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Abstract: A discrete-time integral sliding mode control (DISMC) scheme is proposed for
sample-data systems with state time-delay and disturbance. A steady-state error about the
magnitude of O(T 2) is achieved for some delay systems. A variable replacement is applied to
transform the original system to a new delay-free system; then a DISMC scheme is designed
for the new system. Comparing with the existing methods dealing with time-delay systems, the
new scheme is different and simple for some systems. The illustrative example demonstrates the
validity of the proposed scheme.

1. INTRODUCTION

With the development of computer, research in discrete-
time control has been intensified in recent years. This also
necessitated a rework in the sliding-mode control (SMC)
strategy for discrete-time delay-free systems(see Gao et al.
[1995],Hui et al. [1999],Koshkouei et al. [2000],Goloa
et al. [2000],Gao et al. [1995]). However, the reaching law
method is not very good wether in theory or practice; and
the equivalent control method based on the equivalent con-
trol and disturbance estimation (see Cheng et al. [2000])
just drives the sliding-mode into a region of O(T 2). The in-
tegral sliding-mode control method (see Abidi et al. [2007])
eliminates the reaching phase and drives both sliding-mode
and state to the region magnitude of O(T 2).

In fact, discrete-time systems with state-delay have strong
background in engineering applications. Though a great
number of research results concerning time-delay systems
have existed(see Xu et al. [2001],Richard [2003],Gao et al.
[2007]), little progress has been reported for the sliding-
mode control strategy in discrete-time systems with time-
delay. So it motivates the present study.

In this work, aiming at transforming state time-delay sys-
tem to delay-free one and improving control performance,
a new variable is introduced and an integral sliding man-
ifold is applied. First, a feedback control is selected to
get proper poles for the nominal model; then a variable
replacement is used to transform the time-delay system
to a delay-free one; then, for the new system, the closed-
loop system can achieve the desired control performance
and achieve the boundary layer of the region magnitude
of O(T 2) for state regulator. And the two systems are
connected by assumption1.

⋆ This work was supported by National Nature Science Foun-
dation (60674020) and Nature Science Foundation of ShanDong
(Z2006G11).

Note: ‖z‖ = max
i

{|zi|}, ‖A‖ = max
i

{
n∑

j=1

|aij |}.

2. PROBLEM FORMULATION

2.1 Sample-data System

Consider the continuous-time system with state-delay and
matched disturbance

x(t) = Ax(t) + A1x(t − τ) + B[u(t) + f(t)]
x(θ) = 0 for θ ∈ [−τ, 0)
x(0) = x0

(1)

where the state x ∈ ℜn , the control u ∈ ℜm, and the
disturbance f ∈ ℜm is assumed smooth and bounded. τ
is the constant time-delay in state. If T is the sampling
period and τ = hT + τ1, 0 ≤ τ1 < T , then the discretized
counterpart of (1) can be given by

xk+1 = Φxk + Φ0xk−h + Φ1xk−h−1 + Γuk + dk

xi = 0 for i = −1,−2, · · ·
x0 = x0

(2)

where

Φ = eAT ,Φ0 =

∫ T

τ1

eAsds · A1,

Φ1 =

∫ τ1

0

eAsds · A1,Γ =

∫ T

0

eAsds · B,

the disturbance dk =
∫ T

0
eAsBf((k+1)T −s)ds represents

the influence accumulated from kT to (k + 1)T . From the
definition of Γ, it can be shown that

Γ = BT +
1

2!
ABT 2 + · · · = BT + MT 2 + O(T 3)

where M =
1

2!
AB is a constant matrix, and it can be

concluded that the magnitude of Γ is O(T ).
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Lemma 1. If the disturbance f(t) in (1) is bounded and
smooth, then

dk = Γfk +
1

2
ΓgkT + O(T 3) (3)

dk − dk−1 = O(T 2) (4)

dk − 2dk−1 + dk−2 = O(T 3) (5)

where fk = f(kT ), gk = g(kT ), g(t) = (d/dt)f(t).

See Abidi et al. [2007].

Note that the magnitude of the mismatched part dk in the
disturbance is of the order O(T 3).

2.2 Transformation

Consider the linear nominal model

xk+1 = Φxk + Γuk (6)

Lemma 2. With a feedback control law

un
k = −Kxk (7)

the closed-loop system of (6) is asymptotically stable. K is
chosen such that Φ−ΓK = G has all different poles inside
the unit disk in the complex z−plane.

For G has different poles in unit disk, it can be written as
diagonal form

G = PJP−1

where P is a nonsingular transformation matrix and J is
the diagonal matrix of {λi, i = 1, · · · , n} and {λi} are the
poles of G, where J is that

J =




λ1

. . .
λn





Obviously, ‖J‖ = λ, λ = max
1≤i≤n

|λi|.

Consider a controller with the following structure

uk = un
k + vk

then, the discretized system (2) is changed to

xk+1 = Gxk + Φ0xk−h + Φ1xk−h−1 + Γvk + dk (8)

Lemma 3. The transformation

zk = xk −
k−1∑

j=h

Gk−j−1Φ0xj−h

−
k−1∑

j=h+1

Gk−j−1Φ1xj−h−1

(9)

can transfer the state time-delay system (8) to delay-free
system

zk = Gzk + Γvk + dk (10)

Proof. Using (9) and (2), we obtain

zk+1 = xk+1 −
k∑

j=h

Gk−jΦ0xj−h −
k∑

j=h+1

Gk−jΦ1xj−h−1

= Gxk + Φ0xk−h + Φ1xk−h−1 + Γvk + dk

−
k∑

j=h

Gk−jΦ0xj−h −
k∑

j=h+1

Gk−jΦ1xj−h−1

= Gzk + Γvk + dk

Assumption 1. If G is an asymptotically stable matrix and
xk is bounded, then xk has the same magnitude with zk.

Remark: This assumption is necessary for the control
design of the system (8)and system (10); fortunately, there
are some systems satisfy it. In fact

‖ zk ‖

‖ xk ‖
≥ 1 −

k−1∑

j=h

‖ Gk−j−1Φ0

xj−h

xk

‖

−
k−2∑

i=h

‖ Gk−i−2Φ1

xi−h

xk

‖

≥ 1+ ‖ P ‖‖ J−1 ‖‖ P−1 ‖‖ Φ1 ‖‖
xk−1−h

xk

‖

− ‖ P ‖ (
k−1∑

j=h

‖ Jk−j−1(P−1Φ0 + J−1P−1Φ1) ‖‖
xj−h

xk

‖)

So, by selecting proper G, ‖zk‖
‖xk‖

≥ O(T ) can be obtained.

3. STATE REGULATION WITH ISMC

From assumption 1, it is reasonable to consider the delay-
free system (10). Define the integral sliding manifold as
follows

σk = Dzk + εk − Dz0

εk = εk−1 + Ezk−1
(11)

where σk ∈ ℜm, εk ∈ ℜm, k = 0, 1, · · · ,D, E ∈ ℜm×n

are constant matrices of rank m and DΓ is invertible. It
can be concluded that σ0 = 0, ε0 = 0; this means that the
reaching phase is eliminated. In order to force the state
trajectory to stay on the sliding manifold, the equivalent
control is calculated by σk+1 = 0. This leads to

(vk)eq = (DΓ)−1z0 − (DΓ)−1[(DG + E)zk + Ddk + εk]

Lemma 4. With the integral sliding manifold and distur-
bance estimation

d̂k = dk−1 = zk − Gzk−1 − Γvk−1

the practical control law

vk = (DΓ)−1Dz0− (DΓ)−1[(DG+E)zk +Dd̂k +εk] (12)

can make the sliding manifold σk go into a neighborhood
of O(T 2).

Proof. Using (11), (12) and (4), we obtain

σk+1 = Dzk+1 + εk+1 − Dz0

= DGzk + DΓvk + Ddk + εk + Ezk − Dz0

= DGzk + Ddk + εk + Ezk − Dz0 + DΓ{

(DΓ)−1Dz0 − (DΓ)−1[(DG + E)zk + Dd̂k + εk]}

= D(dk − d̂k) = D(dk − dk−1) = O(T 2)

Assumption 2. ‖I−Γ(DΓ)−1D‖ = O(1) and ‖P‖‖P−1‖ =
O(T−1).

Remark: This assumption is easy to be satisfied by select-
ing proper matrix D, and enough small T .

Theorem 1. If assumption 1 and 2 are satisfied, then with
the control law (12), the closed-loop dynamic system

zk+1 = Gzk + ξk (13)

is set by the magnitude O(T 3),the ultimate bound of zk is
set by the magnitude O(T 2)with E = D−DG and ξk ∈ ℜn

. So, the original state vector xk goes into the boundary
layer with the magnitude O(T 2).
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Proof. Substituting (12) into (10), we obtain

zk+1 = [G − Γ(DΓ)−1(DG + E)]zk − Γ(DΓ)−1εk

+Γ(DΓ)−1Dz0 + dk − Γ(DΓ)−1Dd̂k

(14)

using the integral sliding manifold (11), we obtain

εk = σk − Dzk + Dz0 (15)

Substituting (15),E = D − DG, σk+1 = D(dk − dk−1)
into (14), we obtain

zk+1 = Gzk + dk − Γ(DΓ)−1Ddk−1

−Γ(DΓ)−1D(dk−1 − dk−2)
(16)

Let

ξk = dk−Γ(DΓ)−1Ddk−1−Γ(DΓ)−1D(dk−1−dk−2) (17)

then using (3), (5),‖I − Γ(DΓ)−1D‖ = O(1), we obtain

ξk = dk − 2dk−1 + dk−2

+(I − Γ(DΓ)−1D)(2dk−1 − dk−2)
= O(T 3) + (I − Γ(DΓ)−1D)[Γ(2fk−1 − fk−2)

+Γ(gk−1 −
1

2
gk−2)T + O(T 3)]

= O(T 3) + (I − Γ(DΓ)−1D)O(T 3) = O(T 3)

The solution of (13) is

zk = Gkz0 +

k−1∑

i=0

Gk−i−1ξi

= PJkP−1z0 + P
k−1∑

i=0

Jk−i−1P−1ξi

So

‖zk‖ ≤ ‖P‖‖Jk‖‖P−1‖‖z0‖ + ‖P‖‖
k−1∑

i=0

Jk−i−1P−1ξi‖

≤ ‖P‖‖P−1‖[λk‖z0‖ +
k−1∑

i=0

λk−i−1O(T 3)]

≤ ‖P‖‖P−1‖λk‖z0‖ + ‖P‖‖P−1‖
1

1 − λ
O(T 3)

For λ is predict given, so it is easy to select λ ≤ 0.9 to

make
1

1 − λ
= O(1), so ‖P‖‖P−1‖

1

1 − λ
= O(T−1). So,

when k → ∞, ‖zk‖ = O(T 2). And from assumption 1,
the original states vector xk go into the boundary layer of
O(T 2).

4. NUMERICAL EXAMPLES

Consider (1) with the following parameters:

A =

[
8 12
10 6

]
, A1 =

[
2 8
4 7

]
, B =

[
10
15

]

f(t) = 0.1(cos(t) − sin(t)), τ = 0.265

The initial states are x0 = [1 −0.5]T . Take the sample time
T = 0.01s, then h = 26, and τ1 = 0.005. The discretized
counterpart is given by

Φ =

[
1.0898 0.12896
0.10747 1.0683

]
,Φ0 =

[
0.0108 0.4191
0.0206 0.0366

]

Φ1 =

[
0.0108 0.4191
0.0206 0.0366

]
,Γ =

[
0.11376
0.16015

]
, ‖d(k)‖ < 0.03

The poles are selected as λ1 = 0.7, λ2 = 0.65, then the
gain matrices can be obtained

K = [ 8.5728 −1.0443 ]

Then

G =

[
0.1145 0.2478
−1.2655 1.2355

]
, P =

[
−0.4199 −0.3897
−1.9076 −0.9209

]

So, ‖P‖‖P−1‖ = 73.5 < O(T−1). Select any matrix D
which make DΓ is invertible, here D = [1 1.4], then ‖I −
Γ(DΓ)−1D‖ = 1.1346 = O(1). According to E = D −DG

E = [ 2.6572 −0.5775 ]

The delayed disturbance is used. Fig.1 shows that the
system states are ultimately bounded and are set by
the magnitude O(T 2) from Fig.2. The ISMC goes into a
boundary after the second step and is set by the magnitude
O(T 2) from Fig.4; this is because that for the first step it
is equal to Dd0. The control input is bounded and avoids
chattering from Fig.5 and Fig.6.

5. CONCLUSION

This work proposes a method to deal with some sample-
data systems with time-delay. It is effective for some sys-
tems which satisfy assumption1 and 2. So, it is meaningful
to be after the necessary and sufficient conditions to select
proper systems which satisfy the assumptions.
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