal. In this paper, however, we
formulated the problem as an equivalent minimum weight
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Fig. 5. Estimation errors of landmarks in the environment
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bipartite perfect matching problem which can be optimally
solved, thus obtaining the optimal solution to the data
association problem. The simulation results also validated
the proposed graph approach. More thorough comparison
studies with the existing methods in the literature are
undergoing. As for the future work, we plan to explore new
ways to improve the efficiency of the bipartite matching
based algorithm.
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